Sonic Hedgehog and Triiodothyronine Pathway Interact in Mouse Embryonic Neural Stem Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
National Sustainability Program I (NPU I) Nr. LO1503
Ministry of Education Youth and Sports of the Czech Republic
project number Q39
Charles University Research Fund
No. CZ.02.1.01/0.0/0.0/16_019/0000787 "Fighting INfectious Diseases"
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32456161
PubMed Central
PMC7279276
DOI
10.3390/ijms21103672
PII: ijms21103672
Knihovny.cz E-zdroje
- Klíčová slova
- cell differentiation, embryonic neural stem cells, sonic hedgehog, triiodothyronine,
- MeSH
- jodidperoxidasa genetika metabolismus MeSH
- kultivované buňky MeSH
- myší embryonální kmenové buňky cytologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- neurogeneze * MeSH
- proteiny hedgehog genetika metabolismus MeSH
- receptor Smoothened genetika metabolismus MeSH
- trijodthyronin metabolismus MeSH
- tyreoidální hormony, receptory beta genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- iodothyronine deiodinase type III MeSH Prohlížeč
- jodidperoxidasa MeSH
- proteiny hedgehog MeSH
- receptor Smoothened MeSH
- Shh protein, mouse MeSH Prohlížeč
- Smo protein, mouse MeSH Prohlížeč
- trijodthyronin MeSH
- tyreoidální hormony, receptory beta MeSH
Neural stem cells are fundamental to development of the central nervous system (CNS)-as well as its plasticity and regeneration-and represent a potential tool for neuro transplantation therapy and research. This study is focused on examination of the proliferation dynamic and fate of embryonic neural stem cells (eNSCs) under differentiating conditions. In this work, we analyzed eNSCs differentiating alone and in the presence of sonic hedgehog (SHH) or triiodothyronine (T3) which play an important role in the development of the CNS. We found that inhibition of the SHH pathway and activation of the T3 pathway increased cellular health and survival of differentiating eNSCs. In addition, T3 was able to increase the expression of the gene for the receptor smoothened (Smo), which is part of the SHH signaling cascade, while SHH increased the expression of the T3 receptor beta gene (Thrb). This might be the reason why the combination of SHH and T3 increased the expression of the thyroxine 5-deiodinase type III gene (Dio3), which inhibits T3 activity, which in turn affects cellular health and proliferation activity of eNSCs.
Zobrazit více v PubMed
Rossi F., Cattaneo E. Opinion: Neural stem cell therapy for neurological diseases: Dreams and reality. Nat. Rev. Neurosci. 2002;3:401–409. doi: 10.1038/nrn809. PubMed DOI
Cendelin J., Buffo A., Hirai H., Magrassi L., Mitoma H., Sherrard R., Vozeh F., Manto M. Task Force Paper On Cerebellar Transplantation: Are We Ready to Treat Cerebellar Disorders with Cell Therapy? Cerebellum. 2019;18:575–592. doi: 10.1007/s12311-018-0999-1. PubMed DOI
Babuska V., Houdek Z., Tuma J., Purkartova Z., Tumova J., Kralickova M., Vozeh F., Cendelin J. Transplantation of Embryonic Cerebellar Grafts Improves Gait Parameters in Ataxic Lurcher Mice. Cerebellum. 2015;14:632–641. doi: 10.1007/s12311-015-0656-x. PubMed DOI
Dentice M., Luongo C., Huang S., Ambrosio R., Elefante A., Mirebeau-Prunier D., Zavacki A.M., Fenzi G., Grachtchouk M., Hutchin M., et al. Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc. Natl. Acad. Sci. USA. 2007;104:14466–14471. doi: 10.1073/pnas.0706754104. PubMed DOI PMC
Hasebe M., Ohta E., Imagawa T., Uehara M. Expression of sonic hedgehog regulates morphological changes of rat developing cerebellum in hypothyroidism. J. Toxicol. Sci. 2008;33:473–477. doi: 10.2131/jts.33.473. PubMed DOI
