The Impact of Pesticide Use on Tree Health in Riparian Buffer Zone

. 2023 Feb 28 ; 11 (3) : . [epub] 20230228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36977000

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministry of Education, Youth and Sports of Czech Republic
LTC 17033 Ministry of Education, Youth and Sports of Czech Republic

The result of the enormous usage of pesticides in agriculture is the contamination of soil and water bodies surrounding the fields. Therefore, creating buffer zones to prevent water contamination is very useful. Chlorpyrifos (CPS) is the active substance of a number of insecticides widely used all over the world. In our study, we focused on the effect of CPS on plants forming riparian buffer zones: poplar (Populus nigra L., TPE18), hybrid aspen (P.tremula L. × P. tremuloides Michx.), and alder (Alnus glutinosa L.). Foliage spray and root irrigation experiments were conducted under laboratory conditions on in vitro cultivated plants. Spray applications of pure CPS were compared with its commercially available form-Oleoekol®. Although CPS is considered a nonsystemic insecticide, our results indicate that CPS is transferred not only upwards from roots to shoots but also downwards from leaves to roots. The amount of CPS in the roots was higher (4.9 times and 5.7 times, respectively) in aspen or poplar sprayed with Oleoekol than in those sprayed with pure CPS. Although the treated plants were not affected in growth parameters, they showed increased activity of antioxidant enzymes (approximately two times in the case of superoxide dismutase and ascorbate peroxidase) and augmented levels of phenolic substances (control plants -114.67 mg GAE/g dry tissue, plants treated with CPS-194.27 mg GAE/g dry tissue). In summary, chlorpyrifos, especially as a foliar spray pesticide, can create persistent residues and affects not only target plants but also plants surrounding the field.

Zobrazit více v PubMed

Fatma F., Verma S., Kamal A., Srivastava A. Phytotoxicity of pesticides mancozeb and chlorpyrifos: Correlation with the antioxidative defence system in Allium cepa. Physiol. Mol. Biol. Plants. 2018;24:115–123. doi: 10.1007/s12298-017-0490-3. PubMed DOI PMC

Vymazal J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia. 2011;674:133–156. doi: 10.1007/s10750-011-0738-9. DOI

Mahmood Q., Bilal M., Jan S. Emerging Technologies and Management of Crop Stress Tolerance. Volume 1. Academic Press; Cambridge, MA, USA: 2014. Herbicides, Pesticides, and Plant Tolerance: An Overview; pp. 423–448. DOI

Bhende R.S., Jhariya U., Srivastava S., Bombaywala S., Das S., Dafale N.A. Environmental Distribution, Metabolic Fate, and Degradation Mechanism of Chlorpyrifos: Recent and Future Perspectives. Appl. Biochem. Biotechnol. 2022;194:2301–2335. doi: 10.1007/s12010-021-03713-7. PubMed DOI

Hofman J. Rezidua pesticidů v orných půdách České republiky. [(accessed on 1 January 2018)]. Available online: https://www.agromanual.cz/cz/clanky/ochrana-rostlin-a-pestovani/ochrana-obecne/rezidua-pesticidu-v-ornych-pudach-ceske-republiky.

Raj A., Kumar A. Recent advances in assessment methods and mechanism of microbe-mediated chlorpyrifos remediation. Environ. Res. 2022;214:114011. doi: 10.1016/j.envres.2022.114011. PubMed DOI

Angioni A., Dedola F., Garau A., Sarais G., Cabras P., Caboni P. Chlorpyrifos residues levels in fruits and vegetables after field treatment. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. 2011;46:544–549. doi: 10.1080/03601234.2011.583880. PubMed DOI

Williams W.M., Giddings J.M., Purdy J., Solomon K.R., Giesy J.P. Exposures of Aquatic Organisms to the Organophosphorus Insecticide, Chlorpyrifos Resulting from Use in the United States. Ecol. Risk Assess. Chlorpyrifos Terr. Aquat. Syst. United States. 2014;231:77–117. doi: 10.1007/978-3-319-03865-0_4. PubMed DOI

Hwang K.-W., Yoo S.C., Lee S.-E., Moon J.-K. Residual Level of Chlorpyrifos in Lettuces Grown on Chlorpyrifos-Treated Soils. Appl. Sci. 2018;8:2343. doi: 10.3390/app8122343. DOI

Ju C., Dong S., Zhang H., Yao S., Wang F., Cao D., Xu S., Fang H., Yu Y. Subcellular distribution governing accumulation and translocation of pesticides in wheat (Triticum aestivum L.) Chemosphere. 2020;248:126024. doi: 10.1016/j.chemosphere.2020.126024. PubMed DOI

Wang Q.H., Li C., Zheng R.L., Que X.E. Phytoremediation of chlorpyrifos in aqueous system by riverine macrophyte, Acorus calamus: Toxicity and removal rate. Environ. Sci. Pollut. Res. 2016;23:16241–16248. doi: 10.1007/s11356-016-6673-6. PubMed DOI

Romeh A.A., Hendawi M.Y. Chlorpyrifos insecticide uptake by plantain from polluted water and soil. Environ. Chem. Lett. 2013;11:163–170. doi: 10.1007/s10311-012-0392-0. DOI

Asl P.J., Niazmand R., Razavizadeh B.M., Shakeri M.A., Jahani M. Monitoring of pesticide and some metal residues in Mazafati date fruit cultivar and risk assessment to the health. J. Food Compos. Anal. 2023;115:104917. doi: 10.1016/j.jfca.2022.104917. DOI

Omeiri M., Khnayzer R., Yusef H., Tokajian S., Salloum T. Biodegradation of chlorpyrifos by bacterial strains isolated from Lebanese soil and its association with plant growth improvement. Bioremediat. J. 2022 doi: 10.1080/10889868.2022.2130874. DOI

Aziz H., Murtaza G., Saleem M.H., Ali S., Rizwan M., Riaz U., Niaz A., Abualreesh M.H., Alatawi A. Alleviation of Chlorpyrifos Toxicity in Maize (Zea mays L.) by Reducing Its Uptake and Oxidative Stress in Response to Soil-Applied Compost and Biochar Amendments. Plants. 2021;10:2170. doi: 10.3390/plants10102170. PubMed DOI PMC

Bakshi P., Chouhan R., Sharma P., Mir B.A., Gandhi S.G., Landi M., Zheng B.S., Sharma A., Bhardwaj R. Amelioration of Chlorpyrifos-Induced Toxicity in Brassica juncea L. by Combination of 24-Epibrassinolide and Plant-Growth-Promoting Rhizobacteria. Biomolecules. 2021;11:877. doi: 10.3390/biom11060877. PubMed DOI PMC

Collins C., Fryer M., Grosso A. Plant uptake of non-ionic organic chemicals. Environ. Sci. Technol. 2006;40:45–52. doi: 10.1021/es0508166. PubMed DOI

Wang Q., Yang J., Li C., Xiao B., Que X. Influence of initial pesticide concentrations in water on chlorpyrifos toxicity and removal by Iris pseudacorus. Water Sci. Technol. 2013;67:1908–1915. doi: 10.2166/wst.2013.071. PubMed DOI

Anudechakul C., Vangnai A.S., Ariyakanon N. Removal of Chlorpyrifos by Water Hyacinth (Eichhornia crassipes) and the Role of a Plant-Associated Bacterium. Int. J. Phytoremediat. 2015;17:678–685. doi: 10.1080/15226514.2014.964838. PubMed DOI

Doty S.L., Freeman J.L., Cohu C.M., Burken J.G., Firrincieli A., Simon A., Khan Z., Isebrands J.G., Lukas J., Blaylock M.J. Enhanced Degradation of TCE on a Superfund Site Using Endophyte-Assisted Poplar Tree Phytoremediation. Environ. Sci. Technol. 2017;51:10050–10058. doi: 10.1021/acs.est.7b01504. PubMed DOI

Walvekar V.A., Bajaj S., Singh D.K., Sharma S. Ecotoxicological assessment of pesticides and their combination on rhizospheric microbial community structure and function of Vigna radiata. Environ. Sci. Pollut. Res. 2017;24:17175–17186. doi: 10.1007/s11356-017-9284-y. PubMed DOI

Doran P.M. Application of Plant Tissue Cultures in Phytoremediation Research: Incentives and Limitations. Biotechnol. Bioeng. 2009;103:60–76. doi: 10.1002/bit.22280. PubMed DOI

Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Marsik P., Zunova T., Vanek T., Podlipna R. Metazachlor effect on poplar—Pioneer plant species for riparian buffers. Chemosphere. 2021;274:129711. doi: 10.1016/j.chemosphere.2021.129711. PubMed DOI

Vera-Estrella R., Barkla B.J., Bohnert H.J., Pantoja O. Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta. 1999;207:426–435. doi: 10.1007/s004250050501. PubMed DOI

Bradford M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Drotar A., Phelps P., Fall R. Evidence for glutathione-peroxidase activities in cultured plant-cells. Plant Sci. 1985;42:35–40. doi: 10.1016/0168-9452(85)90025-1. DOI

El-Shabrawi H., Kumar B., Kaul T., Reddy M.K., Singla-Pareek S.L., Sopory S.K. Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma. 2010;245:85–96. doi: 10.1007/s00709-010-0144-6. PubMed DOI

Verma S., Dubey R.S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 2003;164:645–655. doi: 10.1016/S0168-9452(03)00022-0. DOI

Vanacker H., Carver T.L.W., Foyer C.H. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol. 1998;117:1103–1114. doi: 10.1104/pp.117.3.1103. PubMed DOI PMC

Habig W.H., Pabst M.J., Jakoby W.B. Glutathione s-transferases—First enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. doi: 10.1016/S0021-9258(19)42083-8. PubMed DOI

Lichtenthaler H.K. Chlorophylls and carotenoids—Pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–382.

