Variability of fluorescence intensity distribution measured by flow cytometry is influenced by cell size and cell cycle progression

. 2023 Mar 25 ; 13 (1) : 4889. [epub] 20230325

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36966193

Grantová podpora
P30 CA008748 NCI NIH HHS - United States

Odkazy

PubMed 36966193
PubMed Central PMC10039904
DOI 10.1038/s41598-023-31990-1
PII: 10.1038/s41598-023-31990-1
Knihovny.cz E-zdroje

The distribution of fluorescence signals measured with flow cytometry can be influenced by several factors, including qualitative and quantitative properties of the used fluorochromes, optical properties of the detection system, as well as the variability within the analyzed cell population itself. Most of the single cell samples prepared from in vitrocultures or clinical specimens contain a variable cell cycle component. Cell cycle, together with changes in the cell size, are two of the factors that alter the functional properties of analyzed cells and thus affect the interpretation of obtained results. Here, we describe the association between cell cycle status and cell size, and the variability in the distribution of fluorescence intensity as determined with flow cytometry, at population scale. We show that variability in the distribution of background and specific fluorescence signals is related to the cell cycle state of the selected population, with the 10% low fluorescence signal fraction enriched mainly in cells in their G0/G1 cell cycle phase, and the 10% high fraction containing cells mostly in the G2/M phase. Therefore we advise using caution and additional experimental validation when comparing populations defined by fractions at both ends of fluorescence signal distribution to avoid biases caused by the effect of cell cycle and cell size.

Zobrazit více v PubMed

Pauklin S, Vallier L. The cell-cycle state of stem cells determines cell fate propensity. Cell. 2013;155:135–147. doi: 10.1016/j.cell.2013.08.031. PubMed DOI PMC

Xia X, Owen MS, Lee REC, Gaudet S. Cell-to-cell variability in cell death: Can systems biology help us make sense of it all? Cell Death Dis. 2014;5:e1261–e1261. doi: 10.1038/cddis.2014.199. PubMed DOI PMC

Pernicova Z, et al. The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Mol. Cancer. 2014;13:113. doi: 10.1186/1476-4598-13-113. PubMed DOI PMC

Buettner F, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 2015;33:155–160. doi: 10.1038/nbt.3102. PubMed DOI

Padovan-Merhar O, et al. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell. 2015;58:339–352. doi: 10.1016/j.molcel.2015.03.005. PubMed DOI PMC

Rapsomaniki MA, et al. Cell CycleTRACER accounts for cell cycle and volume in mass cytometry data. Nat. Commun. 2018;9:632. doi: 10.1038/s41467-018-03005-5. PubMed DOI PMC

Barron M, Li J. Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data. Sci. Rep. 2016;6:33892. doi: 10.1038/srep33892. PubMed DOI PMC

Liu J, Fan Z, Zhao W, Zhou X. Machine intelligence in single-cell data analysis: Advances and new challenges. Front. Genet. 2021 doi: 10.3389/fgene.2021.655536. PubMed DOI PMC

Sahir F, Mateo JM, Steinhoff M, Siveen KS. Development of a 43 color panel for the characterization of conventional and unconventional T-cell subsets, B cells, NK cells, monocytes, dendritic cells, and innate lymphoid cells using spectral flow cytometry. Cytom. Part. 2020 doi: 10.1002/cyto.a.24288. PubMed DOI PMC

Park LM, Lannigan J, Jaimes MC. OMIP-069: Forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytom. Part A. 2020;97:1044–1051. doi: 10.1002/cyto.a.24213. PubMed DOI PMC

Brummelman J, et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 2019;14:1946–1969. doi: 10.1038/s41596-019-0166-2. PubMed DOI

Mazza EMC, et al. Background fluorescence and spreading error are major contributors of variability in high-dimensional flow cytometry data visualization by t-distributed stochastic neighboring embedding. Cytom. Part A. 2018;93:785–792. doi: 10.1002/cyto.a.23566. PubMed DOI PMC

Miranda-Lorenzo I, et al. Intracellular autofluorescence: A biomarker for epithelial cancer stem cells. Nat. Methods. 2014;11:1161–1169. doi: 10.1038/nmeth.3112. PubMed DOI

Larcher V, et al. An autofluorescence-based method for the isolation of highly purified ventricular cardiomyocytes. Cardiovasc. Res. 2018;114:409–416. doi: 10.1093/cvr/cvx239. PubMed DOI

Shah AT, Cannon TM, Higginbotham JN, Coffey RJ, Skala MC. Autofluorescence flow sorting of breast cancer cell metabolism. J. Biophoton. 2017;10:1026–1033. doi: 10.1002/jbio.201600128. PubMed DOI PMC

Chacko JV, Eliceiri KW. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity. Cytom. A. 2019;95:56–69. doi: 10.1002/cyto.a.23603. PubMed DOI PMC

Bagri-Manjrekar K, et al. In vivo autofluorescence of oral squamous cell carcinoma correlated to cell proliferation rate. J. Cancer Res. Ther. 2018;14:553–558. doi: 10.4103/0973-1482.172710. PubMed DOI

Croce AC, Bottiroli G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. EJH. 2014;58:2461. doi: 10.4081/ejh.2014.2461. PubMed DOI PMC

Mosiman VL, Patterson BK, Canterero L, Goolsby CL. Reducing cellular autofluorescence in flow cytometry: An in situ method. Cytometry. 1997;30:151–156. doi: 10.1002/(SICI)1097-0320(19970615)30:3<151::AID-CYTO6>3.0.CO;2-O. PubMed DOI

Kolenc OI, Quinn KP. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxid. Redox Signal. 2018 doi: 10.1089/ars.2017.7451. PubMed DOI PMC

You S, et al. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat. Commun. 2018;9:2125. doi: 10.1038/s41467-018-04470-8. PubMed DOI PMC

Tu H, et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photon. 2016;10:534–540. doi: 10.1038/nphoton.2016.94. PubMed DOI PMC

Kanchwala N, Kumar N, Gupta S, Lokhandwala H. Fluorescence spectroscopic study on malignant and premalignant oral mucosa of patients undergoing treatment: An observational prospective study. Int. J. Surg. 2018;55:87–91. doi: 10.1016/j.ijsu.2018.05.029. PubMed DOI

Wizenty J, et al. Autofluorescence: A potential pitfall in immunofluorescence-based inflammation grading. J. Immunol. Methods. 2018;456:28–37. doi: 10.1016/j.jim.2018.02.007. PubMed DOI

Harper JV. In: Cell Cycle Control: Mechanisms and Protocols. Humphrey T, Brooks G, editors. Humana Press; 2005. pp. 157–166.

Langan TJ, Rodgers KR, Chou RC. In: Cell Cycle Synchronization: Methods and Protocols. Banfalvi G, editor. Springer; 2017. pp. 97–105.

Jones MC, Zha J, Humphries MJ. Connections between the cell cycle, cell adhesion and the cytoskeleton. Philos. Trans. R. Soc. B Biol. Sci. 2019;374:20180227. doi: 10.1098/rstb.2018.0227. PubMed DOI PMC

Vistejnova L, et al. The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques. Neuroendocrinol. Lett. 2009;30:121–127. PubMed

Slabakova E, et al. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells. Oncotarget. 2015;6:36156–36171. doi: 10.18632/oncotarget.5392. PubMed DOI PMC

Lim S, Kaldis P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development. 2013;140:3079–3093. doi: 10.1242/dev.091744. PubMed DOI

Amodeo AA, Skotheim JM. Cell-size control. Cold Spring Harbor Perspect. Biol. 2016;8:a019083–a019083. doi: 10.1101/cshperspect.a019083. PubMed DOI PMC

Tzur A, Moore JK, Jorgensen P, Shapiro HM, Kirschner MW. Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS ONE. 2011;6:e16053. doi: 10.1371/journal.pone.0016053. PubMed DOI PMC

Bertolo A, Baur M, Guerrero J, Pötzel T, Stoyanov J. Autofluorescence is a reliable in vitro marker of cellular senescence in human mesenchymal stromal cells. Sci. Rep. 2019;9:2074. doi: 10.1038/s41598-019-38546-2. PubMed DOI PMC

Schaue D, Ratikan JA, Iwamoto KS. Cellular autofluorescence following ionizing radiation. PLoS ONE. 2012;7:e32062. doi: 10.1371/journal.pone.0032062. PubMed DOI PMC

Liao C-P, et al. Mouse models of prostate adenocarcinoma with the capacity to monitor spontaneous carcinogenesis by bioluminescence or fluorescence. Cancer Res. 2007;67:7525–7533. doi: 10.1158/0008-5472.can-07-0668. PubMed DOI

Tao K, Fang M, Alroy J, Sahagian GG. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 2008;8:228. doi: 10.1186/1471-2407-8-228. PubMed DOI PMC

Vindelov LL. Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. A new method for rapid isolation and straining of nuclei. Virchows Arch. B Cell Pathol. 1977;24:227–242. doi: 10.1007/BF02889282. PubMed DOI

Staršíchová A, et al. Dynamic monitoring of cellular remodeling induced by the transforming growth factor-β1. Biol. Proced. Online. 2009;11:316–324. doi: 10.1007/s12575-009-9017-9. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...