Desouza L.A., Sathanoori M., Kapoor R., Rajadhyaksha N., Gonzalez L.E., Kottmann A.H., Tole S., Vaidya V.A. Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult Mammalian brain. Endocrinology. 2011;152:1989–2000. doi: 10.1210/en.2010-1396. PubMed DOI PMC
Wang Y., Wang Y., Dong J., Wei W., Song B.B., Min H., Yu Y., Lei X.B., Zhao M., Teng W.P., et al. Developmental Hypothyroxinemia and Hypothyroidism Reduce Proliferation of Cerebellar Granule Neuron Precursors in Rat Offspring by Downregulation of the Sonic Hedgehog Signaling Pathway. Mol. Neurobiol. 2014;49:1143–1152. doi: 10.1007/s12035-013-8587-3. PubMed DOI
Chen Z.P., Hetzel B.S. Cretinism revisited. Best Pract. Res. Clin. Endocrinol. Metab. 2010;24:39–50. doi: 10.1016/j.beem.2009.08.014. PubMed DOI
Lindholm D., Castrén E., Tsoulfas P., Kolbeck R., Berzaghi M.D., Leingartner A., Heisenberg C.P., Tesarollo L., Parada L.F., Thoenen H. Neurotrophin-3 induced by tri-iodothyronine in cerebellar granule cells promotes Purkinje cell differentiation. J. Cell Biol. 1993;122:443–450. doi: 10.1083/jcb.122.2.443. PubMed DOI PMC
Alvarez-Dolado M., González-Sancho J.M., Bernal J., Muñoz A. Developmental expression of the tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience. 1998;84:309–322. doi: 10.1016/S0306-4522(97)00511-3. PubMed DOI
Pathak A., Sinha R.A., Mohan V., Mitra K., Godbole M.M. Maternal thyroid hormone before the onset of fetal thyroid function regulates reelin and downstream signaling cascade affecting neocortical neuronal migration. Cereb. Cortex. 2011;21:11–21. doi: 10.1093/cercor/bhq052. PubMed DOI
Chen C., Zhou Z., Zhong M., Zhang Y.W., Li M.Q., Zhang L., Qu M.Y., Yang J., Wang Y., Yu Z.P. Thyroid Hormone Promotes Neuronal Differentiation of Embryonic Neural Stem Cells by Inhibiting STAT3 Signaling Through TRα1. Stem Cells Dev. 2012;21:2667–2681. doi: 10.1089/scd.2012.0023. PubMed DOI PMC
Mohan V., Sinha R.A., Pathak A., Rastogi L., Kumar P., Pal A., Godbole M.M. Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis. Exp. Neurol. 2012;237:477–488. doi: 10.1016/j.expneurol.2012.07.019. PubMed DOI
Shimokawa N., Yousefi B., Morioka S., Yamaguchi S., Ohsawa A., Hayashi H., Azuma A., Mizuno H., Kasagi M., Masuda H., et al. Altered cerebellum development and dopamine distribution in a rat genetic model with congenital hypothyroidism. J. Neuroendocrinol. 2014;26:164–175. doi: 10.1111/jne.12135. PubMed DOI
Gothié J.D., Vancamp P., Demeneix B., Remaud S. Thyroid hormone regulation of neural stem cell fate: From development to ageing. Acta Physiol. 2020;228:e13316. doi: 10.1111/apha.13316. PubMed DOI PMC
Bauer M., Heinz A., Whybrow P.C. Thyroid hormones, serotonin and mood: Of synergy and significance in the adult brain. Mol. Psychiatry. 2002;7:140–156. doi: 10.1038/sj.mp.4000963. PubMed DOI
Billon N., Jolicoeur C., Tokumoto Y., Vennstrom B., Raff M. Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TRalpha1) EMBO J. 2002;21:6452–6460. doi: 10.1093/emboj/cdf662. PubMed DOI PMC
Jones S.A., Jolson D.M., Cuta K.K., Mariash C.N., Anderson G.W. Triiodothyronine is a survival factor for developing oligodendrocytes. Mol. Cell. Endocrinol. 2003;199:49–60. doi: 10.1016/S0303-7207(02)00296-4. PubMed DOI
Ambrogini P., Cuppini R., Ferri P., Mancini C., Ciaroni S., Voci A., Gerdoni E., Gallo G. Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat. Neuroendocrinology. 2005;81:244–253. doi: 10.1159/000087648. PubMed DOI
Desouza L.A., Ladiwala U., Daniel S.M., Agashe S., Vaidya R.A., Vaidya V.A. Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol. Cell. Neurosci. 2005;29:414–426. doi: 10.1016/j.mcn.2005.03.010. PubMed DOI
Li J., Abe K., Milanesi A., Liu Y.Y., Brent G.A. Thyroid Hormone Protects Primary Cortical Neurons Exposed to Hypoxia by Reducing DNA Methylation and Apoptosis. Endocrinology. 2019;160:2243–2256. doi: 10.1210/en.2019-00125. PubMed DOI
