Building an International One Health Strain Level Database to Characterise the Epidemiology of AMR Threats: ESBL-AmpC Producing E. coli as An Example-Challenges and Perspectives

. 2023 Mar 10 ; 12 (3) : . [epub] 20230310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36978419

Grantová podpora
773830 European Union's Horizon 2020

Antimicrobial resistance (AMR) is one of the top public health threats nowadays. Among the most important AMR pathogens, Escherichia coli resistant to extended spectrum cephalosporins (ESC-EC) is a perfect example of the One Health problem due to its global distribution in animal, human, and environmental sources and its resistant phenotype, derived from the carriage of plasmid-borne extended-spectrum and AmpC β-lactamases, which limits the choice of effective antimicrobial therapies. The epidemiology of ESC-EC infection is complex as a result of the multiple possible sources involved in its transmission, and its study would require databases ideally comprising information from animal (livestock, companion, wildlife), human, and environmental sources. Here, we present the steps taken to assemble a database with phenotypic and genetic information on 10,763 ESC-EC isolates retrieved from multiple sources provided by 13 partners located in eight European countries, in the frame of the DiSCoVeR Joint Research project funded by the One Health European Joint Programme (OH-EJP), along with its strengths and limitations. This database represents a first step to help in the assessment of different geographical and temporal trends and transmission dynamics in animals and humans. The work performed highlights aspects that should be considered in future international efforts, such as the one presented here.

Zobrazit více v PubMed

WHO Ten Threats to Global Health in 2019. 2019. [(accessed on 15 January 2023)]. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019.

EclinicalMedicine Antimicrobial resistance: A top ten global public health threat. EClinicalMedicine. 2021;41:101221. doi: 10.1016/j.eclinm.2021.101221. PubMed DOI PMC

Murray C.J., Ikuta K.S., Sharara F., Swetschinski L., Aguilar G.R., Gray A., Han C., Bisignano C., Rao P., Wool E., et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC

ECDC . Antibiotics: Be Responsible. ECDC; Solna, Sweden: 2016.

Mitchell J., Cooke P., Ahorlu C., Arjyal A., Baral S., Carter L., Dasgupta R., Fieroze F., Fonseca-Braga M., Huque R., et al. Community engagement: The key to tackling Antimicrobial Resistance (AMR) across a One Health context? Glob. Public Health. 2021;17:2647–2664. doi: 10.1080/17441692.2021.2003839. PubMed DOI

Hernando-Amado S., Coque T.M., Baquero F., Martinez J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019;4:1432–1442. doi: 10.1038/s41564-019-0503-9. PubMed DOI

McEwen S.A., Collignon P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018;6:521–547. doi: 10.1128/microbiolspec.ARBA-0009-2017. PubMed DOI PMC

O’Neill J. Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Wellcome Trust; London, UK: 2016. p. 80.

Dhingra S., Rahman N.A.A., Peile E., Rahman M., Sartelli M., Hassali M.A., Islam T., Islam S., Haque M. Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Front. Public Health. 2020;8:535668. doi: 10.3389/fpubh.2020.535668. PubMed DOI PMC

Laxminarayan R., Duse A., Wattal C., Zaidi A.K., Wertheim H.F., Sumpradit N., Vlieghe E., Hara G.L., Gould I.M., Goossens H., et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013;13:1057–1098. doi: 10.1016/S1473-3099(13)70318-9. PubMed DOI

Samreen, Ahmad I., Malak H.A., Abulreesh H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021;27:101–111. doi: 10.1016/j.jgar.2021.08.001. PubMed DOI

Scott H.M., Acuff G., Bergeron G., Bourassa M.W., Simjee S., Singer R.S. Antimicrobial resistance in a One Health context: Exploring complexities, seeking solutions, and communicating risks. Ann. N. Y. Acad. Sci. 2019;1441:3–7. doi: 10.1111/nyas.14057. PubMed DOI PMC

