Water cycle changes in reanalyses: a complementary framework
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
22-33266M
Grantová Agentura České Republiky
PubMed
36959365
PubMed Central
PMC10036538
DOI
10.1038/s41598-023-31873-5
PII: 10.1038/s41598-023-31873-5
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Climate reanalyses complement traditional surface-based measurements and offer unprecedented coverage over previously inaccessible or unmonitored regions. Even though these have improved the quantification of the global water cycle, their varying performances and uncertainties limit their applicability. Herein, we discuss how a framework encompassing precipitation, evaporation, their difference, and their sum could further constrain uncertainty by unveiling discrepancies otherwise overlooked. Ahead, we physically define precipitation plus evaporation to describe the global water cycle fluxes in four reanalysis data sets (20CR v3, ERA-20C, ERA5, and NCEP1). Among them, we observe four different responses to the temperature increase between 1950-2010, with ERA5 showing the best agreement with the water cycle acceleration hypothesis. Our results show that implementing the framework proposed can improve the evaluation of reanalyses' performance and enhance our understanding of the water cycle changes on a global scale.
See more in PubMed
VargasGodoy MR, Markonis Y, Hanel M, Kyselý J, Papalexiou SM. The global water cycle budget: A chronological review. Surv. Geophys. 2021;42:1075–1107. doi: 10.1007/s10712-021-09652-6. DOI
Schneider, U. et al. GPCC full data reanalysis version 6.0 at 0.5: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. GPCC Data Rep.10 (2011).
Kidd C, Huffman G. Global precipitation measurement. Meteorol. Appl. 2011;18:334–353. doi: 10.1002/met.284. DOI
Pastorello G, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data. 2020;7:225. doi: 10.1038/s41597-020-0534-3. PubMed DOI PMC
Prein AF, Pendergrass AG. Can we constrain uncertainty in hydrologic cycle projections? Geophys. Res. Lett. 2019;46:3911–3916. doi: 10.1029/2018GL081529. DOI
Trenberth KE, Guillemot CJ. Evaluation of the global atmospheric moisture budget as seen from analyses. J. Clim. 1995;8:2255–2272. doi: 10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2. DOI
Trenberth KE, Fasullo JT, Mackaro J. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Clim. 2011;24:4907–4924. doi: 10.1175/2011JCLI4171.1. DOI
Allen MR, Ingram WJ. Constraints on future changes in climate and the hydrologic cycle. Nature. 2002;419:228. doi: 10.1038/nature01092a. PubMed DOI
Trenberth KE, Smith L, Qian T, Dai A, Fasullo J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 2007;8:758–769. doi: 10.1175/JHM600.1. DOI
Rodell M, et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 2015;28:8289–8318. doi: 10.1175/JCLI-D-14-00555.1. DOI
Zhang, Y., Pan, M. & Wood, E. F. On creating global gridded terrestrial water budget estimates from satellite remote sensing. In Remote Sensing and Water Resources, 59–78 (Springer, 2016).
Slivinski LC, et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 2019;145:2876–2908. doi: 10.1002/qj.3598. DOI
Poli P, et al. ERA-20C: An atmospheric reanalysis of the twentieth century. J. Clim. 2016;29:4083–4097. doi: 10.1175/JCLI-D-15-0556.1. DOI
Hersbach H, et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020;146:1999–2049. doi: 10.1002/qj.3803. DOI
Kalnay E, et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996;77:437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. DOI
Adler RF, et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere. 2018;9:138. doi: 10.3390/atmos9040138. PubMed DOI PMC
Morice CP, et al. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res. Atmos. 2021;126:e2019JD032361. doi: 10.1029/2019JD032361. DOI
Oki T, Kanae S. Global hydrological cycles and world water resources. Science. 2006;313:1068–1072. doi: 10.1126/science.1128845. PubMed DOI
Cheng L, et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Clim. 2020;33:10357–10381. doi: 10.1175/JCLI-D-20-0366.1. DOI
Held IM, Soden BJ. Robust responses of the hydrological cycle to global warming. J. Clim. 2006;19:5686–5699. doi: 10.1175/JCLI3990.1. DOI
Sherwood S, Fu Q. A drier future? Science. 2014;343:737–739. doi: 10.1126/science.1247620. PubMed DOI
Byrne MP, O’Gorman PA. The response of precipitation minus evapotranspiration to climate warming: Why the “ wet-get-wetter, dry-get-drier ” scaling does not hold over land. J. Clim. 2015;28:8078–8092. doi: 10.1175/JCLI-D-15-0369.1. DOI
Espinoza V, Waliser DE, Guan B, Lavers DA, Ralph FM. Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett. 2018;45:4299–4308. doi: 10.1029/2017GL076968. DOI
Huntington TG, Weiskel PK, Wolock DM, McCabe GJ. A new indicator framework for quantifying the intensity of the terrestrial water cycle. J. Hydrol. 2018;559:361–372. doi: 10.1016/j.jhydrol.2018.02.048. DOI
Weiskel, P. K. et al. Water use regimes: Characterizing direct human interaction with hydrologic systems. Water Resour. Res.43 (2007).
