Volume Phase Transition in Gels: Its Discovery and Development
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
17-08531S
Czech Science Foundation
PubMed
32752072
PubMed Central
PMC7557368
DOI
10.3390/gels6030022
PII: gels6030022
Knihovny.cz E-zdroje
- Klíčová slova
- Gibbs energy, cross-linking, gel, phase separation, polymer network, stimuli-responsive, swelling, volume phase transition,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The history of volume phase transition of responsive gels from its theoretical prediction to experimental discovery was described and the major role of mixing Gibbs energy function in theoretical models was stressed. For detailed analysis and fine tuning of the volume phase transition, the generalized Flory-Huggins model with concentration and temperature dependent interaction function coupled with Maxwell construction as a tool is very suitable. Application of expansive stresses can uncover the potential of various swelling gels for volume phase transition. Experimentally, the abrupt, equilibrium-controlled phase transition is often hard to achieve due to passage of gel through states of mechanical instability and slow relaxation processes in macroscopic objects.
Zobrazit více v PubMed
Millar J.R. Improvements relating to ion-exchange resins and their manufacture 1958. 849.122. UK Patent. 1960
Millar J.R., Smith D.G., Marr W.E., Kressman T.R.E. 33. Solvent-modified polymer networks. Part I. The preparation and characterisation of expanded-network and macroporous styrene–divinylbenzene copolymers and their sulphonates. J. Chem. Soc. 1963:218–225. doi: 10.1039/JR9630000218. DOI
Millar J.R., Smith D.G., Marr W.E., Kressman T.R.E. 527. Solvent-modified polymer networks. Part III. Cation-exchange equilibria with some univalent inorganic and organic ions. J. Chem. Soc. 1964:2740. doi: 10.1039/jr9640002740. DOI
Millar J.R., Smith D.G., Marr W.E., Kressman T.R.E. 515. Solvent-modified polymer networks. Part II. Effect of structure on cation-exchange kinetics in sulphonated styrene–divinylbenzene copolymers. J. Chem. Soc. 1963:2779–2784. doi: 10.1039/JR9630002779. DOI
Millar J.R., Smith D.G., Kressman T.R.E. 45. Solvent-modified polymer networks. Part IV. Styrene–divinyl-benzene copolymers made in the presence of non-solvating diluents. J. Chem. Soc. 1965:304–310. doi: 10.1039/JR9650000304. DOI
Seidl J., Malinský J., Dušek K., Heitz W. Fortschritte der Hochpolymeren-Forschung. Springer; Berlin/Heidelberg, Germany: 1967. Makroporöse Styrol-Divinylbenzol-Copolymere und ihre Verwendung in der Chromatographie und zur Darstellung von Ionenaustauschern; pp. 113–213.
Rosi N.L. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science. 2003;300:1127–1129. doi: 10.1126/science.1083440. PubMed DOI
Flory P.J. Principles of Polymer Chemistry. Cornell University Press; Ithaca, NY, USA: 1953.
Dušek K. Phase separation during the formation of three-dimensional polymers. J. Polym. Sci. Part. B Polym. Lett. 1965;3:209–212. doi: 10.1002/pol.1965.110030311. DOI
Dušek K. Phase separation during the formation of three-dimensional polymers. J. Polym. Sci. Part. C Polym. Symp. 1967;16:1289–1299. doi: 10.1002/polc.5070160307. DOI
Dušek K., Seidl J., Malinský J. Phase separation in the copolymerization of styrene and divinylbenzene in the presence of diluents: Comparison of experiment with theory. Collect. Czechoslov. Chem. Commun. 1967;32:2766–2778. doi: 10.1135/cccc19672766. DOI
Dušek K., Sedláček B. Structure and properties of hydrophilic polymers and their gels. XI. Microsyneresis in swollen poly(ethylene glycol methacrylate) gels induced by changes of temperature. Collect. Czechoslov. Chem. Commun. 1969;34:136–157. doi: 10.1135/cccc19690136. DOI
Dusek K., Prins W. Structure and Elasticity of Non-Crystalline Polymer Networks. Adv. Polym. Sci. 1969;6:1–102.
