Fomes fomentarius and F. inzengae-A Comparison of Their Decay Patterns on Beech Wood
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016670
Ministry of Education Youth and Sports
PubMed
36985251
PubMed Central
PMC10056366
DOI
10.3390/microorganisms11030679
PII: microorganisms11030679
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradation, nondestructive testing, tree biomechanics, tree stability, white rot, wood-decaying fungi,
- Publikační typ
- časopisecké články MeSH
Wood-decaying fungi are responsible for the degradation of wood and the alteration in its material properties. Fomes fomentarius (L.) Fr. is one of the most common white-rot fungi colonising coarse wood and standing trees. In recent years, according to their genetic, physiological, and morphological differences, Fomes inzengae (Ces. and De Not.) Lécuru was identified as an independent species. This article aimed to compare the impact of the degradation caused by both species on the anatomical, physical, and mechanical properties of beech wood. When comparing the degradation caused by different strains of both species, no statistically significant difference was found in mass loss (ML) or moisture content (MC). A relevant correlation between ML and MC was confirmed for both species. Variabilities in the density distribution of the degraded and intact bending samples were found to be statistically different. No relevant difference was observed in the modulus of rupture (MOR) between the two species after each exposure period. A strong linear relationship between the MOR and the dynamic modulus of elasticity was revealed for both species. Both species showed decay patterns typical for simultaneous white rot and soft rot. According to the presented results, the impact of both species on the investigated material properties of wood cannot be considered significantly different.
Zobrazit více v PubMed
Fukasawa Y. Ecological Impacts of Fungal Wood Decay Types: A Review of Current Knowledge and Future Research Directions. Ecol. Res. 2021;36:910–931. doi: 10.1111/1440-1703.12260. DOI
Wainhouse M., Boddy L. Making Hollow Trees: Inoculating Living Trees with Wood-Decay Fungi for the Conservation of Threatened Taxa—A Guide for Conservationists. Glob. Ecol. Conserv. 2022;33:e01967. doi: 10.1016/j.gecco.2021.e01967. DOI
Czaja M., Kołton A., Muras P. The Complex Issue of Urban Trees-Stress Factor Accumulation and Ecological Service Possibilities. Forests. 2020;11:932. doi: 10.3390/f11090932. DOI
le Roux D.S., Ikin K., Lindenmayer D.B., Manning A.D., Gibbons P. The Future of Large Old Trees in Urban Landscapes. PLoS ONE. 2014;9:99403. doi: 10.1371/journal.pone.0099403. PubMed DOI PMC
Ordóñez-Barona C., Sabetski V., Millward A.A., Urban J., Steenberg J., Grant A. The Influence of Abiotic Factors on Street Tree Condition and Mortality in a Commercial-Retail Streetscape. Arboric. Urban For. 2018;44:133–144.
Schwarze F.W.M.R., Engels J., Mattheck C. Fungal Strategies of Wood Decay in Trees. Springer; Berlin/Heidelberg, Germany: 2004.
Soge A.O., Popoola O.I., Adetoyinbo A.A. Detection of Wood Decay and Cavities in Living Trees: A Review. Can. J. For. Res. 2021;51:937–947. doi: 10.1139/cjfr-2020-0340. DOI
Cristini V., Tippner J., Vojáčková B., Paulić V. Comparison of Variability in Results of Acoustic Tomographs in Pedunculate Oak (Quercus robur L.) Bioresources. 2021;16:3046–3058. doi: 10.15376/biores.16.2.3046-3058. DOI
Schmidt O. Wood and Tree Fungi—Biology, Damage, Protection and Use. Springer; Berlin/Heidelberg, Germany: 2006.
McCormick M.A., Cubeta M.A., Grand L.F. Geography and Hosts of the Wood Decay Fungi Fomes fasciatus and Fomes fomentarius in the United States. N. Am. Fungi. 2013;8:1–53. doi: 10.2509/naf2013.008.002. PubMed DOI
Gáper J., Pristaš P., Gáperová S., Maliničová L. Molecular Identification of Fomes fomentarius in Hosts from Urban and Suburban Areas in Slovakia. Folia Oecologica. 2013;40:22–27.
Větrovský T., Voříšková J., Šnajdr J., Gabriel J., Baldrian P. Ecology of Coarse Wood Decomposition by the Saprotrophic Fungus Fomes fomentarius. Biodegradation. 2011;22:709–718. doi: 10.1007/s10532-010-9390-8. PubMed DOI
Bari E., Pizzi A., Schmidt O., Amirou S., Tajick-Ghanbary M.A., Humar M. Differentiation of Fungal Destructive Behaviour of Wood by the White-Rot Fungus Fomes fomentarius by Maldi-Tof Mass Spectrometry. J. Renew. Mater. 2021;9:381–397. doi: 10.32604/jrm.2021.015288. DOI
Suvorov P.A. Biological Characteristics of Fomes Fomentarius Found on Spruce and Birch. Can. J. Bot. 1967;45:1853–1857. doi: 10.1139/b67-199. DOI
Boddy L. Fungi and Trees—Their Complex Relationships. Arboricultural Association; Stonehouse, UK: 2021.
Baum S., Sieber T.N., Schwarze F.W.M.R., Fink S. Latent Infections of Fomes fomentarius in the Xylem of European Beech (Fagus Sylvatica) Mycol. Prog. 2003;2:141–148. doi: 10.1007/s11557-006-0052-5. DOI
Niemelä T., Renvall P., Penttilä R. Interactions of Fungi at Late Stages of Wood Decomposition. Ann. Bot. Fenn. 1995;32:141–152.
Peintner U., Kuhnert-Finkernagel R., Wille V., Biasioli F., Shiryaev A., Perini C. How to Resolve Cryptic Species of Polypores: An Example in Fomes. IMA Fungus. 2019;10:17. doi: 10.1186/s43008-019-0016-4. PubMed DOI PMC
Badalyan S.M., Zhuykova E., Mukhin V. The Phylogenetic Analysis of Armenian Collections of Medicinal Tinder Polypore Fomes fomentarius (Agaricomycetes, Polyporaceae) Ital. J. Mycol. 2022;51:23–33. doi: 10.6092/issn.2531-7342/14474. DOI
Fink S. Hazard Tree Identification by Visual Tree Assessment (VTA): Scientifically Solid and Practically Approved. Arboric. J. 2009;32:139–155. doi: 10.1080/03071375.2009.9747570. DOI
Gunduz G., Aydemir D. The Influence of Mass Loss on the Mechanical Properties of Heat-Treated Black Pine Wood. Wood Res. 2009;54:33–42.
Xu H., Di Y., Cappellazzi J., Morrell J.J. Effect of Brown Rot Degradation on Mass Loss and Compressive Strength of Chinese Poplar (Populus simonii) Maderas Cienc. Tecnol. 2019;21:341–346. doi: 10.4067/S0718-221X2019005000306. DOI
Bari E., Daniel G., Yilgor N., Kim J.S., Tajick-Ghanbary M.A., Singh A.P., Ribera J. Comparison of the Decay Behavior of Two White-Rot Fungi in Relation to Wood Type and Exposure Conditions. Microorganisms. 2020;8:1931. doi: 10.3390/microorganisms8121931. PubMed DOI PMC
Chauhan S., Sethy A. Differences in Dynamic Modulus of Elasticity Determined by Three Vibration Methods and Their Relationship with Static Modulus of Elasticity. Maderas Cienc. Tecnol. 2016;18:373–382. doi: 10.4067/S0718-221X2016005000034. DOI
Machek L., Militz H., Sierra-Alvarez R. The Use of an Acoustic Technique to Assess Wood Decay in Laboratory Soil-Bed Tests. Wood Sci. Technol. 2001;34:467–472. doi: 10.1007/s002260000070. DOI
Schwarze F.W.M.R., Lonsdale D., Fink S. Soft Rot and Multiple T-Branching by the Basidiomycete Inonotus hispidus in Ash and London Plane. Mycol. Res. 1995;99:813–820. doi: 10.1016/S0953-7562(09)80732-6. DOI
Deflorio G., Fink S., Schwarze F.W.M.R. Detection of Incipient Decay in Tree Stems with Sonic Tomography after Wounding and Fungal Inoculation. Wood Sci. Technol. 2008;42:117–132. doi: 10.1007/s00226-007-0159-0. DOI
Cristini V., Tippner J., Nop P., Zlámal J., Hassan Vand M., Šeda V. Degradation of Beech Wood by Kretzschmaria deusta: Its Heterogeneity and Influence on Dynamic and Static Bending Properties. Holzforschung. 2022;76:813–824. doi: 10.1515/hf-2022-0039. DOI
Rypáček V. Biologie Drevokaznych Hub. 1st ed. ČSAV; Praha, Czech Republic: 1957.
Fukasawa Y., Osono T., Takeda H. Wood Decomposing Abilities of Diverse Lignicolous Fungi on Nondecayed and Decayed Beech Wood. Mycologia. 2011;103:474–482. doi: 10.3852/10-246. PubMed DOI
Bravery A.F. A Miniaturised Wood-Block Test for the Rapid Evaluation of Wood Preservative Fungicides. International Research Group on Wood Protection; Stockholm, Sweden: 1978.
Tomšovský M. Delimitation of an Almost Forgotten Species Spongipellis litschaueri (Polyporales, Basidiomycota) and Its Taxonomic Position within the Genus. Mycol. Prog. 2012;11:415–424. doi: 10.1007/s11557-011-0756-z. DOI
Durability of Wood and Wood-Based Products—Determination of the Natural Durability of Solid Wood against Wood-Destroying Fungi, Test Methods—Part 1: Basidiomycetes. Slovenski inštitut za standardizacijo; Ljubljana, Slovenia: 2006.
van Duong D., Matsumura J. Transverse Shrinkage Variations within Tree Stems of Melia azedarach Planted in Northern Vietnam. J. Wood Sci. 2018;64:720–729. doi: 10.1007/s10086-018-1756-2. DOI
Zelinka S.L., Kirker G.T., Bishell A.B., Glass S.V. Effects of Wood Moisture Content and the Level of Acetylation on Brown Rot Decay. Forests. 2020;11:299. doi: 10.3390/f11030299. DOI
Schwarze F.W.M.R. Wood Decay under the Microscope. Fungal. Biol. Rev. 2007;21:133–170. doi: 10.1016/j.fbr.2007.09.001. DOI
Schwarze F.W.M.R., Fink S. Host and Cell Type Affect the Mode of Degradation by Meripilus giganteus. New Phytol. 1998;139:721–731. doi: 10.1046/j.1469-8137.1998.00238.x. DOI
Skyba O., Niemz P., Schwarze F.W.M.R. Resistance of Thermo-Hygro-Mechanically (THM) Densified Wood to Degradation by White Rot Fungi. Holzforschung. 2009;63:639–646. doi: 10.1515/HF.2009.087. DOI
Chen M., Wang C., Fei B., Ma X., Zhang B., Zhang S., Huang A. Biological Degradation of Chinese Fir with Trametes versicolor (l.) Lloyd. Materials. 2017;10:834. doi: 10.3390/ma10070834. PubMed DOI PMC
Leviu L., Castro M.A. Anatomical Study of the Decay Caused by the White-Rot Fungus Tramentes trogii (Aphyllophorales) in Wood of Salix and Populus. IAWA J. 1998;19:169–180. doi: 10.1163/22941932-90001519. DOI
Fuhr M.J., Schubert M., Stührk C., Schwarze F.W., Herrmann H.J. Penetration Capacity of the Wood-Decay Fungus Physisporinus vitreus. Complex Adapt. Syst. Model. 2013;1:6. doi: 10.1186/2194-3206-1-6. DOI
Freyburger C., Longuetaud F., Mothe F., Constant T., Leban J.M. Measuring Wood Density by Means of X-Ray Computer Tomography. Ann. For. Sci. 2009;66:804. doi: 10.1051/forest/2009071. DOI
Brischke C., Grünwald L.K., Bollmus S. Effect of Size and Shape of Specimens on the Mass Loss Caused by Coniophora puteana in Wood Durability Tests. Eur. J. Wood Wood Prod. 2020;78:811–819. doi: 10.1007/s00107-020-01559-0. DOI
Kazemi S.M., Dickinson D.J., Murphy R.J. Effects of Initial Moisture Content on Wood Decay at Different Levels of Gaseous Oxygen Concentrations. J. Agric. Sci. Technol. 2001;3:293–304.