• This record comes from PubMed

Water cycle changes in reanalyses: a complementary framework

. 2023 Mar 23 ; 13 (1) : 4795. [epub] 20230323

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
22-33266M Grantová Agentura České Republiky

Links

PubMed 36959365
PubMed Central PMC10036538
DOI 10.1038/s41598-023-31873-5
PII: 10.1038/s41598-023-31873-5
Knihovny.cz E-resources

Climate reanalyses complement traditional surface-based measurements and offer unprecedented coverage over previously inaccessible or unmonitored regions. Even though these have improved the quantification of the global water cycle, their varying performances and uncertainties limit their applicability. Herein, we discuss how a framework encompassing precipitation, evaporation, their difference, and their sum could further constrain uncertainty by unveiling discrepancies otherwise overlooked. Ahead, we physically define precipitation plus evaporation to describe the global water cycle fluxes in four reanalysis data sets (20CR v3, ERA-20C, ERA5, and NCEP1). Among them, we observe four different responses to the temperature increase between 1950-2010, with ERA5 showing the best agreement with the water cycle acceleration hypothesis. Our results show that implementing the framework proposed can improve the evaluation of reanalyses' performance and enhance our understanding of the water cycle changes on a global scale.

See more in PubMed

VargasGodoy MR, Markonis Y, Hanel M, Kyselý J, Papalexiou SM. The global water cycle budget: A chronological review. Surv. Geophys. 2021;42:1075–1107. doi: 10.1007/s10712-021-09652-6. DOI

Schneider, U. et al. GPCC full data reanalysis version 6.0 at 0.5: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. GPCC Data Rep.10 (2011).

Kidd C, Huffman G. Global precipitation measurement. Meteorol. Appl. 2011;18:334–353. doi: 10.1002/met.284. DOI

Pastorello G, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data. 2020;7:225. doi: 10.1038/s41597-020-0534-3. PubMed DOI PMC

Prein AF, Pendergrass AG. Can we constrain uncertainty in hydrologic cycle projections? Geophys. Res. Lett. 2019;46:3911–3916. doi: 10.1029/2018GL081529. DOI

Trenberth KE, Guillemot CJ. Evaluation of the global atmospheric moisture budget as seen from analyses. J. Clim. 1995;8:2255–2272. doi: 10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2. DOI

Trenberth KE, Fasullo JT, Mackaro J. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Clim. 2011;24:4907–4924. doi: 10.1175/2011JCLI4171.1. DOI

Allen MR, Ingram WJ. Constraints on future changes in climate and the hydrologic cycle. Nature. 2002;419:228. doi: 10.1038/nature01092a. PubMed DOI

Trenberth KE, Smith L, Qian T, Dai A, Fasullo J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 2007;8:758–769. doi: 10.1175/JHM600.1. DOI

Rodell M, et al. The observed state of the water cycle in the early twenty-first century. J. Clim. 2015;28:8289–8318. doi: 10.1175/JCLI-D-14-00555.1. DOI

Zhang, Y., Pan, M. & Wood, E. F. On creating global gridded terrestrial water budget estimates from satellite remote sensing. In Remote Sensing and Water Resources, 59–78 (Springer, 2016).

Slivinski LC, et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 2019;145:2876–2908. doi: 10.1002/qj.3598. DOI

Poli P, et al. ERA-20C: An atmospheric reanalysis of the twentieth century. J. Clim. 2016;29:4083–4097. doi: 10.1175/JCLI-D-15-0556.1. DOI

Hersbach H, et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020;146:1999–2049. doi: 10.1002/qj.3803. DOI

Kalnay E, et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996;77:437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. DOI

Adler RF, et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere. 2018;9:138. doi: 10.3390/atmos9040138. PubMed DOI PMC

Morice CP, et al. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res. Atmos. 2021;126:e2019JD032361. doi: 10.1029/2019JD032361. DOI

Oki T, Kanae S. Global hydrological cycles and world water resources. Science. 2006;313:1068–1072. doi: 10.1126/science.1128845. PubMed DOI

Cheng L, et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Clim. 2020;33:10357–10381. doi: 10.1175/JCLI-D-20-0366.1. DOI

Held IM, Soden BJ. Robust responses of the hydrological cycle to global warming. J. Clim. 2006;19:5686–5699. doi: 10.1175/JCLI3990.1. DOI

Sherwood S, Fu Q. A drier future? Science. 2014;343:737–739. doi: 10.1126/science.1247620. PubMed DOI

Byrne MP, O’Gorman PA. The response of precipitation minus evapotranspiration to climate warming: Why the “ wet-get-wetter, dry-get-drier ” scaling does not hold over land. J. Clim. 2015;28:8078–8092. doi: 10.1175/JCLI-D-15-0369.1. DOI

Espinoza V, Waliser DE, Guan B, Lavers DA, Ralph FM. Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett. 2018;45:4299–4308. doi: 10.1029/2017GL076968. DOI

Huntington TG, Weiskel PK, Wolock DM, McCabe GJ. A new indicator framework for quantifying the intensity of the terrestrial water cycle. J. Hydrol. 2018;559:361–372. doi: 10.1016/j.jhydrol.2018.02.048. DOI

Weiskel, P. K. et al. Water use regimes: Characterizing direct human interaction with hydrologic systems. Water Resour. Res.43 (2007).

Budyko MI. Climate and Life. Academic Press; 1974.

Allan RP, et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020;1472:49–75. doi: 10.1111/nyas.14337. PubMed DOI

Fläschner D, Mauritsen T, Stevens B. Understanding the intermodel spread in global-mean hydrological sensitivity. J. Clim. 2016;29:801–817. doi: 10.1175/JCLI-D-15-0351.1. DOI

Ho S-P, et al. The COSMIC/FORMOSAT-3 radio occultation mission after 12 years: Accomplishments, remaining challenges, and potential impacts of COSMIC-2. Bull. Am. Meteorol. Soc. 2020;101:E1107–E1136. doi: 10.1175/BAMS-D-18-0290.1. DOI

Trenberth KE, Fasullo JT. North American water and energy cycles. Geophys. Res. Lett. 2013;40:365–369. doi: 10.1002/grl.50107. DOI

Trenberth KE, Fasullo JT. Regional energy and water cycles: Transports from ocean to land. J. Clim. 2013;26:7837–7851. doi: 10.1175/JCLI-D-13-00008.1. DOI

Hegerl, G. C. et al. Challenges in quantifying changes in the global water cycle. Bull. Am. Meteorol. Soc.99 (2018).

Dee DP. Bias and data assimilation. Q. J. R. Meteorol. Soc. 2005;131:3323–3343. doi: 10.1256/qj.05.137. DOI

Eicker A, et al. Daily GRACE satellite data evaluate short-term hydro-meteorological fluxes from global atmospheric reanalyses. Sci. Rep. 2020;10:4504. doi: 10.1038/s41598-020-61166-0. PubMed DOI PMC

Hassler B, Lauer A. Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere. 2021;12:1462. doi: 10.3390/atmos12111462. DOI

Tennant, W. Considerations when using pre-1979 NCEP/NCAR reanalyses in the southern hemisphere. Geophys. Res. Lett.31 (2004)

Slivinski LC, et al. An evaluation of the performance of the twentieth century reanalysis version 3. J. Clim. 2021;34:1417–1438. doi: 10.1175/JCLI-D-20-0505.1. DOI

Greve P, et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014;7:716–721. doi: 10.1038/ngeo2247. DOI

Rustemeier E, et al. Uncertainty assessment of the ERA-20C reanalysis based on the monthly in situ precipitation analysis of the Global Precipitation Climatology Centre. J. Hydrometeorol. 2019;20:231–250. doi: 10.1175/JHM-D-17-0239.1. DOI

Roth N, et al. A call for consistency with the terms ‘wetter’ and ‘drier ’ in climate change studies. Environ. Evid. 2021;10:8. doi: 10.1186/s13750-021-00224-0. DOI

McColl, K. A., Roderick, M. L., Berg, A. & Scheff, J. The terrestrial water cycle in a warming world. Nat. Clim. Change (2022).

McCabe MF, et al. The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data. Geosci. Model Dev. 2016;9:283–305. doi: 10.5194/gmd-9-283-2016. DOI

Xie P, Arkin PA. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997;78:2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2. DOI

Yin X, Gruber A, Arkin P. Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979–2001. J. Hydrometeorol. 2004;5:1207–1222. doi: 10.1175/JHM-392.1. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...