Dušek K., Patterson D. Transition in swollen polymer networks induced by intramolecular condensation. J. Polym. Sci. Part A-2 Polym. Phys. 1968;6:1209–1216. doi: 10.1002/pol.1968.160060701. DOI
Tanaka T. Collapse of Gels and the Critical Endpoint. Phys. Rev. Lett. 1978;40:820–823. doi: 10.1103/PhysRevLett.40.820. DOI
Tanaka T., Fillmore D., Sun S.-T., Nishio I., Swislow G., Shah A. Phase Transitions in Ionic Gels. Phys. Rev. Lett. 1980;45:1636–1639. doi: 10.1103/PhysRevLett.45.1636. DOI
Shibayama M., Tanaka T. Volume phase transition and related phenomena of polymer gels. In: Dušek K., editor. Responsive Gels: Volume Transitions I. Volume 109. Springer; Berlin/Heidelberg, Germany: 1993. pp. 1–62. Advances in Polymer Science.
Dušek K., editor. Responsive Gels: Volume Transitions II. Volume 110. Springer; Berlin/Heidelberg, Germany: 1993. Advances in Polymer Science.
Li H. Smart Hydrogel Modelling. Springer; Berlin/Heidelberg, Germany: 2009.
Liu F., Urban M.W. Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 2010;35:3–23. doi: 10.1016/j.progpolymsci.2009.10.002. DOI
Richtering W., Saunders B.R. Gel architectures and their complexity. Soft Matter. 2014;10:3695–3702. doi: 10.1039/C4SM00208C. PubMed DOI
Gerlach G., Arndt K.-F., editors. Hydrogel Sensors and Actuators. Engineering and Technology. 1st ed. Springer; Berlin/Heidelberg, Germany: 2010.
Saunders J.R., Abu-Salih S., Khaleque T., Hanula S., Moussa W. Modeling Theories of Intelligent Hydrogel Polymers. J. Comput. Theor. Nanosci. 2008;5:1942–1960. doi: 10.1166/jctn.2008.1001. DOI
Kramarenko E.Y., Philippova O.E., Khokhlov A.R. Polyelectrolyte networks as highly sensitive polymers. Polym. Sci. Ser. C. 2006;48:1–20. doi: 10.1134/S1811238206010012. DOI
Wu S., Li H., Chen J.P., Lam K.Y. Modeling Investigation of Hydrogel Volume Transition. Macromol. Theory Simul. 2004;13:13–29. doi: 10.1002/mats.200300013. DOI
Hasa J., Ilavský M., Dušek K. Deformational, swelling, and potentiometric behavior of ionized poly(methacrylic acid) gels. I. Theory. J. Polym. Sci. Polym. Phys. Ed. 1975;13:253–262. doi: 10.1002/pol.1975.180130203. DOI
Quesada-Pérez M., Maroto-Centeno J.A., Forcada J., Hidalgo-Alvarez R. Gel swelling theories: The classical formalism and recent approaches. Soft Matter. 2011;7:10536. doi: 10.1039/c1sm06031g. DOI
Tompa H. Polymer Solutions. 1st ed. Butterworths Scientific Publications; London, UK: 1956.
Prange M.M., Hooper H.H., Prausnitz J.M. Thermodynamics of aqueous systems containing hydrophilic polymers or gels. AIChE J. 1989;35:803–813. doi: 10.1002/aic.690350511. DOI
Freed K.F., Dudowicz J. Lattice Cluster Theory for Pedestrians: The Incompressible Limit and the Miscibility of Polyolefin Blends. Macromolecules. 1998;31:6681–6690. doi: 10.1021/ma980702x. DOI
Dudowicz J., Freed K.F., Madden W.G. Role of molecular structure on the thermodynamic properties of melts, blends, and concentrated polymer solutions: Comparison of Monte Carlo simulations with the cluster theory for the lattice model. Macromolecules. 1990;23:4803–4819. doi: 10.1021/ma00224a009. DOI
Douglas J.F., Dudowicz J., Freed K.F. Lattice model of equilibrium polymerization. VI. Measures of fluid “complexity” and search for generalized corresponding states. J. Chem. Phys. 2007;127:224901. doi: 10.1063/1.2785187. PubMed DOI
Patterson D. Free Volume and Polymer Solubility. A Qualitative View. Macromolecules. 1969;2:672–677. doi: 10.1021/ma60012a021. DOI
Sanchez I.C., Lacombe R.H. Statistical Thermodynamics of Polymer Solutions. Macromolecules. 1978;11:1145–1156. doi: 10.1021/ma60066a017. DOI
Orwoll R.A., Flory P.J. Equation-of-state parameters for normal alkanes. Correlation with chain length. J. Am. Chem. Soc. 1967;89:6814–6822. doi: 10.1021/ja01002a002. DOI
Clark G.N.I., Haslam A.J., Galindo A., Jackson G. Developing optimal Wertheim-like models of water for use in Statistical Associating Fluid Theory (SAFT) and related approaches. Mol. Phys. 2006;104:3561–3581. doi: 10.1080/00268970601081475. DOI
Semenov A.N., Rubinstein M. Thermoreversible Gelation in Solutions of Associative Polymers. 1. Statics. Macromolecules. 1998;31:1373–1385. doi: 10.1021/ma970616h. DOI
Tanaka F., Ishida M. Microphase Formation in Mixtures of Associating Polymers. Macromolecules. 1997;30:1836–1844. doi: 10.1021/ma961457p. DOI
Tanaka F., Katsumoto Y., Nakano S., Kita R. LCST phase separation and thermoreversible gelation in aqueous solutions of stereo-controlled poly(N-isopropylacrylamide)s. React. Funct. Polym. 2013;73:894–897. doi: 10.1016/j.reactfunctpolym.2013.04.010. DOI
Stukalin E.B., Douglas J.F., Freed K.F. Multistep relaxation in equilibrium polymer solutions: A minimal model of relaxation in “complex” fluids. J. Chem. Phys. 2008;129:094901. doi: 10.1063/1.2976341. PubMed DOI
Dušek K., Choukourov A., Dušková-Smrčková M., Biederman H. Constrained Swelling of Polymer Networks: Characterization of Vapor-Deposited Cross-Linked Polymer Thin Films. Macromolecules. 2014;47:4417–4427. doi: 10.1021/ma5006217. DOI
Dušek K., Dušková-Smrčková M., Šomvársky J. Effect of Constraints on Swelling of Polymer Networks. Macromol. Symp. 2015;358:120–127. doi: 10.1002/masy.201500025. DOI
Dušková-Smrčková M., Dušek K. How to Force Polymer Gels to Show Volume Phase Transitions. ACS Macro Lett. 2019;8:272–278. doi: 10.1021/acsmacrolett.8b00987. PubMed DOI
Knychała P., Timachova K., Banaszak M., Balsara N.P. 50th Anniversary Perspective: Phase Behavior of Polymer Solutions and Blends. Macromolecules. 2017;50:3051–3065. doi: 10.1021/acs.macromol.6b02619. DOI
Flory P.J., Daoust H. Osmotic pressures of moderately concentrated polymer solutions. J. Polym. Sci. 1957;25:429–440. doi: 10.1002/pol.1957.1202511104. DOI
Dušek K. Solubility of poly(2-hydroxyethyl methacrylate) in some aliphatic alcohols. Collect. Czechoslov. Chem. Commun. 1969;34:3309–3317. doi: 10.1135/cccc19693309. DOI
Erman B., Flory P.J. Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromolecules. 1986;19:2342–2353. doi: 10.1021/ma00163a003. DOI
Šolc K., Dušek K., Koningsveld R., Berghmans H. “Zero” and “Off-Zero” Critical Concentrations in Solutions of Polydisperse Polymers with Very High Molar Masses. Collect. Czechoslov. Chem. Commun. 1995;60:1661–1688. doi: 10.1135/cccc19951661. DOI
Moerkerke R., Koningsveld R., Berghmans H., Dusek K., Solc K. Phase Transitions in Swollen Networks. Macromolecules. 1995;28:1103–1107. doi: 10.1021/ma00108a043. DOI
Afroze F., Nies E., Berghmans H. Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J. Mol. Struct. 2000;554:55–68. doi: 10.1016/S0022-2860(00)00559-7. DOI
Schäfer-Soenen H., Moerkerke R., Berghmans H., Koningsveld R., Dušek K., Šolc K. Zero and Off-Zero Critical Concentrations in Systems Containing Polydisperse Polymers † with Very High Molar Masses. 2. The System Water−Poly(vinyl methyl ether) Macromolecules. 1997;30:410–416. doi: 10.1021/ma960114o. DOI
Moerkerke R., Meeussen F., Koningsveld R., Berghmans H., Mondelaers W., Schacht E., Dušek K., Šolc K. Phase Transitions in Swollen Networks. 3. Swelling Behavior of Radiation Cross-Linked Poly(vinyl methyl ether) in Water. Macromolecules. 1998;31:2223–2229. doi: 10.1021/ma971512+. DOI
Erman B., Mark J.E. Structures and Properties of Rubberlike Networks. 1st ed. Oxford University Press; Oxford, NY, USA: 1997.
Drozdov A.D., Christiansen J.D. A simplified model for equilibrium and transient swelling of thermo-responsive gels. J. Mech. Behav. Biomed. Mater. 2017;75:20–32. doi: 10.1016/j.jmbbm.2017.06.034. PubMed DOI
Drozdov A.D., Christiansen J.D. Mechanical response and equilibrium swelling of temperature-responsive gels. Eur. Polym. J. 2017;94:56–67. doi: 10.1016/j.eurpolymj.2017.06.045. DOI
Ding Z., Liu Z., Hu J., Swaddiwudhipong S., Yang Z. Inhomogeneous large deformation study of temperature-sensitive hydrogel. Int. J. Solids Struct. 2013;50:2610–2619. doi: 10.1016/j.ijsolstr.2013.04.011. DOI
Shoujing Z., Zishun L. Phase Transition of Temperature-Sensitive Hydrogel Under Mechanical Constraint. J. Appl. Mech. 2018;85 doi: 10.1115/1.4038497. DOI
Zheng S., Li Z., Liu Z. The fast homogeneous diffusion of hydrogel under different stimuli. Int. J. Mech. Sci. 2018;137:263–270. doi: 10.1016/j.ijmecsci.2018.01.029. DOI
Wu C., Zhou S. Volume Phase Transition of Swollen Gels: Discontinuous or Continuous? Macromolecules. 1997;30:574–576. doi: 10.1021/ma960499a. DOI
Koningsveld R., Stockmayer W.H., Kennedy J.W., Kleintjens L.A. Liquid-Liquid Phase Separation in Multicomponent Polymer Systems. XI. Dilute and Concentrated Polymer Solutions in Equilibrium. Macromolecules. 1974;7:73–79. doi: 10.1021/ma60037a015. DOI
Irvine P., Gordon M. Graph-Like State of Matter. 14. Statistical Thermodynamics of Semidilute Polymer Solution. Macromolecules. 1980;13:761–772. doi: 10.1021/ma60075a050. DOI
Stockmayer W.H. Integration of Fundamental Polymer Science and Technology—4. Springer; Dordrecht, The Netherlands: 1990. Bridging Treatment of Polymer Solutions In Good Solvents; pp. 3–10.
Dušek K., Sedláček B. Effect of diluents on the microsyneresis in poly(2-hydroxyethyl methacrylate) gels induced by temperature changes. Collect. Czechoslov. Chem. Commun. 1971;36:1569–1577. doi: 10.1135/cccc19711569. DOI
Dušek K., Sedláček B. Structural changes in swollen polymer gels induced by solvent exchange. Collect. Czechoslov. Chem. Commun. 1973;38:3434–3439. doi: 10.1135/cccc19733434. DOI
Dušek K. Inhomogeneities Induced by Crosslinking in the Course of Crosslinking Copolymerization. In: Chompff A.J., Newman S., editors. Polymer Networks. Springer US; Boston, MA, USA: 1971. pp. 245–260.
Style R.W., Sai T., Fanelli N., Ijavi M., Smith-Mannschott K., Xu Q., Wilen L.A., Dufresne E.R. Liquid-Liquid Phase Separation in an Elastic Network. Phys. Rev. X. 2018;8:011028. doi: 10.1103/PhysRevX.8.011028. DOI
Ikkai F., Shibayama M. Gel-size dependence of temperature-induced microphase separation in weakly-charged polymer gels. Polymer. 2007;48:2387–2394. doi: 10.1016/j.polymer.2007.02.049. DOI
Chang Y.-W., Dimitriyev M.S., Souslov A., Nikolov S.V., Marquez S.M., Alexeev A., Goldbart P.M., Fernández-Nieves A. Extreme thermodynamics with polymer gel tori: Harnessing thermodynamic instabilities to induce large-scale deformations. Phys. Rev. E. 2018;98:020501. doi: 10.1103/PhysRevE.98.020501. PubMed DOI
Dimitriyev M.S., Chang Y.-W., Goldbart P.M., Fernández-Nieves A. Swelling thermodynamics and phase transitions of polymer gels. Nano Futur. 2019;3:042001. doi: 10.1088/2399-1984/ab45d5. DOI
Mussel M., Horkay F. Experimental Evidence for Universal Behavior of Ion-Induced Volume Phase Transition in Sodium Polyacrylate Gels. J. Phys. Chem. Lett. 2019;10:7831–7835. doi: 10.1021/acs.jpclett.9b03126. PubMed DOI PMC
Tanaka T., Sun S.-T., Hirokawa Y., Katayama S., Kucera J., Hirose Y., Amiya T. Mechanical instability of gels at the phase transition. Nature. 1987;325:796–798. doi: 10.1038/325796a0. DOI
Matsuo E.S., Orkisz M., Sun S.-T., Li Y., Tanaka T. Origin of Structural Inhomogeneities in Polymer Gels. Macromolecules. 1994;27:6791–6796. doi: 10.1021/ma00101a018. DOI
László K., Guillermo A., Fluerasu A., Moussaïd A., Geissler E. Microphase Structure of Poly(N -isopropylacrylamide) Hydrogels As Seen by Small- and Wide-Angle X-ray Scattering and Pulsed Field Gradient NMR. Langmuir. 2010;26:4415–4420. doi: 10.1021/la903468h. PubMed DOI
Onuki A. Theory of phase transition in polymer gels. In: Dušek K., editor. Responsive Gels: Volume Transitions I. Volume 109. Springer; Berlin/Heidelberg, Germany: 1993. pp. 63–121. Advances in Polymer Science.
Okumura D., Kuwayama T., Ohno N. Effect of geometrical imperfections on swelling-induced buckling patterns in gel films with a square lattice of holes. Int. J. Solids Struct. 2014;51:154–163. doi: 10.1016/j.ijsolstr.2013.09.018. DOI
Ilavsky M. Phase transition in swollen gels. 2. Effect of charge concentration on the collapse and mechanical behavior of polyacrylamide networks. Macromolecules. 1982;15:782–788. doi: 10.1021/ma00231a019. DOI
Ilavský M. Effect of phase transition on swelling and mechanical behavior of synthetic hydrogels. In: Dušek K., editor. Responsive Gels: Volume Transitions I. Volume 109. Springer; Berlin/Heidelberg, Germany: 1993. pp. 173–206. Advances in Polymer Science.
Spěváček J. NMR investigations of phase transition in aqueous polymer solutions and gels. Curr. Opin. Colloid Interface Sci. 2009;14:184–191. doi: 10.1016/j.cocis.2008.10.003. DOI