Budyko MI. Climate and Life. Academic Press; 1974.
Allan RP, et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020;1472:49–75. doi: 10.1111/nyas.14337. PubMed DOI
Fläschner D, Mauritsen T, Stevens B. Understanding the intermodel spread in global-mean hydrological sensitivity. J. Clim. 2016;29:801–817. doi: 10.1175/JCLI-D-15-0351.1. DOI
Ho S-P, et al. The COSMIC/FORMOSAT-3 radio occultation mission after 12 years: Accomplishments, remaining challenges, and potential impacts of COSMIC-2. Bull. Am. Meteorol. Soc. 2020;101:E1107–E1136. doi: 10.1175/BAMS-D-18-0290.1. DOI
Trenberth KE, Fasullo JT. North American water and energy cycles. Geophys. Res. Lett. 2013;40:365–369. doi: 10.1002/grl.50107. DOI
Trenberth KE, Fasullo JT. Regional energy and water cycles: Transports from ocean to land. J. Clim. 2013;26:7837–7851. doi: 10.1175/JCLI-D-13-00008.1. DOI
Hegerl, G. C. et al. Challenges in quantifying changes in the global water cycle. Bull. Am. Meteorol. Soc.99 (2018).
Dee DP. Bias and data assimilation. Q. J. R. Meteorol. Soc. 2005;131:3323–3343. doi: 10.1256/qj.05.137. DOI
Eicker A, et al. Daily GRACE satellite data evaluate short-term hydro-meteorological fluxes from global atmospheric reanalyses. Sci. Rep. 2020;10:4504. doi: 10.1038/s41598-020-61166-0. PubMed DOI PMC
Hassler B, Lauer A. Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere. 2021;12:1462. doi: 10.3390/atmos12111462. DOI
Tennant, W. Considerations when using pre-1979 NCEP/NCAR reanalyses in the southern hemisphere. Geophys. Res. Lett.31 (2004)
Slivinski LC, et al. An evaluation of the performance of the twentieth century reanalysis version 3. J. Clim. 2021;34:1417–1438. doi: 10.1175/JCLI-D-20-0505.1. DOI
Greve P, et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014;7:716–721. doi: 10.1038/ngeo2247. DOI
Rustemeier E, et al. Uncertainty assessment of the ERA-20C reanalysis based on the monthly in situ precipitation analysis of the Global Precipitation Climatology Centre. J. Hydrometeorol. 2019;20:231–250. doi: 10.1175/JHM-D-17-0239.1. DOI
Roth N, et al. A call for consistency with the terms ‘wetter’ and ‘drier ’ in climate change studies. Environ. Evid. 2021;10:8. doi: 10.1186/s13750-021-00224-0. DOI
McColl, K. A., Roderick, M. L., Berg, A. & Scheff, J. The terrestrial water cycle in a warming world. Nat. Clim. Change (2022).
McCabe MF, et al. The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data. Geosci. Model Dev. 2016;9:283–305. doi: 10.5194/gmd-9-283-2016. DOI
Xie P, Arkin PA. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997;78:2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2. DOI
Yin X, Gruber A, Arkin P. Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979–2001. J. Hydrometeorol. 2004;5:1207–1222. doi: 10.1175/JHM-392.1. DOI