Modeling the Phase Transition in Hydrophobic Weak Polyelectrolyte Gels under Compression

. 2023 Mar 22 ; 9 (3) : . [epub] 20230322

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36975710

Grantová podpora
No. 19-17847Y Grant Agency of the Czech Republic

One of the emerging water desalination techniques relies on the compression of a polyelectrolyte gel. The pressures needed reach tens of bars, which are too high for many applications, damage the gel and prevent its reuse. Here, we study the process by means of coarse-grained simulations of hydrophobic weak polyelectrolyte gels and show that the necessary pressures can be lowered to only a few bars. We show that the dependence of applied pressure on the gel density contains a plateau indicating a phase separation. The phase separation was also confirmed by an analytical mean-field theory. The results of our study show that changes in the pH or salinity can induce the phase transition in the gel. We also found that ionization of the gel enhances its ion capacity, whereas increasing the gel hydrophobicity lowers the pressure required for gel compression. Therefore, combining both strategies enables the optimization of polyelectrolyte gel compression for water desalination purposes.

Zobrazit více v PubMed

Darre N.C., Toor G.S. Desalination of Water: Review. Curr. Pollut. Rep. 2018;4:104–111. doi: 10.1007/s40726-018-0085-9. DOI

Khawaji A.D., Kutubkhanah I.K., Wie J.M. Advances in seawater desalination technologies. Desalination. 2008;221:47–69. doi: 10.1016/j.desal.2007.01.067. DOI

Qasim M., Badrelzaman M., Darwish N.N., Darwish N.A., Hilal N. Reverse osmosis desalination: A state-of-the-art review. Desalination. 2019;459:59–104. doi: 10.1016/j.desal.2019.02.008. DOI

Höpfner J., Klein C., Wilhelm M. A Novel Approach for the Desalination of Seawater by Means of Reusable Poly(acrylic acid) Hydrogels and Mechanical Force. Macromol. Rapid Commun. 2010;31:1337–1342. doi: 10.1002/marc.201000058. PubMed DOI

Arens L., Albrecht J.B., Höpfner J., Schlag K., Habicht A., Seiffert S., Wilhelm M. Energy Consumption for the Desalination of Salt Water Using Polyelectrolyte Hydrogels as the Separation Agent. Macromol. Chem. Phys. 2017;218:1700237. doi: 10.1002/macp.201700237. DOI

Yu C., Wang Y., Lang X., Fan S. A Method for Seawater Desalination via Squeezing Ionic Hydrogels. Environ. Sci. Technol. 2016;50:13024–13031. doi: 10.1021/acs.est.6b03193. PubMed DOI

Cai Y., Hu X.M. A critical review on draw solutes development for forward osmosis. Desalination. 2016;391:16–29. doi: 10.1016/j.desal.2016.03.021. DOI

IUPAC . Compendium of Chemical Terminology. 2nd ed. Blackwell Scientific Publications; Oxford, UK: 1997. (The “Gold Book”) DOI

Zohuriaan-Mehr M.J., Omidian H., Doroudiani S., Kabiri K. Advances in non-hygienic applications of superabsorbent hydrogel materials. J. Mater. Sci. 2010;45:5711–5735. doi: 10.1007/s10853-010-4780-1. DOI

Haque M.O., Mondal M.I.H. Polymers and Polymeric Composites: A Reference Series. Springer International Publishing; Berlin/Heidelberg, Germany: 2019. Cellulose-Based Hydrogel for Personal Hygiene Applications; pp. 1339–1359. DOI

Sikder A., Pearce A.K., Parkinson S.J., Napier R., O’Reilly R.K. Recent Trends in Advanced Polymer Materials in Agriculture Related Applications. ACS Appl. Polym. Mater. 2021;3:1203–1217. doi: 10.1021/acsapm.0c00982. DOI

Gao N., You H. Recent Applications of Point-of-Care Devices for Glucose Detection on the Basis of Stimuli-Responsive Volume Phase Transition of Hydrogel. BioChip J. 2021;15:23–41. doi: 10.1007/s13206-021-00001-8. DOI

Lim H.L., Hwang Y., Kar M., Varghese S. Smart hydrogels as functional biomimetic systems. Biomater. Sci. 2014;2:603–618. doi: 10.1039/C3BM60288E. PubMed DOI

Salehi A.A., Ghannadi-Maragheh M., Torab-Mostaedi M., Torkaman R., Asadollahzadeh M. Hydrogel materials as an emerging platform for desalination and the production of purified water. Sep. Purif. Rev. 2021;50:380–399. doi: 10.1080/15422119.2020.1789659. DOI

Fengler C., Arens L., Horn H., Wilhelm M. Desalination of Seawater Using Cationic Poly(acrylamide) Hydrogels and Mechanical Forces for Separation. Macromol. Mater. Eng. 2020;305:2000383. doi: 10.1002/mame.202000383. DOI

Roy I., Gupta M.N. Smart Polymeric Materials. Chem. Biol. 2003;10:1161–1171. doi: 10.1016/j.chembiol.2003.12.004. PubMed DOI

Kopeček J., Yang J. Hydrogels as smart biomaterials. Polym. Int. 2007;56:1078–1098. doi: 10.1002/pi.2253. DOI

Borue V.Y., Erukhimovich I.Y. A statistical theory of weakly charged polyelectrolytes: Fluctuations, equation of state and microphase separation. Macromolecules. 1988;21:3240–3249. doi: 10.1021/ma00189a019. DOI

Dobrynin A.V., Rubinstein M., Obukhov S.P. Cascade of Transitions of Polyelectrolytes in Poor Solvents. Macromolecules. 1996;29:2974–2979. doi: 10.1021/ma9507958. DOI

Uyaver S., Seidel C. Pearl-necklace structures in annealed polyelectrolytes. J. Phys. Chem. B. 2004;108:18804–18814. doi: 10.1021/jp0464270. DOI

Rathee V.S., Sikora B.J., Sidky H., Whitmer J.K. Simulating the thermodynamics of charging in weak polyelectrolytes: The Debye–Hückel limit. Mater. Res. Express. 2018;5:014010. doi: 10.1088/2053-1591/aaa049. DOI

Polotsky A.A., Zhulina E.B., Birshtein T.M., Borisov O.V. Collapse of a weak polyelectrolyte star in a poor solvent. Soft Matter. 2012;8:9446. doi: 10.1039/c2sm25593f. DOI

Rud O.V., Mercurieva A.A., Leermakers F.A.M., Birshtein T.M. Collapse of Polyelectrolyte Star. Theory and Modeling. Macromolecules. 2012;45:2145–2160. doi: 10.1021/ma202201m. DOI

Uhlík F., Košovan P., Zhulina E.B., Borisov O.V. Charge-controlled nano-structuring in partially collapsed star-shaped macromolecules. Soft Matter. 2016;21:4846–4852. doi: 10.1039/C6SM00109B. PubMed DOI

Prokacheva V.M., Rud O.V., Uhlík F., Borisov O.V. Intramolecular micellization and nanopatterning in pH- and thermo-responsive molecular brushes. Soft Matter. 2020;16:208–218. doi: 10.1039/C9SM01961H. PubMed DOI

Kiriy A., Gorodyska G., Minko S., Jaeger W., Štěpánek P., Stamm M. Cascade of Coil-Globule Conformational Transitions of Single Flexible Polyelectrolyte Molecules in Poor Solvent. J. Am. Chem. Soc. 2002;124:13454–13462. doi: 10.1021/ja0261168. PubMed DOI

Kirwan L.J., Papastavrou G., Borkovec M., Behrens S.H. Imaging the Coil-to-Globule Conformational Transition of a Weak Polyelectrolyte by Tuning the Polyelectrolyte Charge Density. Nano Lett. 2004;4:149–152. doi: 10.1021/nl034912l. DOI

Matějíček P., Podhájecká K., Humpolíčková J., Uhlík F., Jelínek K., Limpouchová Z., Procházka K., Špírková M. Polyelectrolyte Behavior of Polystyrene-block-poly(methacrylic acid) Micelles in Aqueous Solutions at Low Ionic Strength. Macromolecules. 2004;37:10141–10154. doi: 10.1021/ma049258q. DOI

Dušek K., Patterson D. Transition in swollen polymer networks induced by intramolecular condensation. J. Polym. Sci. Part A-2: Polym. Phys. 1968;6:1209–1216. doi: 10.1002/pol.1968.160060701. DOI

Tanaka T. Collapse of Gels and the Critical Endpoint. Phys. Rev. Lett. 1978;40:820–823. doi: 10.1103/PhysRevLett.40.820. DOI

Rabin Y., Panyukov S. Scattering profiles of charged gels: Frozen inhomogeneities, thermal fluctuations, and microphase separation. Macromolecules. 1997;30:301–312. doi: 10.1021/ma960826e. DOI

Kudlay A., Erukhimovich I., Khokhlov A. Microphase separation in weakly charged annealed gels and associating polyelectrolyte solutions. Macromolecules. 2000;33:5644–5654. doi: 10.1021/ma992096r. DOI

Quesada-Pérez M., Ramos J., Forcada J., Martín-Molina A. Computer simulations of thermo-sensitive microgels: Quantitative comparison with experimental swelling data. J. Chem. Phys. 2012;136:244903. doi: 10.1063/1.4729946. PubMed DOI

Polotsky A.A., Plamper F.A., Borisov O.V. Collapse-to-Swelling Transitions in pH- and Thermoresponsive Microgels in Aqueous Dispersions: The Thermodynamic Theory. Macromolecules. 2013;46:8702–8709. doi: 10.1021/ma401402e. DOI

Nasimova I., Karino T., Okabe S., Nagao M., Shibayama M. Small-angle neutron scattering investigation of pressure influence on the structure of weakly charged poly(N-isopropylacrylamide) solutions and gels. Macromolecules. 2004;37:8721–8729. doi: 10.1021/ma049058e. DOI

Mann B.A., Kremer K., Holm C. The Swelling Behavior of Charged Hydrogels. Macromol. Symp. 2006;237:90–107. doi: 10.1002/masy.200650511. DOI

Hirotsu S., Hirokawa Y., Tanaka T. Volume-phase transitions of ionized N-isopropylacrylamide gels. J. Chem. Phys. 1987;87:1392–1395. doi: 10.1063/1.453267. DOI

Matsuo E.S., Tanaka T. Kinetics of discontinuous volume–phase transition of gels. J. Chem. Phys. 1988;89:1695–1703. doi: 10.1063/1.455115. DOI

Pan X., Yang X., Lowe C.R. Evidence for a cross-linking mechanism underlying glucose-induced contraction of phenylboronate hydrogel. J. Mol. Recognit. 2008;21:205–209. doi: 10.1002/jmr.885. PubMed DOI

Zhang X., Guan Y., Zhang Y. Ultrathin hydrogel films for rapid optical biosensing. Biomacromolecules. 2012;13:92–97. doi: 10.1021/bm2012696. PubMed DOI

Zhang C., Losego M.D., Braun P.V. Hydrogel-based glucose sensors: Effects of phenylboronic acid chemical structure on response. Chem. Mater. 2013;25:3239–3250. doi: 10.1021/cm401738p. DOI

Suzuki A., Ishii T. Phase coexistence of neutral polymer gels under mechanical constraint. J. Chem. Phys. 1999;110:2289–2296. doi: 10.1063/1.477882. DOI

Horkay F., Tasaki I., Basser P.J. Effect of Monovalent–Divalent Cation Exchange on the Swelling of Polyacrylate Hydrogels in Physiological Salt Solutions. Biomacromolecules. 2001;2:195–199. doi: 10.1021/bm0056153. PubMed DOI

Annaka M., Amo Y., Sasaki S., Tominaga Y., Motokawa K., Nakahira T. Salt effect on volume phase transition of a gel. Phys. Rev. E. 2002;65:031805. doi: 10.1103/PhysRevE.65.031805. PubMed DOI

Yan Q., de Pablo J.J. Monte Carlo Simulation of a Coarse-Grained Model of Polyelectrolyte Networks. Phys. Rev. Lett. 2003;91:018301. doi: 10.1103/PhysRevLett.91.018301. PubMed DOI

Wu K.A., Jha P.K., Cruz M.O.D.L. Control of nanophases in polyelectrolyte gels by salt addition. Macromolecules. 2010;43:9160–9167. doi: 10.1021/ma101726v. DOI

Mussel M., Basser P.J., Horkay F. Ion-Induced Volume Transition in Gels and Its Role in Biology. Gels. 2021;7:20. doi: 10.3390/gels7010020. PubMed DOI PMC

Prokacheva V.M., Rud O.V., Uhlík F., Borisov O.V. Phase transition in hydrophobic weak polyelectrolyte gel utilized for water desalination. Desalination. 2021;511:115092. doi: 10.1016/j.desal.2021.115092. DOI

Vervoort S., Patlazhan S., Weyts J., Budtova T. Solvent release from highly swollen gels under compression. Polymer. 2005;46:121–127. doi: 10.1016/j.polymer.2004.10.046. DOI

Zhao X., Sun X., Zhang J., Bai B. Gel composition and brine concentration effect on hydrogel dehydration subjected to uniaxial compression. J. Pet. Sci. Eng. 2019;182:106358. doi: 10.1016/j.petrol.2019.106358. DOI

Smith W.R., Triska B. The reaction ensemble method for the computer simulation of chemical and phase equilibria. I. Theory and basic examples. J. Chem. Phys. 1994;100:3019–3027. doi: 10.1063/1.466443. DOI

Landsgesell J., Hebbeker P., Rud O., Lunkad R., Košovan P., Holm C. Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules. 2020;53:3007–3020. doi: 10.1021/acs.macromol.0c00260. DOI

Prokacheva V. Ph.D. Thesis. Faculty of Science; Charles University, Prague, Czechia: 2022. Theoretical Study of Branched Polyelectrolytes.

Dimitriyev M.S., Chang Y.W., Goldbart P.M., Fernández-Nieves A. Swelling thermodynamics and phase transitions of polymer gels. Nano Futur. 2019;3:042001. doi: 10.1088/2399-1984/ab45d5. DOI

Dušek K., Dušková-Smrčková M. Volume Phase Transition in Gels: Its Discovery and Development. Gels. 2020;6:22. doi: 10.3390/gels6030022. PubMed DOI PMC

Callen H.B. Thermodynamics and an Introduction to Thermostatistics. 2nd ed. Wiley; New York, NY, USA: 1985.

Atkins P., de Paula J. Atkins’ Physical Chemistry. Oxford University Press; Oxford, UK: 2010.

Kazakov A.D., Prokacheva V.M., Uhlík F., Košovan P., Leermakers F.A.M. Computer modeling of polymer stars in variable solvent conditions: A comparison of MD simulations, self-consistent field (SCF) modeling and novel hybrid Monte Carlo SCF approach. Soft Matter. 2021;17:580–591. doi: 10.1039/D0SM01080D. PubMed DOI

Rud O.V., Kazakov A.D., Nova L., Uhlik F. Polyelectrolyte Hydrogels as Draw Agents for Desalination of Solutions with Multivalent Ions. Macromolecules. 2022;55:1763–1770. doi: 10.1021/acs.macromol.1c02266. DOI

Rud O., Borisov O., Košovan P. Thermodynamic model for a reversible desalination cycle using weak polyelectrolyte hydrogels. Desalination. 2018;442:32–43. doi: 10.1016/j.desal.2018.05.002. DOI

Jones J.E. On the Determination of Molecular Fields. II. From the Equation of State of a Gas. Proc. R. Soc. A Math. Phys. Eng. Sci. 1924;106:463–477. doi: 10.1098/rspa.1924.0082. DOI

Chremos A., Horkay F. Disappearance of the polyelectrolyte peak in salt-free solutions. Phys. Rev. E. 2020;102:012611. doi: 10.1103/PhysRevE.102.012611. PubMed DOI PMC

Ghavami A., Kobayashi H., Winkler R.G. Internal dynamics of microgels: A mesoscale hydrodynamic simulation study. J. Chem. Phys. 2016;145:244902. doi: 10.1063/1.4972893. PubMed DOI

Ghelichi M., Qazvini N.T. Self-organization of hydrophobic-capped triblock copolymers with a polyelectrolyte midblock: A coarse-grained molecular dynamics simulation study. Soft Matter. 2016;12:4611–4620. doi: 10.1039/C6SM00414H. PubMed DOI

Warner H.R. Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells. Ind. Eng. Chem. Fundam. 1972;11:379–387. doi: 10.1021/i160043a017. DOI

Weik F., Weeber R., Szuttor K., Breitsprecher K., de Graaf J., Kuron M., Landsgesell J., Menke H., Sean D., Holm C. ESPResSo 4.0—An extensible software package for simulating soft matter systems. Eur. Phys. J. Spec. Top. 2019;227:1789–1816. doi: 10.1140/epjst/e2019-800186-9. DOI

Miao B., Vilgis T.A., Poggendorf S., Sadowski G. Effect of finite extensibility on the equilibrium chain size. Macromol. Theory Simul. 2010;19:414–420. doi: 10.1002/mats.201000009. DOI

Jha P.K., Zwanikken J.W., de Pablo J.J., Olvera de la Cruz M. Electrostatic control of nanoscale phase behavior of polyelectrolyte networks. Curr. Opin. Solid State Mater. Sci. 2011;15:271–276. doi: 10.1016/j.cossms.2011.06.002. DOI

Borisov O.V., Zhulina E.B., Leermakers F.A.M., Ballauff M., Müller A.H.E. Conformations and Solution Properties of Star-Branched Polyelectrolytes. Self Organ. Nanostructures Amphiphilic Block Copolym. I. 2011;241:1–55. doi: 10.1007/12_2010_104. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...