Ingham P.W., McMahon A.P. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev. 2001;15:3059–3087. doi: 10.1101/gad.938601. PubMed DOI
Wallace V.A. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr. Biol. 1999;9:445–448. doi: 10.1016/S0960-9822(99)80195-X. PubMed DOI
Machold R., Hayashi S., Rutlin M., Muzumdar M.D., Nery S., Corbin J.G., Gritli-Linde A., Dellovade T., Porter J.A., Rubin L.L., et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron. 2003;39:937–950. doi: 10.1016/S0896-6273(03)00561-0. PubMed DOI
Lai K., Kaspar B.K., Gage F.H., Schaffer D.V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. 2003;6:21–27. doi: 10.1038/nn983. PubMed DOI
Cai C., Thorne J., Grabel L. Hedgehog Serves as a Mitogen and Survival Factor During Embryonic Stem Cell Neurogenesis. Stem Cells. 2008;26:1097–1108. doi: 10.1634/stemcells.2007-0684. PubMed DOI
Jiao J., Chen D.F. Induction of Neurogenesis in Nonconventional Neurogenic Regions of the Adult Central Nervous System by Niche Astrocyte-Produced Signals. Stem Cells. 2008;26:1221–1230. doi: 10.1634/stemcells.2007-0513. PubMed DOI PMC
Bidet M., Joubert O., Lacombe B., Ciantar M., Nehme R., Mollat P., Bretillon L., Faure H., Bittman R., Ruat M., et al. The Hedgehog Receptor Patched Is Involved in Cholesterol Transport. PLoS ONE. 2011;6:e23834. doi: 10.1371/journal.pone.0023834. PubMed DOI PMC
Amakye D., Jagani Z., Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat. Med. 2013;19:1410–1422. doi: 10.1038/nm.3389. PubMed DOI
Bianco A.C., Salvatore D., Gereben B., Berry M.J., Larsen P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 2002;23:38–89. doi: 10.1210/edrv.23.1.0455. PubMed DOI
Luongo C., Ambrosio R., Salzano S., Dlugosz A.A., Missero C., Dentice M. The sonic hedgehog-induced type 3 deiodinase facilitates tumorigenesis of basal cell carcinoma by reducing Gli2 inactivation. Endocrinology. 2014;155:2077–2088. doi: 10.1210/en.2013-2108. PubMed DOI PMC
Rohner A., Spilker M.E., Lam J.L., Pascual B., Bartkowski D., Li Q.J., Yang A.H., Stevens G., Xu M.R., Wells P.A., et al. Effective targeting of Hedgehog signaling in a medulloblastoma model with PF-5274857, a potent and selective Smoothened antagonist that penetrates the blood-brain barrier. Mol. Cancer Ther. 2012;11:57–65. doi: 10.1158/1535-7163.MCT-11-0691. PubMed DOI
Barltrop J.A., Owen T.C., Cory A.H., Cory J.G. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans As cell-viability indicators. Bioorg. Med. Chem. Lett. 1991;1:611–614. doi: 10.1016/S0960-894X(01)81162-8. DOI
Liu Y., Peterson D.A., Kimura H., Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem. 1997;69:581–593. doi: 10.1046/j.1471-4159.1997.69020581.x. PubMed DOI
Malhotra A., Dey A., Prasad N., Kenney A.M. Sonic Hedgehog Signaling Drives Mitochondrial Fragmentation by Suppressing Mitofusins in Cerebellar Granule Neuron Precursors and Medulloblastoma. Mol. Cancer Res. 2016;14:114–124. doi: 10.1158/1541-7786.MCR-15-0278. PubMed DOI PMC
Casas F., Rochard P., Rodier A., Cassar-Malek I., Marchal-Victorion S., Wiesner R.J., Cabello G., Wrutniak C. A variant form of the nuclear triiodothyronine receptor c-ErbAα1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol. Cell. Biol. 1999;19:7913–7924. doi: 10.1128/MCB.19.12.7913. PubMed DOI PMC
Albrecht P.J., Dahl J.P., Stoltzfus O.K., Levenson R., Levison S.W. Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp. Neurol. 2002;173:46–62. doi: 10.1006/exnr.2001.7834. PubMed DOI
Ding Q., Motoyama J., Gasca S., Mo R., Sasaki H., Rossant J., Hui C.C. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Dev. Camb. Engl. 1998;125:2533–2543. PubMed
Sheng H., Goich S., Wang A.Q., Grachtchouk M., Lowe L., Mo R., Lin K., de Sauvage F.J., Sasaki H., Hui C.C., et al. Dissecting the oncogenic potential of Gli2: Deletion of an NH2-terminal fragment alters skin tumor phenotype. Cancer Res. 2002;62:5308–5316. PubMed
Aw D.K.L., Sinha R.A., Tan H.C., Loh L.M., Salvatore D., Yen P.M. Studies of molecular mechanisms associated with increased deiodinase 3 expression in a case of consumptive hypothyroidism. J. Clin. Endocrinol. Metab. 2014;99:3965–3971. doi: 10.1210/jc.2013-3408. PubMed DOI
Gil-Ibáñez P., Bernal J., Morte B. Thyroid Hormone Regulation of Gene Expression in Primary Cerebrocortical Cells: Role of Thyroid Hormone Receptor Subtypes and Interactions with Retinoic Acid and Glucocorticoids. PLoS ONE. 2014;9:e91692. doi: 10.1371/journal.pone.0091692. PubMed DOI PMC
Kapoor R., Ghosh H., Nordstrom K., Vennstrom B., Vaidya V.A. Loss of thyroid hormone receptor β is associated with increased progenitor proliferation and NeuroD positive cell number in the adult hippocampus. Neurosci. Lett. 2011;487:199–203. doi: 10.1016/j.neulet.2010.10.022. PubMed DOI PMC
Portella A.C., Carvalho F., Faustino L., Wondisford F.E., Ortiga-Carvalho T.M., Comes F.C.A. Thyroid hormone receptor beta mutation causes severe impairment of cerebellar development. Mol. Cell. Neurosci. 2011;44:68–77. doi: 10.1016/j.mcn.2010.02.004. PubMed DOI
Baxi E.G., Schott J.T., Fairchild A.N., Kirby L.A., Karani R., Uapinyoying P., Pardo-Villamizar C., Rothstein J.R., Bergles D.E., Calabresi P.A. A selective thyroid hormone β receptor agonist enhances human and rodent oligodendrocyte differentiation. Glia. 2014;62:1513–1529. doi: 10.1002/glia.22697. PubMed DOI PMC
Park J.W., Zhao L., Willingham M., Cheng S.Y. Oncogenic mutations of thyroid hormone receptor β. Oncotarget. 2015;6:8115–8131. doi: 10.18632/oncotarget.3466. PubMed DOI PMC
Joseph B., Ji M., Liu D., Hou P., Xing M.Z. Lack of mutations in the thyroid hormone receptor (TR) alpha and beta genes but frequent hypermethylation of the TR beta gene in differentiated thyroid tumors. J. Clin. Endocrinol. Metab. 2007;92:4766–4770. doi: 10.1210/jc.2007-0812. PubMed DOI
Furuya S., Makino A., Hirabayashi Y. An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Res. Protoc. 1998;3:192–198. doi: 10.1016/S1385-299X(98)00040-3. PubMed DOI
Leong C., Zhai D., Kim B., Yun S.W., Chang Y.T. Neural stem cell isolation from the whole mouse brain using the novel FABP7-binding fluorescent dye, CDr3. Stem Cell Res. 2013;11:1314–1322. doi: 10.1016/j.scr.2013.09.002. PubMed DOI
Cooper-Kuhn C.M., Kuhn H.G. Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Dev. Brain Res. 2002;134:13–21. doi: 10.1016/S0165-3806(01)00243-7. PubMed DOI
Kempermann G., Gast D., Kronenberg G., Yamaguchi M., Gage F.H. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Dev. Camb. Engl. 2003;130:391–399. doi: 10.1242/dev.00203. PubMed DOI
Sundberg M., Savola S., Hienola A., Korhonen L., Lindholm D. Glucocorticoid hormones decrease proliferation of embryonic neural stem cells through ubiquitin-mediated degradation of cyclin D1. J. Neurosci. 2006;26:5402–5410. doi: 10.1523/JNEUROSCI.4906-05.2006. PubMed DOI PMC
Kamentsky L., Jones T.R., Fraser A., Bray M.A., Logan D.J., Madden K.L., Ljosa V., Rueden C., Eliceiri K.W., Carpenter A.E. Improved structure, function and compatibility for CellProfiler: Modular high-throughput image analysis software. Bioinformatics. 2011;27:1179–1180. doi: 10.1093/bioinformatics/btr095. PubMed DOI PMC
Agger S.A., Marney L.C., Hoofnagle A.N. Simultaneous Quantification of Apolipoprotein A-I and Apolipoprotein B by Liquid-Chromatography-Multiple-Reaction-Monitoring Mass Spectrometry. Clin. Chem. 2010;56:1804–1813. doi: 10.1373/clinchem.2010.152264. PubMed DOI PMC
Manly B.F.J. Randomization, Bootstrap, and Monte Carlo Methods in Biology. 3rd ed. Chapman & Hall/ CRC; Boca Raton, FL, USA: 2007.
Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI