Gene Coexpression Analysis Identifies Genes Associated with Chlorophyll Content and Relative Water Content in Pearl Millet
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36987099
PubMed Central
PMC10057621
DOI
10.3390/plants12061412
PII: plants12061412
Knihovny.cz E-zdroje
- Klíčová slova
- WGCNA, gene clustering, gene expression, module, pathways, pearl millet, relative water content,
- Publikační typ
- časopisecké články MeSH
Pearl millet is a significant crop that is tolerant to abiotic stresses and is a staple food of arid regions. However, its underlying mechanisms of stress tolerance are not fully understood. Plant survival is regulated by the ability to perceive a stress signal and induce appropriate physiological changes. Here, we screened for genes regulating physiological changes such as chlorophyll content (CC) and relative water content (RWC) in response to abiotic stress by using "weighted gene coexpression network analysis" (WGCNA) and clustering changes in physiological traits, i.e., CC and RWC associated with gene expression. Genes' correlations with traits were defined in the form of modules, and different color names were used to denote a particular module. Modules are groups of genes with similar patterns of expression, which also tend to be functionally related and co-regulated. In WGCNA, the dark green module (7082 genes) showed a significant positive correlation with CC, and the black (1393 genes) module was negatively correlated with CC and RWC. Analysis of the module positively correlated with CC highlighted ribosome synthesis and plant hormone signaling as the most significant pathways. Potassium transporter 8 and monothiol glutaredoxin were reported as the topmost hub genes in the dark green module. In Clust analysis, 2987 genes were found to display a correlation with increasing CC and RWC. Furthermore, the pathway analysis of these clusters identified the ribosome and thermogenesis as positive regulators of RWC and CC, respectively. Our study provides novel insights into the molecular mechanisms regulating CC and RWC in pearl millet.
Zobrazit více v PubMed
Xu C., Kohler T.A., Lenton T.M., Svenning J.C., Scheffer M. Future of the Human Climate Niche. [(accessed on 15 October 2022)]. Available online: https://www.pnas.org. PubMed
Satyavathi C.T., Ambawat S., Khandelwal V., Srivastava R.K. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. Front. Plant Sci. 2021;12:659938. doi: 10.3389/fpls.2021.659938. PubMed DOI PMC
Gupta S., Rai K., Singh P., Ameta V., Jayalekha A., Mahala R., Pareek S., Swami M., Verma Y. Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L. (R.) Br.) Field Crops Res. 2015;171:41–53. doi: 10.1016/j.fcr.2014.11.005. DOI
Shrestha N., Hu H., Shrestha K., Doust A.N. Pearl millet response to drought: A review. Front. Plant Sci. 2023;14:1059574. doi: 10.3389/fpls.2023.1059574. PubMed DOI PMC
Bani Hani N., Aukour F.J., Al-Qinna M.I. Investigating the Pearl Millet (Pennisetum glaucum) as a Climate-Smart Drought-Tolerant Crop under Jordanian Arid Environments. Sustainability. 2022;14:12249. doi: 10.3390/su141912249. DOI
Srivastava R.K., Yadav O.P., Kaliamoorthy S., Gupta S.K., Serba D.D., Choudhary S., Govindaraj M., Kholová J., Murugesan T., Satyavathi C.T., et al. Breeding Drought-Tolerant Pearl Millet Using Conventional and Genomic Approaches: Achievements and Prospects. Front. Plant Sci. 2022;13:781524. doi: 10.3389/fpls.2022.781524. PubMed DOI PMC
Varshney R.K., Shi C., Thudi M., Mariac C., Wallace J., Qi P., Zhang H., Zhao Y., Wang X., Rathore A., et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotechnol. 2017;35:969–976. doi: 10.1038/nbt.3943. PubMed DOI PMC
Fritsche-Neto R., Borém A. Plant Physiology for Abiotic Stress Tolerance. Springer; Berlin/Heidelberg, Germany: 2012.
Shinde H., Tanaka K., Dudhate A., Tsugama D., Mine Y., Kamiya T., Gupta S.K., Liu S., Takano T. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ. Exp. Bot. 2018;155:619–627. doi: 10.1016/j.envexpbot.2018.07.008. DOI
Dudhate A., Shinde H., Tsugama D., Liu S., Takano T. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br] PLoS ONE. 2018;13:e0195908. doi: 10.1371/journal.pone.0195908. PubMed DOI PMC
Shinde H., Dudhate A., Kadam U.S., Hong J.C. RNA methylation in plants: An overview. Front. Plant Sci. 2023;14:1132959. doi: 10.3389/fpls.2023.1132959. PubMed DOI PMC
Dudhate A., Shinde H., Yu P., Tsugama D., Gupta S.K., Liu S., Takano T. Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum) BMC Genom. 2021;22:70. doi: 10.1186/s12864-021-07382-y. PubMed DOI PMC
Yu P., Shinde H., Dudhate A., Tsugama D., Gupta S.K., Liu S., Takano T. Genome-wide investigation of SQUAMOSA promoter binding protein-like transcription factor family in pearl millet (Pennisetum glaucum (L) R. Br.) Plant Gene. 2021;27:100313. doi: 10.1016/j.plgene.2021.100313. DOI
