Variability of fluorescence intensity distribution measured by flow cytometry is influenced by cell size and cell cycle progression
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 CA008748
NCI NIH HHS - United States
PubMed
36966193
PubMed Central
PMC10039904
DOI
10.1038/s41598-023-31990-1
PII: 10.1038/s41598-023-31990-1
Knihovny.cz E-zdroje
- MeSH
- buněčné dělení MeSH
- buněčný cyklus fyziologie MeSH
- G2 fáze * MeSH
- průtoková cytometrie metody MeSH
- velikost buňky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The distribution of fluorescence signals measured with flow cytometry can be influenced by several factors, including qualitative and quantitative properties of the used fluorochromes, optical properties of the detection system, as well as the variability within the analyzed cell population itself. Most of the single cell samples prepared from in vitrocultures or clinical specimens contain a variable cell cycle component. Cell cycle, together with changes in the cell size, are two of the factors that alter the functional properties of analyzed cells and thus affect the interpretation of obtained results. Here, we describe the association between cell cycle status and cell size, and the variability in the distribution of fluorescence intensity as determined with flow cytometry, at population scale. We show that variability in the distribution of background and specific fluorescence signals is related to the cell cycle state of the selected population, with the 10% low fluorescence signal fraction enriched mainly in cells in their G0/G1 cell cycle phase, and the 10% high fraction containing cells mostly in the G2/M phase. Therefore we advise using caution and additional experimental validation when comparing populations defined by fractions at both ends of fluorescence signal distribution to avoid biases caused by the effect of cell cycle and cell size.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Human Oncology and Pathogenesis Program Memorial Sloan Kettering Cancer Center New York NY 10065 USA
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Pauklin S, Vallier L. The cell-cycle state of stem cells determines cell fate propensity. Cell. 2013;155:135–147. doi: 10.1016/j.cell.2013.08.031. PubMed DOI PMC
Xia X, Owen MS, Lee REC, Gaudet S. Cell-to-cell variability in cell death: Can systems biology help us make sense of it all? Cell Death Dis. 2014;5:e1261–e1261. doi: 10.1038/cddis.2014.199. PubMed DOI PMC
Pernicova Z, et al. The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Mol. Cancer. 2014;13:113. doi: 10.1186/1476-4598-13-113. PubMed DOI PMC
Buettner F, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 2015;33:155–160. doi: 10.1038/nbt.3102. PubMed DOI
Padovan-Merhar O, et al. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell. 2015;58:339–352. doi: 10.1016/j.molcel.2015.03.005. PubMed DOI PMC
Rapsomaniki MA, et al. Cell CycleTRACER accounts for cell cycle and volume in mass cytometry data. Nat. Commun. 2018;9:632. doi: 10.1038/s41467-018-03005-5. PubMed DOI PMC
Barron M, Li J. Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data. Sci. Rep. 2016;6:33892. doi: 10.1038/srep33892. PubMed DOI PMC
Liu J, Fan Z, Zhao W, Zhou X. Machine intelligence in single-cell data analysis: Advances and new challenges. Front. Genet. 2021 doi: 10.3389/fgene.2021.655536. PubMed DOI PMC
Sahir F, Mateo JM, Steinhoff M, Siveen KS. Development of a 43 color panel for the characterization of conventional and unconventional T-cell subsets, B cells, NK cells, monocytes, dendritic cells, and innate lymphoid cells using spectral flow cytometry. Cytom. Part. 2020 doi: 10.1002/cyto.a.24288. PubMed DOI PMC
Park LM, Lannigan J, Jaimes MC. OMIP-069: Forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytom. Part A. 2020;97:1044–1051. doi: 10.1002/cyto.a.24213. PubMed DOI PMC
Brummelman J, et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 2019;14:1946–1969. doi: 10.1038/s41596-019-0166-2. PubMed DOI
Mazza EMC, et al. Background fluorescence and spreading error are major contributors of variability in high-dimensional flow cytometry data visualization by t-distributed stochastic neighboring embedding. Cytom. Part A. 2018;93:785–792. doi: 10.1002/cyto.a.23566. PubMed DOI PMC
Miranda-Lorenzo I, et al. Intracellular autofluorescence: A biomarker for epithelial cancer stem cells. Nat. Methods. 2014;11:1161–1169. doi: 10.1038/nmeth.3112. PubMed DOI
Larcher V, et al. An autofluorescence-based method for the isolation of highly purified ventricular cardiomyocytes. Cardiovasc. Res. 2018;114:409–416. doi: 10.1093/cvr/cvx239. PubMed DOI
Shah AT, Cannon TM, Higginbotham JN, Coffey RJ, Skala MC. Autofluorescence flow sorting of breast cancer cell metabolism. J. Biophoton. 2017;10:1026–1033. doi: 10.1002/jbio.201600128. PubMed DOI PMC
Chacko JV, Eliceiri KW. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity. Cytom. A. 2019;95:56–69. doi: 10.1002/cyto.a.23603. PubMed DOI PMC
Bagri-Manjrekar K, et al. In vivo autofluorescence of oral squamous cell carcinoma correlated to cell proliferation rate. J. Cancer Res. Ther. 2018;14:553–558. doi: 10.4103/0973-1482.172710. PubMed DOI
Croce AC, Bottiroli G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. EJH. 2014;58:2461. doi: 10.4081/ejh.2014.2461. PubMed DOI PMC
Mosiman VL, Patterson BK, Canterero L, Goolsby CL. Reducing cellular autofluorescence in flow cytometry: An in situ method. Cytometry. 1997;30:151–156. doi: 10.1002/(SICI)1097-0320(19970615)30:3<151::AID-CYTO6>3.0.CO;2-O. PubMed DOI
Kolenc OI, Quinn KP. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxid. Redox Signal. 2018 doi: 10.1089/ars.2017.7451. PubMed DOI PMC
You S, et al. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat. Commun. 2018;9:2125. doi: 10.1038/s41467-018-04470-8. PubMed DOI PMC
Tu H, et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photon. 2016;10:534–540. doi: 10.1038/nphoton.2016.94. PubMed DOI PMC
Kanchwala N, Kumar N, Gupta S, Lokhandwala H. Fluorescence spectroscopic study on malignant and premalignant oral mucosa of patients undergoing treatment: An observational prospective study. Int. J. Surg. 2018;55:87–91. doi: 10.1016/j.ijsu.2018.05.029. PubMed DOI
Wizenty J, et al. Autofluorescence: A potential pitfall in immunofluorescence-based inflammation grading. J. Immunol. Methods. 2018;456:28–37. doi: 10.1016/j.jim.2018.02.007. PubMed DOI
Harper JV. In: Cell Cycle Control: Mechanisms and Protocols. Humphrey T, Brooks G, editors. Humana Press; 2005. pp. 157–166.
Langan TJ, Rodgers KR, Chou RC. In: Cell Cycle Synchronization: Methods and Protocols. Banfalvi G, editor. Springer; 2017. pp. 97–105.
Jones MC, Zha J, Humphries MJ. Connections between the cell cycle, cell adhesion and the cytoskeleton. Philos. Trans. R. Soc. B Biol. Sci. 2019;374:20180227. doi: 10.1098/rstb.2018.0227. PubMed DOI PMC
Vistejnova L, et al. The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques. Neuroendocrinol. Lett. 2009;30:121–127. PubMed
Slabakova E, et al. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells. Oncotarget. 2015;6:36156–36171. doi: 10.18632/oncotarget.5392. PubMed DOI PMC
Lim S, Kaldis P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development. 2013;140:3079–3093. doi: 10.1242/dev.091744. PubMed DOI
Amodeo AA, Skotheim JM. Cell-size control. Cold Spring Harbor Perspect. Biol. 2016;8:a019083–a019083. doi: 10.1101/cshperspect.a019083. PubMed DOI PMC
Tzur A, Moore JK, Jorgensen P, Shapiro HM, Kirschner MW. Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS ONE. 2011;6:e16053. doi: 10.1371/journal.pone.0016053. PubMed DOI PMC
Bertolo A, Baur M, Guerrero J, Pötzel T, Stoyanov J. Autofluorescence is a reliable in vitro marker of cellular senescence in human mesenchymal stromal cells. Sci. Rep. 2019;9:2074. doi: 10.1038/s41598-019-38546-2. PubMed DOI PMC
Schaue D, Ratikan JA, Iwamoto KS. Cellular autofluorescence following ionizing radiation. PLoS ONE. 2012;7:e32062. doi: 10.1371/journal.pone.0032062. PubMed DOI PMC
Liao C-P, et al. Mouse models of prostate adenocarcinoma with the capacity to monitor spontaneous carcinogenesis by bioluminescence or fluorescence. Cancer Res. 2007;67:7525–7533. doi: 10.1158/0008-5472.can-07-0668. PubMed DOI
Tao K, Fang M, Alroy J, Sahagian GG. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 2008;8:228. doi: 10.1186/1471-2407-8-228. PubMed DOI PMC
Vindelov LL. Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. A new method for rapid isolation and straining of nuclei. Virchows Arch. B Cell Pathol. 1977;24:227–242. doi: 10.1007/BF02889282. PubMed DOI
Staršíchová A, et al. Dynamic monitoring of cellular remodeling induced by the transforming growth factor-β1. Biol. Proced. Online. 2009;11:316–324. doi: 10.1007/s12575-009-9017-9. PubMed DOI PMC