A Comparison of the Antibacterial Efficacy of Carbohydrate Lipid-like (Thio)Ether, Sulfone, and Ester Derivatives against Paenibacillus larvae

. 2023 Mar 09 ; 28 (6) : . [epub] 20230309

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36985490

Grantová podpora
VEGA-2/0164/19 The Scientific Grant Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences
VEGA-2/0010/23 The Scientific Grant Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences
APVV-19-0376 The Slovak Research and Development Agency
ITMS2014+: 313011V358 The European Regional Development Fund

Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious bacterial disease affecting developing honeybee larvae and pupas. In this study, a library of 24 (thio)glycosides, glycosyl sulfones, 6-O-esters, and ethers derived from d-mannose, d-glucose, and d-galactose having C10 or C12 alkyl chain were evaluated for their antibacterial efficacy against two P. larvae strains. The efficacy of the tested compounds determined as minimal inhibitory concentrations (MICs) varied greatly. Generally, dodecyl derivatives were found to be more potent than their decylated analogs. Thioglycosides were more efficient than glycosides and sulfones. The activity of the 6-O-ether derivatives was higher than that of their ester counterparts. Seven derivatives with dodecyl chain linked (thio)glycosidically or etherically at C-6 showed high efficacy against both P. larvae strains (MICs ranged from 12.5 μM to 50 μM). Their efficacies were similar or much higher than those of selected reference compounds known to be active against P. larvae-lauric acid, monolaurin, and honeybee larval food components, 10-hydroxy-2-decenoic acid, and sebacic acid (MICs ranged from 25 μM to 6400 μM). The high efficacies of these seven derivatives suggest that they could increase the anti-P. larvae activity of larval food and improve the resistance of larvae to AFB disease through their application to honeybee colonies.

Zobrazit více v PubMed

Bailey L., Ball B.V. Honey Bee Pathology. Academic Press; London, UK: 1991. pp. 53–62.

Genersch E., Forsgren E., Pentikäinen J., Ashiralieva A., Rauch S., Kilwinski J., Fries I. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 2006;56:501–511. doi: 10.1099/ijs.0.63928-0. PubMed DOI

Hansen H., Brødsgaard C.J. American foulbrood: A review of its biology, diagnosis and control. Bee World. 1999;80:5–23. doi: 10.1080/0005772X.1999.11099415. DOI

Yue D., Nordhoff M., Wieler L.H., Genersch E. Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera) Environ. Microbiol. 2008;10:1612–1620. doi: 10.1111/j.1462-2920.2008.01579.x. PubMed DOI

Ebeling J., Knispel H., Hertlein G., Fünfhaus A., Genersch E. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl. Microbiol. Biotechnol. 2016;100:7387–7395. doi: 10.1007/s00253-016-7716-0. PubMed DOI

Genersch E. American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invert. Pathol. 2010;87:87–97. doi: 10.1016/j.jip.2009.06.015. PubMed DOI

Fries I., Camazine S. Implications of horizontal and vertical pathogen transmission for honeybee epidemiology. Apidologie. 2001;32:199–214. doi: 10.1051/apido:2001122. DOI

Lindström A., Korpela S., Fries I. The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood disease brood or spore-contaminated honey in honey bee (Apis mellifera) colonies. J. Invertebr. Pathol. 2008;99:82–86. doi: 10.1016/j.jip.2008.06.010. PubMed DOI

Lindström A., Korpela S., Fries I. Horizontal transmission of Paenibacillus larvae spores between honey bee (Apis mellifera) colonies through robbing. Apidologie. 2008;39:515–522. doi: 10.1051/apido:2008032. DOI

Evans J.D. Transcriptional immune responses by honey bee larvae during invasion by the bacterial pathogen, Paenibacillus larvae. J. Invertebr. Pathol. 2004;85:105–111. doi: 10.1016/j.jip.2004.02.004. PubMed DOI

Chan Q.W.T., Melathopoulos A.P., Pernal S.F., Foster L.J. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genom. 2009;10:387. doi: 10.1186/1471-2164-10-387. PubMed DOI PMC

Krongdang S., Evans J., Chen Y., Mookhploy W., Chantawannakul P. Comparative susceptibility and immune responses of Asian and European honey bees to the American foulbrood pathogen; Paenibacillus larvae. Insect Sci. 2018;26:831–842. doi: 10.1111/1744-7917.12593. PubMed DOI

Spivak M., Gilliam M. Hygienic behaviour of honey bees and its application for control of brood diseases and varroa. Part I. Hygienic behaviour and resistance to American foulbrood. Bee World. 1998;79:124–134. doi: 10.1080/0005772X.1998.11099394. DOI

Spivak M., Reuter G.D. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie. 2001;32:555–565. doi: 10.1051/apido:2001103. DOI

Wilson-Rich N., Spivak M., Fefferman N.H., Starks P.T. Genetic, individual, and group facilitation of disease resistance in insect societies. Ann. Rev. Entomol. 2009;54:405–423. doi: 10.1146/annurev.ento.53.103106.093301. PubMed DOI

Šedivá M., Laho M., Kohútová L., Mojžišová A., Majtán J., Klaudiny J. 10-HDA, a major fatty acid of royal jelly, exhibits pH dependent growth-inhibitory activity against different strains of Paenibacillus larvae. Molecules. 2018;23:3236. doi: 10.3390/molecules23123236. PubMed DOI PMC

López-Uribe M.M., Fitzgerald A., Simone-Finstrom M. Inducible versus constitutive social immunity: Examining effects of colony infection on glucose oxidase and defensin-1 production in honeybees. R. Soc. Open Sci. 2017;4:170224. doi: 10.1098/rsos.170224. PubMed DOI PMC

Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T., Kobayashi K. A potent antibacterial protein in royal jelly. J. Biol. Chem. 1990;265:11333–11337. doi: 10.1016/S0021-9258(19)38596-5. PubMed DOI

Fontana R., Mendes M.A., de Souza B.M., Konno K., César L.M.M., Malaspina O., Palma M.S. Jelleines: A family of antibacterial peptides from the royal jelly of honeybees (Apis mellifera) Peptides. 2004;25:919–928. doi: 10.1016/j.peptides.2004.03.016. PubMed DOI

Klaudiny J., Bachanová K., Kohútová L., Dzúrová M., Kopernický J., Majtán J. Expression of larval jelly antimicrobial peptide defensin1 in Apis mellifera colonies. Biologia. 2012;67:200–211. doi: 10.2478/s11756-011-0153-8. DOI

Yatsunami K., Echigo T. Antibacterial action of royal jelly. Bull. Fac. Agr. Tamagawa Univ. 1985;25:13–22.

Isidorov V.A., Bakier S., Grzech I. Gas chromatographic-mass spectrometric investigation of volatile and extractable compounds of crude royal jelly. J. Chromatogr. B. 2012;885–886:109–116. doi: 10.1016/j.jchromb.2011.12.025. PubMed DOI

Melliou E., Chinou I. Chemistry and bioactivity of royal jelly from Greece. J. Agric. Food Chem. 2005;53:8987–8992. doi: 10.1021/jf051550p. PubMed DOI

Bíliková K., Gusui W., Šimúth J. Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie. 2001;32:275–283. doi: 10.1051/apido:2001129. DOI

Bachanová K., Klaudiny J., Kopernický J., Šimúth J. Identification of honeybee peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie. 2002;33:259–269. doi: 10.1051/apido:2002015. DOI

Bíliková K., Mirgorodskaya E., Bukovská G., Gobom J., Lehrach H., Šimúth J. Towards functional proteomics of minority component of honeybee royal jelly: The effect of post-translational modifications on the antimicrobial activity of apalbumin2. Proteomics. 2009;9:2131–2138. doi: 10.1002/pmic.200800705. PubMed DOI

Šedivá M., Klaudiny J. Antimikrobiálne látky materskej kašičky. Chem. Listy. 2015;109:755–761.

Isidorov W., Witkowski S., Iwaniuk P., Zambrzycka M., Swiecicka I. Royal jelly aliphatic acid contribute to antimicrobial activity of honey. J. Apic. Sci. 2018;62:111–120. doi: 10.2478/jas-2018-0012. DOI

Pernal S.F., Albright R.L., Melathopoulos A.P. Evaluation of the shaking technique for the economic management of American foulbrood disease of honey bees (Hymenoptera: Apidae) J. Econ. Entomol. 2008;101:1095–1104. doi: 10.1093/jee/101.4.1095. PubMed DOI

Locke B., Low M., Forsgren E. An integrated management strategy to prevent outbreaks and eliminate infection pressure of American foulbrood disease in a commercial beekeeping operation. Prev. Vet. Med. 2019;167:48–52. doi: 10.1016/j.prevetmed.2019.03.023. PubMed DOI

Elzen P., Westervelt D., Causey D., Rivera R., Baxter J., Feldlaufer M. Control of oxytetracycline-resistant American foulbrood with tylosin and its toxicity to honey bees (Apis mellifera) J. Apic. Res. 2002;41:97–100. doi: 10.1080/00218839.2002.11101075. DOI

Alippi A., Albo G., Reynaldi F., De Giusti M. In vitro and in vivo susceptibility of the honeybee bacterial pathogen Paenibacillus larvae subs. larvae to the antibiotic tylosin. Vet. Microbiol. 2005;109:47–55. doi: 10.1016/j.vetmic.2005.03.008. PubMed DOI

Miyagi T., Peng C.Y., Chuang R.Y., Mussen E.C., Spivak M.S., Doi R.H. Verification of oxytetracycline-resistant American foulbrood pathogen Paenibacillus larvae in the United States. J. Invertebr. Pathol. 2000;7:95–96. doi: 10.1006/jipa.1999.4888. PubMed DOI

Evans J.D. Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. J. Invertebr. Pathol. 2003;83:46–50. doi: 10.1016/S0022-2011(03)00039-9. PubMed DOI

Alippi A.M., Albo G.N., Leniz D., Rivera I., Zanelli M., Roca A.E. Comparative study of tylosin, erythromycin and oxytetracycline to control of American foulbrood in honey bees. J. Apic. Res. 1999;38:149–158. doi: 10.1080/00218839.1999.11101005. DOI

Forsgren E., Locke B., Sircoulomb F., Schäfer M.O. Bacterial diseases in honeybees. Curr. Clin. Micro. Rpt. 2018;5:18–25. doi: 10.1007/s40588-018-0083-0. DOI

Mejias E. Modern Beekeeping. InTech Open; London, UK: 2019. American foulbrood and the risk in the use of antibiotics as a treatment; pp. 1–14. DOI

Kuzyšinová K., Mudroňová D., Toporčák J., Molnár L., Javorský P. Te use of probiotics, essential oils and fatty acids in the control of American foulbrood and other bee diseases. J. Apic. Res. 2016;55:386–395. doi: 10.1080/00218839.2016.1252067. DOI

Alonso-Salces R.M., Cugnata N.M., Guaspari E., Pellegrini M.C., Aubone I., De Piano F.G., Antunez K., Fuselli S.R. Natural strategies for the control of Paenibacillus larvae, the causative agent of American foulbrood in honey bees: A review. Apidologie. 2017;48:387–400. doi: 10.1007/s13592-016-0483-1. DOI

Fuselli S.R., Martinez P.G., Fuentes G., Alonso-Salces R.M., Maggi M. Beekeeping—New Challenges. InTech Open; London, UK: 2019. Prevention and Control of American Foulbrood in South America with Essential Oils: Review. DOI

Daisley B.A., Pitek A.P., Chmiel J.A., Al K.F., Chernyshova A.M., Faragalla K.M., Burton J.P., Thompson G.J., Reid G. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J. 2020;14:476–491. doi: 10.1038/s41396-019-0541-6. PubMed DOI PMC

Iorizzo M., Testa B., Lombardi S.J., Ganassi S., Ianiro M., Letizia F., Succi M., Tremonte P., Vergalito F., Cozzolino A. Antimicrobial activity against Paenibacillus larvae and functional properties of Lactiplantibacillus plantarum strains: Potential benefits for honeybee health. Antibiotics. 2020;9:442. doi: 10.3390/antibiotics9080442. PubMed DOI PMC

Alvarado I., Margotta J.W., Aoki M.M., Flores F., Agudelo F., Michel G., Elekonich M.M., Abel-Santos E. Inhibitory effect of indole analogs against Paenibacillus larvae, the causal agent of American foulbrood disease. J. Insect Sci. 2017;17:104. doi: 10.1093/jisesa/iex080. PubMed DOI PMC

Jonczyk-Matysiak E., Popiela E., Owczarek B., Hodyra-Stefaniak K., Switała-Jelen K., Łodej N., Kula D., Neuberg J., Migdał P., Baginska N. Phages in therapy and prophylaxis of American Foulbrood-Recent implications from practical applications. Front. Microbiol. 2020;11:1913. doi: 10.3389/fmicb.2020.01913. PubMed DOI PMC

Feldlaufer M.F., Knox D.A., Lusby W.R., Shimanuki H. Antimicrobial activity of fatty acids against Bacillus larvae, the causative agent of American foulbrood disease. Apidologie. 1993;24:95–99. doi: 10.1051/apido:19930202. DOI

Hornitzky M. Fatty Acids—An Alternative Control Strategy for Honeyee Diseases. RIRDC; Kingston, Australia: 2003.

Lopes L.Q.S., Santos C.G., de Almeida Vaucher R., Gende G., Raffin R.P., Santos R.C.V. Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees. Microbiol. Pathol. 2016;97:183–188. doi: 10.1016/j.micpath.2016.05.014. PubMed DOI

Monk J.D., Beuchat L.R., Hathcox A.K. Inhibitory effects of sucrose monolaurate, alone and in combination with organic acids, on Listeria monocytogenes and Staphylococcus aureus. J. Appl. Bacteriol. 1996;81:7–18. doi: 10.1111/j.1365-2672.1996.tb03276.x. PubMed DOI

Smith A., Nobmann P., Henehan G., Bourke P., Dunne J. Synthesis and antimicrobial evaluation of carbohydrate and polyhydroxylated non-carbohydrate fatty ester and ether derivatives. Carbohydr. Res. 2008;343:2557–2566. doi: 10.1016/j.carres.2008.07.012. PubMed DOI

Ferrer M., Soliveri J., Plou F.J., Lòpez-Cortés N., Reyes-Duarte D., Christensen M., Copa-Patiño J.L., Ballesteros A. Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B and their antimicrobial properties. Enzyme Microb. Technol. 2005;36:391–398. doi: 10.1016/j.enzmictec.2004.02.009. DOI

Nobmann P., Bourke P., Dunne J., Henehan G. In vitro antimicrobial activity and mechanism of action of novel carbohydrate fatty acid derivatives against Staphylococcus aureus and MRSA. J. Appl. Microbiol. 2010;108:2152–2161. doi: 10.1111/j.1365-2672.2009.04622.x. PubMed DOI

Džubák P., Gurská S., Bogdanová K., Uhríková D., Kanjaková N., Combet S., Klunda T., Kolář M., Hajdúch M., Poláková M. Antimicrobial and cytotoxic activity of (thio)alkyl hexopyranosides, nonionic glycolipid mimetics. Carbohydr. Res. 2020;488:107905. doi: 10.1016/j.carres.2019.107905. PubMed DOI

Bilková A., Paulovičová E., Paulovičová L., Poláková M. Antimicrobial activity of mannose-derived glycosides. Monatsh. Chem. 2015;146:1707–1714. doi: 10.1007/s00706-015-1530-8. DOI

Belmessieri D., Gozlan C., Duclos M.C., Molinier V., Aubry J.M. Synthesis, surfactant properties and antimicrobial activities of methyl glycopyranoside ethers. Eur. J. Med. Chem. 2017;128:98–106. doi: 10.1016/j.ejmech.2017.01.038. PubMed DOI

Rauch S., Ashiralieva A., Hedtke K., Genersch E. Negative correlation between individual-insect-level virulence and colonylevel virulence of Paenibacillus larvae, the ethiological agent of American foulbrood of honeybees. Appl. Environ. Microbiol. 2009;75:3344–3347. doi: 10.1128/AEM.02839-08. PubMed DOI PMC

Poláková M., Beláňová M., Petruš L., Mikušová K. Synthesis of alkyl and cycloalkyl α-D-mannopyranosides and derivatives thereof and their evaluation in the mycobacterial mannosyltransferase assay. Carbohydr. Res. 2010;345:1339–1347. doi: 10.1016/j.carres.2010.03.011. PubMed DOI

Okuma K., Hirabayashi S., Ono M., Shioji K., Matsuyama H., Bestmann H.J. An efficient synthesis of (R)-(+)-recifeiolide and related macrolides by using enantiomerically pure (R)-(−)-5-methyl-2,2,2-triphenyl-1,2λ5-oxaphospholane. Tetrahedron. 1998;54:4243–4250. doi: 10.1016/S0040-4020(98)00142-2. DOI

Hartmann M., Betz P., Sun Y., Gorb S.N., Lindhorst T.K., Krueger A. Saccharide-Modified Nanodiamond Conjugates for the Efficient Detection and Removal of Pathogenic Bacteria. Chem. Eur. J. 2012;18:6485–6492. doi: 10.1002/chem.201104069. PubMed DOI

Elsaidi H.R., Paszkiewicz E., Bundle D.R. Synthesis of a 1,3 β-glucan hexasaccharide designed to target vaccines to the dendritic cell receptor, Dectin-1. Carbohydr. Res. 2015;408:96–106. doi: 10.1016/j.carres.2015.03.007. PubMed DOI

Poláková M., Horák R., Šesták S., Holková I. Synthesis of modified d-mannose core derivatives and their impact on GH38 α-mannosidases. Carbohydr Res. 2016;428:62–71. doi: 10.1016/j.carres.2016.04.004. PubMed DOI

Monrad R.N., Pipper C.B., Madsen R. Synthesis of Calystegine A(3) from Glucose by the Use of Ring-Closing Metathesis. Eur. JOC. 2009;20:3387–3395. doi: 10.1002/ejoc.200900310. DOI

Nobuo T., Izumi O., Shigeki Y., Junzo N. Regioselective ring opening of benzylidene acetal protecting group(s) of hexopyranoside derivatives by DIBAL-H. Carbohydr. Res. 2008;343:2675–2679. doi: 10.1016/j.carres.2008.07.017. PubMed DOI

Martinez P., Cugnata N., Alonso-Salces R., Arredondo D., Antúnez K., Castro R., Fuselli S. Short communication: Natural molecules for the control of Paenibacillus larvae, causal agent of American foulbrood in honey bees (Apis mellifera L.) Span. J. Agric. Res. 2019;17:e05SC01. doi: 10.5424/sjar/2019173-14740. DOI

Sun C.Q., O’Connor C.J., Roberton A.M. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol. Microbiol. 2003;36:9–17. doi: 10.1016/S0928-8244(03)00008-7. PubMed DOI

Skřivanová E., Marounek M. Influence of pH on antimicrobial activity of organic acids against rabbit enteropathogenic strain of Escherichia coli. Folia Microbiol. 2007;52:70–72. doi: 10.1007/BF02932141. PubMed DOI

Belmessieri D., Gozlan C., Duclos M.C., Dumitrescu O., Lina G., Redl A., Duguet N., Lemaire M. Dodecyl sorbitan ethers as antimicrobials against Gram-positive bacteria. Bioorg. Med. Chem. Lett. 2017;27:4660–4663. doi: 10.1016/j.bmcl.2017.09.015. PubMed DOI

Szabó L.Z., Hanrahan D.J., Jones E.M., Martin E., Pemberton J.E., Polt R. Preparation of S-glycoside surfactants and cysteine thioglycosides using minimally competent Lewis acid catalysis. Carbohydr Res. 2016;3:4221–4224. doi: 10.1016/j.carres.2015.12.008. PubMed DOI PMC

Yamamoto N., Obora Y., Ishii Y. Iridium-catalyzed oxidative methyl esterification of primary alcohols and diols with methanol. J. Org. Chem. 2011;76:2937–2941. doi: 10.1021/jo2003264. PubMed DOI

Dingman D.W., Stahly D.P. Medium promoting sporulation of Bacillus larvae and metabolism of medium components. Appl. Environ. Microbiol. 1983;46:860–869. doi: 10.1128/aem.46.4.860-869.1983. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...