Fluorescence In Situ Hybridization in Primary Diagnosis of Biliary Strictures: A Single-Center Prospective Interventional Study

. 2023 Mar 02 ; 11 (3) : . [epub] 20230302

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36979734

Grantová podpora
DRO 87-96 (FNOL, 00098892) supported by the grant MH CZ -

Background and aims: Diagnosis of the biliary stricture remains a challenge. In view of the low sensitivity of brush cytology (BC), fluorescence in situ hybridization (FISH) has been reported as a useful adjunctive test in patients with biliary strictures. We aimed to determine performance characteristics of BC and FISH individually and in combination (BC + FISH) in the primary diagnosis of biliary strictures. Methods: This single-center prospective study was conducted between April 2019 and January 2021. Consecutive patients with unsampled biliary strictures undergoing first endoscopic retrograde cholangiopancreatography in our institution were included. Tissue specimens from two standardized transpapillary brushings from the strictures were examined by routine cytology and FISH. Histopathological confirmation after surgery or 12-month follow-up was regarded as the reference standard for final diagnosis. Results: Of 109 enrolled patients, six were excluded and one lost from the final analysis. In the remaining 102 patients (60.8% males, mean age 67.4, range 25-92 years), the proportions of benign and malignant strictures were 28 (27.5%) and 74 (72.5%), respectively. The proportions of proximal and distal strictures were 26 (25.5%) and 76 (74.5%), respectively. In comparison to BC alone, FISH increased the sensitivity from 36.1% to 50.7% (p = 0.076) while maintaining similar specificity (p = 0.311). Conclusions: Dual-modality tissue evaluation using BC + FISH showed an improving trend in sensitivity for the primary diagnosis of biliary strictures when compared with BC alone.

Zobrazit více v PubMed

Tummala P., Munigala S., Eloubeidi M.A., Agarwal B. Patients with obstructive jaundice and biliary stricture ± mass lesion on imaging: Prevalence of malignancy and potential role of EUS-FNA. J. Clin. Gastroenterol. 2013;47:532–537. doi: 10.1097/MCG.0b013e3182745d9f. PubMed DOI

Pouw R.E., Barret M., Biermann K., Bisschops R., Czakó L., Gecse K.B., de Hertogh G., Hucl T., Iacucci M., Jansen M., et al. Endoscopic tissue sampling—Part 1: Upper gastrointestinal and hepatopancreatobiliary tracts. European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy. 2021;53:1174–1188. doi: 10.1055/a-1611-5091. PubMed DOI

Victor D.W., Sherman S., Karakan T., Khashab M.A. Current endoscopic approach to indeterminate biliary strictures. World J. Gastroenterol. 2012;18:6197–6205. doi: 10.3748/wjg.v18.i43.6197. PubMed DOI PMC

Shaib Y.H., Davila J.A., McGlynn K., El-Serag H.B. Rising incidence of intrahepatic cholangiocarcinoma in the United States: A true increase? J. Hepatol. 2004;40:472–477. doi: 10.1016/j.jhep.2003.11.030. PubMed DOI

Urban O., Vanek P., Zoundjiekpon V., Falt P. Endoscopic Perspective in Cholangiocarcinoma Diagnostic Process. Gastroenterol. Res. Pract. 2019;2019:9704870. doi: 10.1155/2019/9704870. PubMed DOI PMC

Van Beers B.E. Diagnosis of cholangiocarcinoma. HPB. 2008;10:87–93. doi: 10.1080/13651820801992716. PubMed DOI PMC

Singh A., Gelrud A., Agarwal B. Biliary strictures: Diagnostic considerations and approach. Gastroenterol. Rep. 2015;3:22–31. doi: 10.1093/gastro/gou072. PubMed DOI PMC

Sun B., Moon J.H., Cai Q., Rerknimitr R., Ma S., Lakhtakia S., Ryozawa S., Kutsumi H., Yasuda I., Shiomi H., et al. Review article: Asia-Pacific consensus recommendations on endoscopic tissue acquisition for biliary strictures. Aliment. Pharmacol. Ther. 2018;48:138–151. doi: 10.1111/apt.14811. PubMed DOI

Dumonceau J.M., Delhaye M., Charette N., Farina A. Challenging biliary strictures: Pathophysiological features, differential diagnosis, diagnostic algorithms, and new clinically relevant biomarkers—Part 1. Ther. Adv. Gastroenterol. 2020;13:1756284820927292. doi: 10.1177/1756284820927292. PubMed DOI PMC

Rösch T., Hofrichter K., Frimberger E., Meining A., Born P., Weigert N., Allescher H.-D., Classen M., Barbur M., Schenck U., et al. ERCP or EUS for tissue diagnosis of biliary strictures? A prospective comparative study. Gastrointest. Endosc. 2004;60:390–396. doi: 10.1016/S0016-5107(04)01732-8. PubMed DOI

Luna L.E.M., Kipp B., Halling K.C., Sebo T.J., Kremers W.K., Roberts L., Fritcher E.G.B., Levy M.J., Gores G.J. Advanced cytologic techniques for the detection of malignant pancreatobiliary strictures. Gastroenterology. 2006;131:1064–1072. doi: 10.1053/j.gastro.2006.08.021. PubMed DOI PMC

Meining A., Chen Y.K., Pleskow D., Stevens P., Shah R.J., Chuttani R., Michalek J., Slivka A. Direct visualization of indeterminate pancreaticobiliary strictures with probe-based confocal laser endomicroscopy: A multicenter experience. Gastrointest. Endosc. 2011;74:961–968. doi: 10.1016/j.gie.2011.05.009. PubMed DOI

Sun X., Zhou Z., Tian J., Wang Z., Huang Q., Fan K., Mao Y., Sun G., Yang Y. Is single-operator peroral cholangioscopy a useful tool for the diagnosis of indeterminate biliary lesion? A systematic review and meta-analysis. Gastrointest. Endosc. 2015;82:79–87. doi: 10.1016/j.gie.2014.12.021. PubMed DOI

Sethi A., Tyberg A., Slivka A., Adler D.G., Desai A.P., Sejpal D.V., Pleskow D.K., Bertani H., Gan S.-I., Shah R., et al. Digital Single-operator Cholangioscopy (DSOC) Improves Interobserver Agreement (IOA) and Accuracy for Evaluation of Indeterminate Biliary Strictures: The Monaco Classification. J. Clin. Gastroenterol. 2022;56:e94–e97. doi: 10.1097/MCG.0000000000001321. PubMed DOI

Navaneethan U., Hasan M.K., Kommaraju K., Zhu X., Hebert-Magee S., Hawes R.H., Vargo J.J., Varadarajulu S., Parsi M.A. Digital, single-operator cholangiopancreatoscopy in the diagnosis and management of pancreatobiliary disorders: A multicenter clinical experience (with video) Gastrointest. Endosc. 2016;84:649–655. doi: 10.1016/j.gie.2016.03.789. PubMed DOI

Shah R.J., Raijman I., Brauer B., Gumustop B., Pleskow D.K. Performance of a fully disposable, digital, single-operator cholangiopancreatoscope. Endoscopy. 2017;49:651–658. doi: 10.1055/s-0043-106295. PubMed DOI

Urban O., Evinová E., Fojtík P., Loveček M., Kliment M., Zoundjiekpon V., Falt P. Digital cholangioscopy: The diagnostic yield and impact on management of patients with biliary stricture. Scand. J. Gastroenterol. 2018;53:1364–1367. doi: 10.1080/00365521.2018.1512649. PubMed DOI

Caillol F., Bories E., Poizat F., Pesenti C., Esterni B., Monges G., Giovannini M. Endomicroscopy in bile duct: Inflammation interferes with pCLE applied in the bile duct: A prospective study of 54 patients. United Eur. Gastroenterol. J. 2013;1:120–127. doi: 10.1177/2050640613483462. PubMed DOI PMC

Levy M.J., Baron T.H., Clayton A.C., Enders F.B., Gostout C.J., Halling K.C., Kipp B.R., Petersen B.T., Roberts L.R., Rumalla A., et al. Prospective evaluation of advanced molecular markers and imaging techniques in patients with indeterminate bile duct strictures. Am. J. Gastroenterol. 2008;103:1263–1273. doi: 10.1111/j.1572-0241.2007.01776.x. PubMed DOI PMC

Gonda T.A., Glick M.P., Sethi A., Poneros J.M., Palmas W., Iqbal S., Gonzalez S., Nandula S.V., Emond J.C., Brown R.S., et al. Polysomy and p16 deletion by fluorescence in situ hybridization in the diagnosis of indeterminate biliary strictures. Gastrointest. Endosc. 2012;75:74–79. doi: 10.1016/j.gie.2011.08.022. PubMed DOI

Bergquist A., Tribukait B., Glaumann H., Broomé U. Can DNA cytometry be used for evaluation of malignancy and premalignancy in bile duct strictures in primary sclerosing cholangitis? J. Hepatol. 2000;33:873–877. doi: 10.1016/S0168-8278(00)80117-8. PubMed DOI

Kipp B.R., Stadheim L.M., Halling S.A., Pochron N.L., Harmsen S., Nagorney D.M., Sebo T.J., Therneau T.M., Gores G.J., De Groen P.C., et al. A comparison of routine cytology and fluorescence in situ hybridization for the detection of malignant bile duct strictures. Am. J. Gastroenterol. 2004;99:1675–1681. doi: 10.1111/j.1572-0241.2004.30281.x. PubMed DOI

Vlajnic T., Somaini G., Savic S., Barascud A., Grilli B., Herzog M., Obermann E.C., Holmes B.J., Ali S.Z., Degen L., et al. Targeted multiprobe fluorescence in situ hybridization analysis for elucidation of inconclusive pancreatobiliary cytology. Cancer Cytopathol. 2014;122:627–634. doi: 10.1002/cncy.21429. PubMed DOI

Fritcher E.G.B., Voss J.S., Brankley S.M., Campion M.B., Jenkins S.M., Keeney M.E., Henry M.R., Kerr S.M., Chaiteerakij R., Pestova K., et al. An Optimized Set of Fluorescence In Situ Hybridization Probes for Detection of Pancreatobiliary Tract Cancer in Cytology Brush Samples. Gastroenterology. 2015;149:1813–1824.e1. doi: 10.1053/j.gastro.2015.08.046. PubMed DOI

Chaiteerakij R., Fritcher E.G.B., Angsuwatcharakon P., Ridtitid W., Chaithongrat S., Leerapun A., Baron T.H., Kipp B.R., Henry M.R., Halling K.C., et al. Fluorescence in situ hybridization compared with conventional cytology for the diagnosis of malignant biliary tract strictures in Asian patients. Gastrointest. Endosc. 2016;83:1228–1235. doi: 10.1016/j.gie.2015.11.037. PubMed DOI

Gonda T.A., Viterbo D., Gausman V., Kipp C., Sethi A., Poneros J.M., Gress F., Park T., Khan A., Jackson S.A., et al. Mutation Profile and Fluorescence in Situ Hybridization Analyses Increase Detection of Malignancies in Biliary Strictures. Clin. Gastroenterol. Hepatol. 2017;15:913–919.e1. doi: 10.1016/j.cgh.2016.12.013. PubMed DOI

Pitman M., Centeno B., Genevay M., Stelow E., Mino-Kenudson M., Schmidt C., Layfield L., Ali S., Castillo C.-D., Brugge W. Standardized terminology and nomenclature for pancreatobiliary cytology: The Papanicolaou Society of Cytopathology Guidelines. Cytojournal. 2014;11((Suppl. S1)):3. doi: 10.4103/1742-6413.133343. PubMed DOI PMC

Liew Z.H., Loh T.J., Lim T.K.H., Lim T.H., Khor C.J.L., Mesenas S.J., Kong C.S.C., Ong W.C., Tan D.M.Y. Role of fluorescence in situ hybridization in diagnosing cholangiocarcinoma in indeterminate biliary strictures. J. Gastroenterol. Hepatol. 2018;33:315–319. doi: 10.1111/jgh.13824. PubMed DOI

Han S., Tatman P., Mehrotra S., Wani S., Attwell A.R., Edmundowicz S.A., Brauer B.C., Wagh M.S., Hammad H.T., Shah R.J. Combination of ERCP-Based Modalities Increases Diagnostic Yield for Biliary Strictures. Dig. Dis. Sci. 2021;66:1276–1284. doi: 10.1007/s10620-020-06335-x. PubMed DOI

Layfield L.J., Schmidt R.L., Hirschowitz S.L., Olson M.T., Ali S.Z., Dodd L.L. Significance of the diagnostic categories “atypical” and “suspicious for malignancy” in the cytologic diagnosis of solid pancreatic masses. Diagn. Cytopathol. 2014;42:292–296. doi: 10.1002/dc.23078. PubMed DOI

Pitman M.B., Layfield L.J. Guidelines for pancreaticobiliary cytology from the Papanicolaou Society of Cytopathology: A review. Cancer Cytopathol. 2014;122:399–411. doi: 10.1002/cncy.21427. PubMed DOI

Baroud S., Sahakian A.J., Sawas T., Storm A.C., Martin J.A., Abu Dayyeh B.K., Topazian M.D., Levy M.J., Roberts L.R., Gores G.J., et al. Impact of trimodality sampling on detection of malignant biliary strictures compared with patients with primary sclerosing cholangitis. Gastrointest. Endosc. 2022;95:884–892. doi: 10.1016/j.gie.2021.11.029. PubMed DOI

Smoczynski M., Jabłońska A., Matyskiel A., Lakomy J., Dubowik M., Marek I., Biernat W., Limon J. Routine brush cytology and fluorescence in situ hybridization for assessment of pancreatobiliary strictures. Gastrointest. Endosc. 2012;75:65–73. doi: 10.1016/j.gie.2011.08.040. PubMed DOI

Molitor M., Junker K., Eltze E., Toma M., Denzinger S., Siegert S., Knuechel R., Gaisa N.T. Comparison of structural genetics of non-schistosoma-associated squamous cell carcinoma of the urinary bladder. Int. J. Clin. Exp. Pathol. 2015;8:8143–8158. PubMed PMC

Biankin A.V., Waddell N., Kassahn K.S., Gingras M.-C., Muthuswamy L.B., Johns A.L., Miller D.K., Wilson P.J., Patch A.-M., Wu J., et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491:399–405. doi: 10.1038/nature11547. PubMed DOI PMC

Harbhajanka A., Michael C.W., Janaki N., Gokozan H.N., Wasman J., Bomeisl P., Yoest J., Sadri N. Tiny but mighty: Use of next generation sequencing on discarded cytocentrifuged bile duct brushing specimens to increase sensitivity of cytological diagnosis. Mod. Pathol. 2020;33:2019–2025. doi: 10.1038/s41379-020-0577-1. PubMed DOI

Bailey P., Chang D.K., Nones K., Johns A.L., Patch A.-M., Gingras M.-C., Miller D.K., Christ A.N., Bruxner T.J.C., Quinn M.C., et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52. doi: 10.1038/nature16965. PubMed DOI

Navaneethan U., Njei B., Lourdusamy V., Konjeti R., Vargo J.J., Parsi M.A. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: A systematic review and meta-analysis. Gastrointest. Endosc. 2015;81:168–176. doi: 10.1016/j.gie.2014.09.017. PubMed DOI PMC

Tamada K., Tomiyama T., Wada S., Ohashi A., Satoh Y., Ido K., Sugano K. Endoscopic transpapillary bile duct biopsy with the combination of intraductal ultrasonography in the diagnosis of biliary strictures. Gut. 2002;50:326–331. doi: 10.1136/gut.50.3.326. PubMed DOI PMC

Arvanitakis M., Hookey L., Tessier G., Demetter P., Nagy N., Stellke A., De Maertelaer V., Devière J., Le Moine O. Intraductal optical coherence tomography during endoscopic retrograde cholangiopancreatography for investigation of biliary strictures. Endoscopy. 2009;41:696–701. doi: 10.1055/s-0029-1214950. PubMed DOI

Sugiyama M., Atomi Y., Wada N., Kuroda A., Muto T. Endoscopic transpapillary bile duct biopsy without sphincterotomy for diagnosing biliary strictures: A prospective comparative study with bile and brush cytology. Am. J. Gastroenterol. 1996;91:465–467. PubMed

Naitoh I., Nakazawa T., Kato A., Hayashi K., Miyabe K., Shimizu S., Kondo H., Nishi Y., Yoshida M., Umemura S., et al. Predictive factors for positive diagnosis of malignant biliary strictures by transpapillary brush cytology and forceps biopsy. J. Dig. Dis. 2016;17:44–51. doi: 10.1111/1751-2980.12311. PubMed DOI

Pugliese V., Conio M., Nicolò G., Saccomanno S., Gatteschi B. Endoscopic retrograde forceps biopsy and brush cytology of biliary strictures: A prospective study. Gastrointest. Endosc. 1995;42:520–526. doi: 10.1016/S0016-5107(95)70004-8. PubMed DOI

Howell D.A., Parsons W.G., Jones M.A., Bosco J.J., Hanson B.L. Complete tissue sampling of biliary strictures at ERCP using a new device. Gastrointest. Endosc. 1996;43:498–502. doi: 10.1016/S0016-5107(96)70294-8. PubMed DOI

Ponchon T., Gagnon P., Berger F., Labadie M., Liaras A., Chavaillon A., Bory R. Value of endobiliary brush cytology and biopsies for the diagnosis of malignant bile duct stenosis: Results of a prospective study. Gastrointest. Endosc. 1995;42:565–572. doi: 10.1016/S0016-5107(95)70012-9. PubMed DOI

Schoefl R., Haefner M., Wrba F., Pfeffel F., Stain C., Poetzi R., Gangl A. Forceps biopsy and brush cytology during endoscopic retrograde cholangiopancreatography for the diagnosis of biliary stenoses. Scand. J. Gastroenterol. 1997;32:363–368. doi: 10.3109/00365529709007685. PubMed DOI

Lee Y.N., Moon J.H., Choi H.J., Kim H.K., Choi S.-Y., Choi M.H., Lee T.H., Cha S.-W., Park S.-H. Diagnostic approach using ERCP-guided transpapillary forceps biopsy or EUS-guided fine-needle aspiration biopsy according to the nature of stricture segment for patients with suspected malignant biliary stricture. Cancer Med. 2017;6:582–590. doi: 10.1002/cam4.1034. PubMed DOI PMC

Kamp E.J.C.A., Dinjens W.N.M., Doukas M., Bruno M.J., de Jonge P.J.F., Peppelenbosch M.P., de Vries A.C. Optimal tissue sampling during ERCP and emerging molecular techniques for the differentiation of benign and malignant biliary strictures. Ther. Adv. Gastroenterol. 2021;14:17562848211002023. doi: 10.1177/17562848211002023. PubMed DOI PMC

Yang M.J., Hwang J.C., Lee D., Kim Y.B., Yoo B.M., Kim J.H. Factors affecting the diagnostic yield of endoscopic transpapillary forceps biopsy in patients with malignant biliary strictures. J. Gastroenterol. Hepatol. 2021;36:2324–2328. doi: 10.1111/jgh.15497. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...