Reddy P.S., Dhaware M.G., Sivasakthi K., Divya K., Nagaraju M., Cindhuri K.S., Kishor P.B.K., Bhatnagar-Mathur P., Vadez V., Sharma K.K. Pearl Millet Aquaporin Gene PgPIP2;6 Improves Abiotic Stress Tolerance in Transgenic Tobacco. Front. Plant Sci. 2022;13:820996. doi: 10.3389/fpls.2022.820996. PubMed DOI PMC
Shinde H., Dudhate A., Tsugama D., Gupta S.K., Liu S., Takano T. Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. Plant Physiol. Biochem. 2019;135:546–553. doi: 10.1016/j.plaphy.2018.11.004. PubMed DOI
Shinde H., Dudhate A., Anand L., Tsugama D., Gupta S.K., Liu S., Takano T. Small RNA sequencing reveals the role of pearl millet miRNAs and their targets in salinity stress responses. S. Afr. J. Bot. 2020;132:395–402. doi: 10.1016/j.sajb.2020.06.011. DOI
Langfelder P., Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. doi: 10.1186/1471-2105-9-559. PubMed DOI PMC
Jin Z., Liu S., Zhu P., Tang M., Wang Y., Tian Y., Li D., Zhu X., Yan D., Zhu Z. Cross-species gene expression analysis reveals gene modules implicated in human osteosarcoma. Front. Genet. 2019;10:697. doi: 10.3389/fgene.2019.00697. PubMed DOI PMC
Zhu M., Xie H., Wei X., Dossa K., Yu Y., Hui S., Tang G., Zeng X., Yu Y., Hu P., et al. WGCNA analysis of salt-responsive core transcriptome identifies novel hub genes in rice. Genes. 2019;10:719. doi: 10.3390/genes10090719. PubMed DOI PMC
Abu-Jamous B., Kelly S. Clust: Automatic extraction of optimal co-expressed gene clusters from gene expression data. Genome Biol. 2018;19:1–11. doi: 10.1186/s13059-018-1536-8. PubMed DOI PMC
Satyavathi C.T., Tomar R.S., Ambawat S., Kheni J., Padhiyar S.M., Desai H., Bhatt S.B., Shitap M.S., Meena R.C., Singhal T., et al. Stage specific comparative transcriptomic analysis to reveal gene networks regulating iron and zinc content in pearl millet [Pennisetum glaucum (L.) R. Br.] Sci. Rep. 2022;12:276. doi: 10.1038/s41598-021-04388-0. PubMed DOI PMC
Sun M., Huang D., Zhang A., Khan I., Yan H., Wang X., Zhang X., Zhang J., Huang L. Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. BMC Plant Biol. 2020;20:323. doi: 10.1186/s12870-020-02530-0. PubMed DOI PMC
Jaiswal S., Antala T.J., Mandavia M.K., Chopra M., Jasrotia R.S., Tomar R.S., Kheni J., Angadi U.B., Iquebal M.A., Golakia B.A., et al. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci. Rep. 2018;8:1–16. PubMed PMC
Kanfany G., Serba D.D., Rhodes D., Amand P.S., Bernardo A., Gangashetty P., Kane N.A., Bai G. Genomic diversity in pearl millet inbred lines derived from landraces and improved varieties. BMC Genom. 2020;21:469. doi: 10.1186/s12864-020-06796-4. PubMed DOI PMC
Srivastava R.K., Singh R.B., Pujarula V.L., Bollam S., Pusuluri M., Chellapilla T.S., Yadav R.S., Gupta R. Genome-Wide Association Studies and Genomic Selection in Pearl Millet: Advances and Prospects. Front. Genet. 2020;10:1389. doi: 10.3389/fgene.2019.01389. PubMed DOI PMC
Singh M., Nara U. Genetic insights in pearl millet breeding in the genomic era: Challenges and prospects. Plant Biotechnol. Rep. 2022;17:15–37. doi: 10.1007/s11816-022-00767-9. PubMed DOI PMC
Ramakrishnan J. Ribosome Structure and the Mechanism of Translation. Cell. 2002;108:557–572. doi: 10.1016/S0092-8674(02)00619-0. PubMed DOI
Vind A.C., Genzor A.V., Bekker-Jensen S. Ribosomal stress-surveillance: Three pathways is a magic number. Nucleic Acids Res. 2020;48:10648–10661. doi: 10.1093/nar/gkaa757. PubMed DOI PMC
Wang J., Wang X., Ma C., Li P. A Review on the Mechanism of Ribosome Stress Response in Plants. Chin. Bull. Bot. 2022;57:80–89.
Dias-Fields L., Adamala K.P. Engineering Ribosomes to Alleviate Abiotic Stress in Plants: A Perspective. Plants. 2022;11:2097. doi: 10.3390/plants11162097. PubMed DOI PMC
Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. doi: 10.1186/s12870-016-0771-y. PubMed DOI PMC
Couchoud M., Der C., Girodet S., Vernoud V., Prudent M., Leborgne-Castel N. Drought stress stimulates endocytosis and modifies membrane lipid order of rhizodermal cells of Medicago truncatula in a genotype-dependent manner. BMC Plant Biol. 2019;19:221. doi: 10.1186/s12870-019-1814-y. PubMed DOI PMC
Hamamoto S., Horie T., Hauser F., Deinlein U., Schroeder J.I., Uozumi N. HKT transporters mediate salt stress resistance in plants: From structure and function to the field. Curr. Opin. Biotechnol. 2015;32:113–120. doi: 10.1016/j.copbio.2014.11.025. PubMed DOI
Assaha D.V.M., Ueda A., Saneoka H., Al-Yahyai R., Yaish M.W. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 2017;8:509. doi: 10.3389/fphys.2017.00509. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Patro R., Duggal G., Love M.I., Irizarry R.A., Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Moriya Y., Itoh M., Okuda S., Yoshizawa A.C., Kanehisa M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35((Suppl. S2)):W182–W185. doi: 10.1093/nar/gkm321. PubMed DOI PMC