White A., Hughes J.M. Critical Importance of a One Health Approach to Antimicrobial Resistance. EcoHealth. 2019;16:404–409. doi: 10.1007/s10393-019-01415-5. PubMed DOI

McDermott P.F., Davis J.J. Predicting antimicrobial susceptibility from the bacterial genome: A new paradigm for one health resistance monitoring. J. Vet. Pharmacol. Ther. 2021;44:223–237. doi: 10.1111/jvp.12913. PubMed DOI

Giufrè M., Mazzolini E., Cerquetti M., Brusaferro S., Accogli M., Agnoletti F., Agodi A., Alborali G.L., Arghittu M., Auxilia F., et al. Extended-spectrum beta-lactamase-producing Escherichia coli from extraintestinal infections in humans and from food-producing animals in Italy: A ‘One Health’ study. Int. J. Antimicrob. Agents. 2021;58:106433. doi: 10.1016/j.ijantimicag.2021.106433. PubMed DOI

Wee B.A., Muloi D.M., van Bunnik B.A.D. Quantifying the transmission of antimicrobial resistance at the human and livestock interface with genomics. Clin. Microbiol. Infect. 2020;26:1612–1616. doi: 10.1016/j.cmi.2020.09.019. PubMed DOI PMC

Muloi D., Ward M.J., Pedersen A.B., Fevre E.M., Woolhouse M.E.J., van Bunnik B.A.D. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review. Foodborne Pathog. Dis. 2018;15:467–474. doi: 10.1089/fpd.2017.2411. PubMed DOI PMC

Loayza F., Graham J.P., Trueba G. Factors Obscuring the Role of E. coli from Domestic Animals in the Global Antimicrobial Resistance Crisis: An Evidence-Based Review. Int. J. Environ. Res. Public Health. 2020;17:3061. doi: 10.3390/ijerph17093061. PubMed DOI PMC

Liebana E., Carattoli A., Coque T.M., Hasman H., Magiorakos A.P., Mevius D., Peixe L., Poirel L., Schuepbach-Regula G., Torneke K., et al. Public health risks of enterobacterial isolates producing extended-spectrum beta-lactamases or AmpC beta-lactamases in food and food-producing animals: An EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin. Infect. Dis. 2013;56:1030–1037. doi: 10.1093/cid/cis1043. PubMed DOI

Castanheira M., Simner P.J., Bradford P.A. Extended-spectrum beta-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. 2021;3:dlab092. doi: 10.1093/jacamr/dlab092. PubMed DOI PMC

Bush K., Jacoby G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010;54:969–976. doi: 10.1128/AAC.01009-09. PubMed DOI PMC

Pitout J.D., Laupland K.B. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008;8:159–166. doi: 10.1016/S1473-3099(08)70041-0. PubMed DOI

McDonald K.L., Garland S., Carson C.A., Gibbens K., Parmley E.J., Finley R., MacKinnon M.C. Measures used to assess the burden of ESBL-producing Escherichia coli infections in humans: A scoping review. JAC Antimicrob. Resist. 2021;3:dlaa104. doi: 10.1093/jacamr/dlaa104. PubMed DOI PMC

Bezabih Y.M., Sabiiti W., Alamneh E., Bezabih A., Peterson G.M., Bezabhe W.M., Roujeinikova A. The global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli in the community. J. Antimicrob. Chemother. 2021;76:22–29. doi: 10.1093/jac/dkaa399. PubMed DOI

Martischang R., Riccio M.E., Abbas M., Stewardson A.J., Kluytmans J., Harbarth S. Household carriage and acquisition of extended-spectrum beta-lactamase-producing Enterobacteriaceae: A systematic review. Infect. Control Hosp. Epidemiol. 2020;41:286–294. doi: 10.1017/ice.2019.336. PubMed DOI

Palmeira J.D., Cunha M.V., Carvalho J., Ferreira H., Fonseca C., Torres R.T. Emergence and Spread of Cephalosporinases in Wildlife: A Review. Animals. 2021;11:1765. doi: 10.3390/ani11061765. PubMed DOI PMC

Hooban B., Joyce A., Fitzhenry K., Chique C., Morris D. The role of the natural aquatic environment in the dissemination of extended spectrum beta-lactamase and carbapenemase encoding genes: A scoping review. Water Res. 2020;180:115880. doi: 10.1016/j.watres.2020.115880. PubMed DOI

Dorado-Garcia A., Smid J.H., van Pelt W., Bonten M.J.M., Fluit A.C., van den Bunt G., Wagenaar J.A., Hordijk J., Dierikx C.M., Veldman K.T., et al. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: A pooled analysis. J. Antimicrob. Chemother. 2018;73:339–347. doi: 10.1093/jac/dkx397. PubMed DOI

Mughini-Gras L., Dorado-Garcia A., van Duijkeren E., van den Bunt G., Dierikx C.M., Bonten M.J.M., Bootsma M.C.J., Schmitt H., Hald T., Evers E.G., et al. Attributable sources of community-acquired carriage of Escherichia coli containing beta-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet Health. 2019;3:e357–e369. doi: 10.1016/S2542-5196(19)30130-5. PubMed DOI

Canton R., Novais A., Valverde A., Machado E., Peixe L., Baquero F., Coque T.M. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2008;14((Suppl. 1)):144–153. doi: 10.1111/j.1469-0691.2007.01850.x. PubMed DOI

Brolund A. Overview of ESBL-producing Enterobacteriaceae from a Nordic perspective. Infect. Ecol. Epidemiol. 2014;4:24555. doi: 10.3402/iee.v4.24555. PubMed DOI PMC

European Food Safety Authority. European Centre for Disease Prevention and Control The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021;19:e06490. PubMed PMC

ECDC Antimicrobial Resistance Surveillance in Europe 2011 . Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) ECDC; Stockholm, Sweden: 2012.

Bergspica I., Kaprou G., Alexa E.A., Prieto M., Alvarez-Ordonez A. Extended Spectrum beta-Lactamase (ESBL) Producing Escherichia coli in Pigs and Pork Meat in the European Union. Antibiotics. 2020;9:678. doi: 10.3390/antibiotics9100678. PubMed DOI PMC

Emborg H.D., Andersen J.S., Seyfarth A.M., Wegener H.C. Relations between the consumption of antimicrobial growth promoters and the occurrence of resistance among Enterococcus faecium isolated from broilers. Epidemiol. Infect. 2004;132:95–105. doi: 10.1017/S0950268803001195. PubMed DOI PMC

van den Bogaard A.E., Bruinsma N., Stobberingh E.E. The effect of banning avoparcin on VRE carriage in The Netherlands. J. Antimicrob. Chemother. 2000;46:146–148. doi: 10.1093/jac/46.1.146. PubMed DOI

Yuan W., Tian T., Yang Q., Riaz L. Transfer potentials of antibiotic resistance genes in Escherichia spp. strains from different sources. Chemosphere. 2020;246:125736. doi: 10.1016/j.chemosphere.2019.125736. PubMed DOI

Wieler L.H., Ewers C., Guenther S., Walther B., Lubke-Becker A. Methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: Nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int. J. Med. Microbiol. 2011;301:635–641. PubMed

Doi Y., Iovleva A., Bonomo R.A. The ecology of extended-spectrum beta-lactamases (ESBLs) in the developed world. J. Travel Med. 2017;24((Suppl. 1)):S44–S51. doi: 10.1093/jtm/taw102. PubMed DOI PMC

The European Commission . Official Journal of the European Union. Volume L 387. The European Commission; Brussels, Belgium: 2020. Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria and repealing Implementing Decision 2013/652/EU (notified under document C(2020) 7894) pp. 8–21.

European Food Safety Authority Technical specifications on a randomisation of sampling for the purpose of antimicrobial resistance monitoring from food-producing animals and food as from 2021. EFSA J. 2020;18:e06364. PubMed PMC

European Food Safety Authority. Aerts M., Battisti A., Hendriksen R., Kempf I., Teale C., Tenhagen B.A., Veldman K., Wasyl D., Guerra B., et al. Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA J. 2019;17:e05709. PubMed PMC

Dhillon R.H., Clark J. ESBLs: A Clear and Present Danger? Crit. Care Res. Pract. 2012;2012:625170. doi: 10.1155/2012/625170. PubMed DOI PMC

The European Commission . Official Journal of the European Union. Volume L 303. The European Commission; Brussels, Belgium: 2013. Commission implementing decision (EU) 2013/652 of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and comensal bacteria (notified under document C (2013) 7145) pp. 26–39.

European Food Safety Authority. Amore G., Beloeil P.A., Fierro R.G., Guerra B., Papanikolaou A., Rizzi V., Stoicescu A.V. Manual for reporting 2021 antimicrobial resistance data within the framework of Directive 2003/99/EC and Decision 2020/1729/EU. EFSA Support. Publ. 2021;18:6652E.

EUCAST EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance Version 2. 2017. [(accessed on 15 January 2023)]. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf.

European Reference Laboratory for Antimicrobial Resistance Whole Genome Sequencing. [(accessed on 15 January 2023)]. Available online: https://www.eurl-ar.eu/wgs.aspx.

EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel) Koutsoumanis K., Allende A., Alvarez-Ordonez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Hilbert F., et al. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J. 2019;17:e05898. PubMed PMC

Nunez-Garcia J., AbuOun M., Storey N., Brouwer M.S., Delgado-Blas J.F., Mo S.S., Ellaby N., Veldman K.T., Haenni M., Chatre P., et al. Harmonisation of in-silico next-generation sequencing based methods for diagnostics and surveillance. Sci. Rep. 2022;12:14372. doi: 10.1038/s41598-022-16760-9. PubMed DOI PMC

Isler M., Wissmann R., Morach M., Zurfluh K., Stephan R., Nuesch-Inderbinen M. Animal petting zoos as sources of Shiga toxin-producing Escherichia coli, Salmonella and extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. Zoonoses Public Health. 2021;68:79–87. doi: 10.1111/zph.12798. PubMed DOI

Hasman H., Hammerum A.M., Hansen F., Hendriksen R.S., Olesen B., Agersø Y., Zankari E., Leekitcharoenphon P., Stegger M., Kaas R.S., et al. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Eurosurveillance. 2015;20:30085. doi: 10.2807/1560-7917.ES.2015.20.49.30085. PubMed DOI

EFSA Panel on Biological Hazards (BIOHAZ) Koutsoumanis K., Allende A., Álvarez-Ordóñez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., et al. Role played by the environment in the emergence and spread of antimicrobialresistance (AMR) through the food chain. EFSA J. 2021;19:e06651. PubMed PMC

Matamoros S., Hendriksen R.S., Pataki B., Pakseresht N., Rossello M., Silvester N., Amid C., Aarestrup F., Koopmans M., Cochrane G., et al. Accelerating surveillance and research of antimicrobial resistance—An online repository for sharing of antimicrobial susceptibility data associated with whole-genome sequences. Microb. Genom. 2020;6:e000342. doi: 10.1099/mgen.0.000342. PubMed DOI PMC

Bortolaia V., Kaas R.S., Ruppe E., Roberts M.C., Schwarz S., Cattoir V., Philippon A., Allesoe R.L., Rebelo A.R., Florensa A.F., et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020;75:3491–3500. doi: 10.1093/jac/dkaa345. PubMed DOI PMC

Hendriksen R.S., Bortolaia V., Tate H., Tyson G.H., Aarestrup F., McDermott P.F. Using Genomics to Track Global Antimicrobial Resistance. Front. Public Health. 2019;7:242. doi: 10.3389/fpubh.2019.00242. PubMed DOI PMC

Deneke C., Brendebach H., Uelze L., Borowiak M., Malorny B., Tausch S. Species-Specific Quality Control, Assembly and Contamination Detection in Microbial Isolate Sequences with AQUAMIS. Genes. 2021;12:644. doi: 10.3390/genes12050644. PubMed DOI PMC

Larsson D.G.J., Andremont A., Bengtsson-Palme J., Brandt K.K., de Roda Husman A.M., Fagerstedt P., Fick J., Flach C.-F., Gaze W.H., Kuroda M., et al. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ. Int. 2018;117:132–138. doi: 10.1016/j.envint.2018.04.041. PubMed DOI

Weese J.S. Antimicrobial resistance in companion animals. Anim. Health Res. Rev. 2008;9:169–176. doi: 10.1017/S1466252308001485. PubMed DOI

Mader R., Damborg P., Amat J.-P., Bengtsson B., Bourély C., Broens E.M., Busani L., Crespo-Robledo P., Filippitzi M.-E., Fitzgerald W., et al. Building the European Antimicrobial Resistance Surveillance network in veterinary medicine (EARS-Vet) Eurosurveillance. 2021;26:2001359. doi: 10.2807/1560-7917.ES.2021.26.4.2001359. PubMed DOI PMC

Nakamura Y., Cochrane G., Karsch-Mizrachi I., International Nucleotide Sequence Database Collaboration The International Nucleotide Sequence Database Collaboration. Nucleic Acids Res. 2013;41:D21–D24. doi: 10.1093/nar/gks1084. PubMed DOI PMC

NIH-NCBI International Nucleotide Sequence Database Collaboration. [(accessed on 18 March 2022)]; Available online: https://www.ncbi.nlm.nih.gov/genbank/collab/

NIH-NCBI . NIH Genetic Sequence Database (GenBank) NIH-NCBI; Bethesda, MD, USA: 2022.

EBI-EMBL Sample Checklists. [(accessed on 18 March 2022)]. Available online: https://www.ebi.ac.uk/ena/browser/checklists.

EBI-EMBL ENA/INSDC and Community-Developed Data Reporting Standards. [(accessed on 18 March 2022)]. Available online: https://www.ebi.ac.uk/ena/browser/about/data-standards.

Barrett T., Clark K., Gevorgyan R., Gorelenkov V., Gribov E., Karsch-Mizrachi I., Kimelman M., Pruitt K.D., Resenchuk S., Tatusova T., et al. BioProject and BioSample databases at NCBI: Facilitating capture and organization of metadata. Nucleic Acids Res. 2012;40:D57–D63. doi: 10.1093/nar/gkr1163. PubMed DOI PMC

US-FDA . Global Resistome Data. US-FDA; White Oak, MD, USA: 2022.

ECDC . Surveillance Atlas of Infectious Diseases. ECDC; Solna, Sweden: 2022.

Amid C., Alako B.T., Balavenkataraman Kadhirvelu V., Burdett T., Burgin J., Fan J., Harrison P.W., Holt S., Hussein A., Ivanov E., et al. The European Nucleotide Archive in 2019. Nucleic Acids Res. 2020;48:D70–D76. doi: 10.1093/nar/gkz1063. PubMed DOI PMC

Thermo Fisher Scientific . Sensititre Antimicrobial Susceptibility Testing System. Thermo Fisher Scientific; Waltham, MA, USA: 2018.

EFSA. ECDC The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022;20:197. PubMed PMC

Pires S.M., Evers E.G., van Pelt W., Ayers T., Scallan E., Angulo F.J., Havelaar A., Hald T., the Med-Vet-Net Workpackage 28 Working Group Attributing the human disease burden of foodborne infections to specific sources. Foodborne Pathog. Dis. 2009;6:417–424. doi: 10.1089/fpd.2008.0208. PubMed DOI

Jabin H., Correia Carreira G., Valentin L., Kasbohrer A. The role of parameterization in comparing source attribution models based on microbial subtyping for salmonellosis. Zoonoses Public Health. 2019;66:943–960. doi: 10.1111/zph.12645. PubMed DOI

Perestrelo S., Correia Carreira G., Valentin L., Fischer J., Pfeifer Y., Werner G., Schmiedel J., Falgenhauer L., Imirzalioglu C., Chakraborty T., et al. Comparison of approaches for source attribution of ESBL-producing Escherichia coli in Germany. PLoS ONE. 2022;17:e0271317. doi: 10.1371/journal.pone.0271317. PubMed DOI PMC

Pires S.M., de Knegt L., Hald T. Estimation of the relative contribution of different food and animal sources to human Salmonella infections in the European Union. EFSA Support. Publ. 2011;8:184E. doi: 10.2903/sp.efsa.2011.EN-184. DOI

ECDC . EpiPulse—The European Surveillance Portal for Infectious Diseases. ECDC; Solna, Sweden: 2021. 22 June 2021 edition.

The European Commission . EU One Health Action Plan against AMR. The European Commission; Brussels, Belgium: 2017.

Hendriksen R.S., Munk P., Njage P., Van Bunnik B., McNally L., Lukjancenko O., Röder T., Nieuwenhuijse D., Pedersen S.K., Kjeldgaard J., et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019;10:1124. doi: 10.1038/s41467-019-08853-3. PubMed DOI PMC

Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.W., da Silva Santos L.B., Bourne P.E., et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Raphenya A.R., Robertson J., Jamin C., de Oliveira Martins L., Maguire F., McArthur A.G., Hays J.P. Datasets for benchmarking antimicrobial resistance genes in bacterial metagenomic and whole genome sequencing. Sci. Data. 2022;9:341. doi: 10.1038/s41597-022-01463-7. PubMed DOI PMC

Prendergast D.M., O’Doherty Á., Burgess C.M., Howe N., McMahon F., Murphy D., Leonard F., Morris D., Harrington C., Carty A., et al. Critically important antimicrobial resistant Enterobacteriaceae in Irish farm effluent and their removal in integrated constructed wetlands. Pt 3Sci. Total. Environ. 2021;806:151269. doi: 10.1016/j.scitotenv.2021.151269. PubMed DOI

Hooban B., Fitzhenry K., Cahill N., Joyce A., Connor L.O., Bray J.E., Brisse S., Passet V., Syed R.A., Cormican M., et al. A Point Prevalence Survey of Antibiotic Resistance in the Irish Environment, 2018–2019. Environ. Int. 2021;152:106466. doi: 10.1016/j.envint.2021.106466. PubMed DOI

Ekhlas D., Sanjuán J.M.O., Manzanilla E.G., Leonard F.C., Argüello H., Burgess C.M. Comparison of antimicrobial resistant Escherichia coli isolated from Irish commercial pig farms with and without zinc oxide and antimicrobial usage. Gut Pathog. 2023;15:8. doi: 10.1186/s13099-023-00534-3. PubMed DOI PMC

Wasyl D., Zając M., Lalak A., Skarżyńska M., Samcik I., Kwit R., Jabłoński A., Bocian Ł., Woźniakowski G., Hoszowski A., et al. Antimicrobial Resistance in Escherichia coli Isolated from Wild Animals in Poland. Microb. Drug Resist. 2018;24:807–815. doi: 10.1089/mdr.2017.0148. PubMed DOI

Skarżyńska M., Zaja̧c M., Bomba A., Bocian Ł., Kozdruń W., Polak M., Wia̧cek J., Wasyl D. Antimicrobial Resistance Glides in the Sky—Free-Living Birds as a Reservoir of Resistant Escherichia coli with Zoonotic Potential. Front. Microbiol. 2021;12:656223. doi: 10.3389/fmicb.2021.656223. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...