Singleton V.L., Orthofer R., Lamuela-Raventos R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Oxid. Antioxid. Pt A. 1999;299:152–178.

Langhansova L., Landa P., Kutil Z., Tauchen J., Marsik P., Rezek J., Lou J.D., Yun Z.L., Vanek T. Myrica rubra leaves as a potential source of a dual 5-LOX/COX inhibitor. Food Agric. Immunol. 2017;28:343–353. doi: 10.1080/09540105.2016.1272554. DOI

Dvorakova M., Pumprova K., Antoninova Z., Rezek J., Haisel D., Ekrt L., Vanek T., Langhansova L. Nutritional and Antioxidant Potential of Fiddleheads from European Ferns. Foods. 2021;10:460. doi: 10.3390/foods10020460. PubMed DOI PMC

Chahid K., Laglaoui A., Zantar S., Ennabili A. Antioxidant-enzyme reaction to the oxidative stress due to alpha-cypermethrin, chlorpyriphos, and pirimicarb in tomato (Lycopersicon esculentum Mill.) Environ. Sci. Pollut. Res. 2015;22:18115–18126. doi: 10.1007/s11356-015-5024-3. PubMed DOI

Wang L., Qin Z., Li X., Yang J., Xin M. Persistence behavior of chlorpyrifos and biological toxicity mechanism to cucumbers under greenhouse conditions. Ecotoxicol. Environ. Saf. 2022;242:13894. doi: 10.1016/j.ecoenv.2022.113894. PubMed DOI

Shim I.S., Momose Y., Yamamoto A., Kim D.W., Usui K. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul. 2003;39:285–292. doi: 10.1023/A:1022861312375. DOI

Smith C.R., Funke B.R., Schulz J.T. Effects of insecticides on acetylene-reduction by alfalfa, red-clover and sweetclover. Soil Biol. Biochem. 1978;10:463–466. doi: 10.1016/0038-0717(78)90037-8. DOI

Singh P., Prasad S.M. Antioxidant enzyme responses to the oxidative stress due to chlorpyrifos, dimethoate and dieldrin stress in palak (Spinacia oleracea L.) and their toxicity alleviation by soil amendments in tropical croplands. Sci. Total Environ. 2018;630:839–848. doi: 10.1016/j.scitotenv.2018.02.203. PubMed DOI

Wang X.B., Wang J., Wang Y.P., Zhu X.C., Cheng J., Wang W. Changes in Microbial Diversity, Soil Function, and Plant Biomass of Cotton Rhizosphere Soil Under the Influence of Chlorpyrifos. Curr. Microbiol. 2022;79:1890–1895. doi: 10.1007/s00284-022-03015-z. PubMed DOI

Lee K.Y., Strand S.E., Doty S.L. Phytoremediation of Chlorpyrifos by Populus and Salix. Int. J. Phytoremediat. 2012;14:48–61. doi: 10.1080/15226514.2011.560213. PubMed DOI PMC

Sharma A., Kumar V., Thukral A.K., Bhardwaj R. Epibrassinolide-imidacloprid interaction enhances non-enzymatic antioxidants in Brassica juncea L. Indian J. Plant Physiol. 2016;21:70–75. doi: 10.1007/s40502-016-0203-x. DOI

Tan W., Li Q., Zhai H. Photosynthesis and growth responses of grapevine to acetochlor and fluoroglycofen. Pestic. Biochem. Physiol. 2012;103:210–218. doi: 10.1016/j.pestbp.2012.05.010. DOI

Lozowicka B., Kaczynski P., Mojsak P., Rusilowska J., Beknazarova Z., Ilyasova G., Absatarova D. Systemic and non-systemic pesticides in apples from Kazakhstan and their impact on human health. J. Food Compos. Anal. 2020;90:103494. doi: 10.1016/j.jfca.2020.103494. DOI

Jiang L., Yang H. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol. Environ. Saf. 2009;72:1687–1693. doi: 10.1016/j.ecoenv.2009.04.025. PubMed DOI

Parween T., Jan S., Mahmooduzzafar, Fatma T. Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int. J. Environ. Sci. Technol. 2012;9:605–612. doi: 10.1007/s13762-012-0095-x. DOI

Hassan N.M., Alla M.M.N. Oxidative stress in herbicide-treated broad bean and maize plants. Acta Physiol. Plant. 2005;27:429–438. doi: 10.1007/s11738-005-0047-x. DOI

Vauhkonen V., Lauhanen R., Ventela S., Suojaranta J., Pasila A., Kuokkanen T., Prokkola H., Syvajarvi S. The phytotoxic effects and biodegradability of stored rapeseed oil and rapeseed oil methyl ester. Agric. Food Sci. 2011;20:131–142. doi: 10.2137/145960611797215673. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace