The combined effect of graphene oxide and elemental nano-sulfur on soil biological properties and lettuce plant biomass
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36998685
PubMed Central
PMC10043190
DOI
10.3389/fpls.2023.1057133
Knihovny.cz E-zdroje
- Klíčová slova
- agricultural production, microbial activity, nutrient cycling, soil amendments, sulfur nutrition,
- Publikační typ
- časopisecké články MeSH
The impact of graphene oxide (GO) nanocarbon on soil properties is mixed, with both negative and positive effects. Although it decreases the viability of some microbes, there are few studies on how its single amendment to soil or in combination with nanosized sulfur benefits soil microorganisms and nutrient transformation. Therefore, an eight-week pot experiment was carried out under controlled conditions (growth chamber with artificial light) in soil seeded with lettuce (Lactuca sativa) and amended with GO or nano-sulfur on their own or their several combinations. The following variants were tested: (I) Control, (II) GO, (III) Low nano-S + GO, (IV) High nano-S + GO, (V) Low nano-S, (VI) High nano-S. Results revealed no significant differences in soil pH, dry plant aboveground, and root biomass among all five amended variants and the control group. The greatest positive effect on soil respiration was observed when GO was used alone, and this effect remained significant even when it was combined with high nano-S. Low nano-S plus a GO dose negatively affected some of the soil respiration types: NAG_SIR, Tre_SIR, Ala_SIR, and Arg_SIR. Single GO application was found to enhance arylsulfatase activity, while the combination of high nano-S and GO not only enhanced arylsulfatase but also urease and phosphatase activity in the soil. The elemental nano-S probably counteracted the GO-mediated effect on organic carbon oxidation. We partially proved the hypothesis that GO-enhanced nano-S oxidation increases phosphatase activity.
Agricultural Research Ltd Troubsko Czechia
Agrovyzkum Rapotin Ltd Rapotin Czechia
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czechia
Institute for Environmental Studies Faculty of Science Charles University Prague Praha Czechia
Zobrazit více v PubMed
Almutairi K. F., Machado R. M. A., Bryla D. R., Strik B. C. (2017). "Chemigation with micronized sulfur rapidly reduces soil pH in a new planting of northern highbush blueberry.". HortScience 52 (10), 1413–1418. doi: 10.21273/hortsci12313-17 DOI
Anjum N. A., Singh N., Singh M. K., Sayeed I., Duarte A. C., Pereira E., et al. . (2014). Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba l.). Sci. Total Environ. 472, 834–841. doi: 10.1016/j.scitotenv.2013.11.018 PubMed DOI
Arikan B., Alp F. N., Ozfidan-Konakci C., Balci M., Elbasan F., Yildiztugay E., et al. . (2022). Fe2o3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum . Chemosphere 307, 16. doi: 10.1016/j.chemosphere.2022.136048 PubMed DOI
Behl T., Kaur I., Sehgal A., Singh S., Sharma N., Bhatia S., et al. . (2022). The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity. Chemosphere 288, 27. doi: 10.1016/j.chemosphere.2021.132533 PubMed DOI
Bonomi H. R., Posadas D. M., Paris G., Carrica Mdel C., Frederickson M., Pietrasanta L. I., et al. . (2012). Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor. Proc. Natl. Acad. Sci. U.S.A. 109 (30), 12135–12140. doi: 10.1073/pnas.1121292109 PubMed DOI PMC
Borowiak K., Wolna-Maruwka A., Schroeter-Zakrzewska A. (2019). Influence of the light color and microbiological inoculums on the zonal pelargonium quality and microbiological and enzymatic state of the substrate. Acta Scientiarum Polonorum Hortorum Cultus 18 (4), 169–180. doi: 10.24326/asphc.2019.4.16 DOI
Campbell C. D., Chapman S. J., Cameron C. M., Davidson M. S., Potts J. M. (2003). A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69 (6), 3593–3599. doi: 10.1128/AEM.69.6.3593-3599.2003 PubMed DOI PMC
Carneiro J. S. D., Leite D. A. D., de Castro G. M., Franca J. R., Botelho L., Soares J. R., et al. . (2022). Biochar-graphene oxide composite is efficient to adsorb and deliver copper and zinc in tropical soil. J. Cleaner Production 360, 13. doi: 10.1016/j.jclepro.2022.132170 DOI
Carvalho S. D., Castillo J. A. (2018). Influence of light on plant-phyllosphere interaction. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01482 PubMed DOI PMC
Casida L. E., Klein D. A., Santoro T. (1964). Soil dehydrogenase activity. Soil Sci. 98 (6), 371–376. doi: 10.1097/00010694-196412000-00004 DOI
Chapman S. J. (1089). Oxidation of micronized elemental sulphur in soil. Plant Soil 116 (1), 69–76. doi: 10.1007/bf02327258 DOI
Chouhan R. S., Pandey A., Qureshi A., Ozguz V., Niazi J. H. (2016). Nanomaterial resistant microorganism mediated reduction of graphene oxide. Colloids Surf B Biointerfaces 146, 39–46. doi: 10.1016/j.colsurfb.2016.05.053 PubMed DOI
Chung H., Kim M. J., Ko K., Kim J. H., Kwon H. A., Hong I., et al. . (2015). Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci. Total Environ. 514, 307–313. doi: 10.1016/j.scitotenv.2015.01.077 PubMed DOI
Cui Y., Wang Q. (2005). Interaction effect of zinc and elemental sulfur on their uptake by spring wheat. J. Plant Nutr. 28 (4), 639–649. doi: 10.1081/pln-200052637 DOI
Degryse F., Baird R., Andelkovic I., McLaughlin M. J. (2021). Long-term fate of fertilizer sulfate- and elemental s in co-granulated fertilizers. Nutrient Cycling Agroecosystems 120 (1), 31–48. doi: 10.1007/s10705-021-10137-6 DOI
Dixit G., Singh A. P., Kumar A., Dwivedi S., Deeba F., Kumar S., et al. . (2015). Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci. Rep. 5, 16205. doi: 10.1038/srep16205 PubMed DOI PMC
Du J., Hu X., Zhou Q. (2015). Graphene oxide regulates the bacterial community and exhibits property changes in soil. RSC Adv. 5 (34), 27009–27017. doi: 10.1039/c5ra01045d DOI
Du J., Zhou Q., Wu J., Li G., Li G., Wu Y. (2020). Soil bacterial communities respond differently to graphene oxide and reduced graphene oxide after 90 days of exposure. Soil Ecol. Lett. 2, 176–179. doi: 10.1007/s42832-020-0043-5 DOI
Đurović A., Stojanović Z., Bytešníková Z., Kravić S., Švec P., Přibyl J., et al. . (2022). Reduced graphene oxide/zno nanocomposite modified electrode for the detection of tetracycline. J. Materials Sci. 57 (9), 5533–5551. doi: 10.1007/s10853-022-06926-1 DOI
Fattahi N., Hekmatdoust Tabrizi B., Rani S., Sadeghi Z., Dehghanian Z., Asgari Lajayer B., et al. . (2022). Chapter 4 - toxicity of nanoparticles onto plants: Overview of the biochemical and molecular mechanisms. Toxicity Nanoparticles Plants 5, 69–94.
Forstner C., Orton T. G., Skarshewski A., Wang P., Kopittke P. M., Dennis P. G. (2019). Effects of graphene oxide and graphite on soil bacterial and fungal diversity. Sci. Total Environ. 671, 140–148. doi: 10.1016/j.scitotenv.2019.03.360 PubMed DOI
Fuentes-Lara L. O., Medrano-Macias J., Perez-Labrada F., Rivas-Martinez E. N., Garcia-Enciso E. L., Gonzalez-Morales S., et al. . (2019). From elemental sulfur to hydrogen sulfide in agricultural soils and plants. Molecules 24 (12), 2282. doi: 10.3390/molecules24122282 PubMed DOI PMC
Gadino A. N., Walton V. M., Dreves A. J. (2011). Impact of vineyard pesticides on a beneficial arthropod, Typhlodromus pyri (Acari: Phytoseiidae), in laboratory bioassays. J. Econ Entomol 104 (3), 970–977. doi: 10.1603/ec10330 PubMed DOI
Ge Y., Priester J. H., Mortimer M., Chang C. H., Ji Z., Schimel J. P., et al. . (2016). Long-term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil. Environ. Sci. Technol. 50 (7), 3965–3974. doi: 10.1021/acs.est.5b05620 PubMed DOI
Germida J. J., Janzen H. H. (1993). Factors affecting the oxidation of elemental sulfur in soils. Fertilizer Res. 35 (1-2), 101–114. doi: 10.1007/bf00750224 DOI
Godlewska A. (2018). Assessment of the effect of lstialalationsation and elemental sulphur on soil enzyme activity. Fresenius Environ. Bull. 27 (1), 180–186.
Gouinguene S. P., Turlings T. C. (2002). The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129 (3), 1296–1307. doi: 10.1104/pp.001941 PubMed DOI PMC
Gupta V. K., Eren T., Atar N., Yola M. L., Parlak C., Karimi-Maleh H. (2015). CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J. Mol. Liquids 208, 122–129. doi: 10.1016/j.molliq.2015.04.032 DOI
Gurunathan S., Han J. W., Dayem A. A., Eppakayala V., Kim J. H. (2012). Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa . Int. J. Nanomedicine 7, 5901–5914. doi: 10.2147/IJN.S37397 PubMed DOI PMC
Hammerschmiedt T., Holatko J., Huska D., Kintl A., Skarpa P., Bytesnikova Z., et al. . (2022). Impact of smart combinations of graphene oxide and micro/nanosized sulfur particles on soil health and plant biomass accumulation. Chem. Biol. Technol. Agric. 9 (1), 53. doi: 10.1186/s40538-022-00323-1 DOI
Hee-Sun Kook K. K. (2013). The effect of blue-light-emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. J. Plant Pathol. Microbiol. 04 (09), 9. doi: 10.4172/2157-7471.1000203 DOI
Hegedüs M., Baláž P., Baláž M., Siffalovic P., Daneu N., Kaňuchová M., et al. . (2018). Mechanochemical approach to a Cu2ZnSnS4 solar cell absorber via a “micro-nano” route. J. Materials Sci. 53 (19), 13617–13630. doi: 10.1007/s10853-018-2228-1 DOI
Hu Z. Y., Beaton J. D., Cao Z. H., Henderson A. (2007). Sulfate formation and extraction from red soil treated with micronized elemental sulfur fertilizer and incubated in closed and open systems. Commun. Soil Sci. Plant Anal. 33 (11-12), 1779–1797. doi: 10.1081/css-120004822 DOI
Huang M., Wang X. L., Liu C., Fang G. D., Gao J., Wang Y. J., et al. . (2021). Facile ball milling preparation of sulfur-doped carbon as peroxymonosulfate activator for efficient removal of organic pollutants. J. Environ. Chem. Eng. 9 (6), 9. doi: 10.1016/j.jece.2021.106536 DOI
ISO 10390 (2005). Soil qu–lity - determination of pH (Geneva, Switzerland: International Organization for Standardization; ).
ISO 20130 (2018). Soil quality — measurement of enzyme activity patterns in soil samples using colorimetric substrates in micro-well plates (Geneva, Switzerland: International Organization for Standardization; ).
Jamialahmadi N., Safari E., Baghdadi M. (2018). Interaction of graphene oxide nano-sheets and landfill leachate bacterial culture. Environ. Technol. 39 (19), 2457–2466. doi: 10.1080/09593330.2017.1356875 PubMed DOI
Jeon C., Solis K. L., An H. R., Hong Y., Igalavithana A. D., Ok Y. S. (2020). Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar. J. Hazard Mater 388, 122048. doi: 10.1016/j.jhazmat.2020.122048 PubMed DOI
Joye S. B., Hollibaugh J. T. (1995). Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270 (5236), 623–625. doi: 10.1126/science.270.5236.623 DOI
Juarez-Maldonado A., Ortega-Ortiz H., Morales-Diaz A. B., Gonzalez-Morales S., Morelos-Moreno A., Cabrera-De la Fuente M., et al. . (2019). Nanoparticles and nanomaterials as plant biostimulants. Int. J. Mol. Sci. 20 (1), 162. doi: 10.3390/ijms20010162 PubMed DOI PMC
Kabiri S., Andelkovic I. B., da Silva R. C., Degryse F., Baird R., Tavakkoli E., et al. . (2020). Engineered phosphate fertilizers with dual-release properties. Ind. Eng. Chem. Res. 59 (13), 5512–5524. doi: 10.1021/acs.iecr.0c00403 DOI
Kabiri S., Degryse F., Tran D. N. H., da Silva R. C., McLaughlin M. J., Losic D. (2017). Graphene oxide: A new carrier for slow release of plant micronutrients. ACS Appl. Mater Interfaces 9 (49), 43325–43335. doi: 10.1021/acsami.7b07890 PubMed DOI
Kelleher B. P., Flanagan P. V., Hart K. M., Simpson A. J., Oppenheimer S. F., Murphy B. T., et al. . (2017). Large Perturbations in co2 flux and subsequent chemosynthesis are induced in agricultural soil by the addition of elemental sulfur. Sci. Rep. 7 (1), 4732. doi: 10.1038/s41598-017-04934-9 PubMed DOI PMC
Kulshrestha S., Qayyurn S., Khan A. U. (2017). Antibiofilm efficacy of green synthesized graphene oxide-silver nanocomposite using lagerstroemia speciosa floral extract: A comparative study on inhibition of gram-positive and gram-negative biofilms. Microbial Pathogenesis 103, 167–177. doi: 10.1016/j.micpath.2016.12.022 PubMed DOI
Lahiani M. H., Chen J., Irin F., Puretzky A. A., Green M. J., Khodakovskaya M. V. (2015). Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon 81, 607–619. doi: 10.1016/j.carbon.2014.09.095 DOI
Lee A., Boswell C. C., Watkinson J. H. (2011). Effect of particle size on the oxidation of elemental sulphur, thiobacilli numbers, soil sulphate, and its availability to pasture. New Z. J. Agric. Res. 31 (2), 179–186. doi: 10.1080/00288233.1988.10417943 DOI
Li T., Gao B., Tong Z., Yang Y., Li Y. (2019). Chitosan and graphene oxide nanocomposites as coatings for controlled-release fertilizer. Water Air Soil pollut. 230 (7), 146. doi: 10.1007/s11270-019-4173-2 DOI
Liu G., Li L., Xu D., Huang X., Xu X., Zheng S., et al. . (2017). Metal-organic framework preparation using magnetic graphene oxide-beta-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr Polym 175, 584–591. doi: 10.1016/j.carbpol.2017.06.074 PubMed DOI
Lonkar S. P., Pillai V. V., Alhassan S. M. (2018). Facile and scalable production of heterostructured ZnS-ZnO/graphene nano-photocatalysts for environmental remediation. Sci. Rep. 8 (1), 13401. doi: 10.1038/s41598-018-31539-7 PubMed DOI PMC
Lucheta A. R., Lambais M. R. (2012). Sulfur in agriculture. Bras. Ciênc. Solo 36, 5, 1369–1379. doi: 10.1590/S0100-06832012000500001Rev DOI
Luo N., Zhang X. J., Zhang H. G., Liu D., Wang H. X., Song J. F. (2022). Graphene oxide influences on bacterial community diversity of Larix olgensis rhizosphere of haplic cambisols in northeast China. Eurasian Soil Sci. 55 (10), 1470–1481. doi: 10.1134/s1064229322100106 DOI
Malik K. M., Khan K. S., Billah M., Akhtar M. S., Rukh S., Alam S., et al. . (2021). Organic amendments and elemental sulfur stimulate microbial biomass and sulfur oxidation in alkaline subtropical soils. Agronomy 11 (12), 2514. doi: 10.3390/agronomy11122514 DOI
Marcano D. C., Kosynkin D. V., Berlin J. M., Sinitskii A., Sun Z., Slesarev A., et al. . (2010). Improved synthesis of graphene oxide. ACS Nano 4 (8), 4806–4814. doi: 10.1021/nn1006368 PubMed DOI
Massalimov I., Medvedev U. A., Zaynitdinova R. M., Mufazalova N. A., Mustafin A. G. (2012). Assessment of antifungal activity of micronized and nanosized elemental sulfur. Nanotechnol Nanosci 3 (1), 55–58.
Matamwa W., Blair G., Guppy C., Yunusa I. (2018). Plant availability of sulfur added to finished fertilizers. Commun. Soil Sci. Plant Anal. 49 (4), 433–443. doi: 10.1080/00103624.2018.1430236 DOI
Méndez Tovar M., García Meza J. V., Gonzalez I. (2019). Electrochemical monitoring of Acidithiobacillus thiooxidans biofilm formation on graphite surface with elemental sulfur. Bioelectrochemistry 128, 30–38. doi: 10.1016/j.bioelechem.2019.03.004 PubMed DOI
Mohammadi Alagoz S., Ramezanzadeh Arvanaghi H., Dolatabadi N., Khalaki M., Moameri M., Asgari Lajayer B., et al. . (2022). “Chapter 15 - impact on nutritional status of plants treated with nanoparticles,” in Toxicity of nanoparticles in plants, vol. 5 . Eds. Rajput V. D., Minkina T., Sushkova S., Mandzhieva S. S., Rensing C. (Cambridge, Massachusetts: Academic Press; ), 333–358. doi: 10.1016/B978-0-323-90774-3.00005-2 DOI
Navarro D. A., Kah M., Losic D., Kookana R. S., McLaughlin M. J. (2020). Mineralisation and release of 14C-graphene oxide (GO) in soils. Chemosphere 238, 124558. doi: 10.1016/j.chemosphere.2019.124558 PubMed DOI
Pan M., Zhang Y., Shan C., Zhang X., Gao G., Pan B. (2017). Flat graphene-enhanced electron transfer involved in redox reactions. Environ. Sci. Technol. 51 (15), 8597–8605. doi: 10.1021/acs.est.7b01762 PubMed DOI
Pourbabaee A. A., Koohbori Dinekaboodi S., Seyed Hosseini H. M., Alikhani H. A., Emami S. (2020). Potential application of selected sulfur-oxidizing bacteria and different sources of sulfur in plant growth promotion under different moisture conditions. Commun. Soil Sci. Plant Anal. 51 (6), 735–745. doi: 10.1080/00103624.2020.1729377 DOI
Qi Z., Zhang L., Chen W. (2014). Transport of graphene oxide nanoparticles in saturated sandy soil. Environ. Science-Processes Impacts 16 (10), 2268–2277. doi: 10.1039/C4EM00063C PubMed DOI
Raghavan N., Thangavel S., Sivalingam Y., Venugopal G. (2018). Investigation of photocatalytic performances of sulfur based reduced graphene oxide-TiO2 nanohybrids. Appl. Surface Sci. 449, 712–718. doi: 10.1016/j.apsusc.2018.01.043 DOI
Ren W., Ren G., Teng Y., Li Z., Li L. (2015). Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. J. Hazard Mater 297, 286–294. doi: 10.1016/j.jhazmat.2015.05.017 PubMed DOI
Riley N. G., Zhao F. J., McGrath S. P. (2002). Leaching losses of sulphur from different forms of sulphur fertilizers: A field lysimeter study. Soil Use Manage. 18 (2), 120–126. doi: 10.1079/sum2002115 DOI
Rong Y., Wang Y., Guan Y., Ma J., Cai Z., Yang G., et al. . (2017). Pyrosequencing reveals soil enzyme activities and bacterial communities impacted by graphene and its oxides. J. Agric. Food Chem. 65 (42), 9191–9199. doi: 10.1021/acs.jafc.7b03646 PubMed DOI
R Core Team (2020). R: A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing; ).
Salas E. C., Sun Z., Luttge A., Tour J. M. (2010). Reduction of graphene oxide via bacterial respiration. ACS Nano 4 (8), 4852–4856. doi: 10.1021/nn101081t PubMed DOI
Samadi S., Asgari Lajayer B., Moghiseh E., Rodríguez-Couto S. (2021). Effect of carbon nanomaterials on cell toxicity, biomass production, nutritional and active compound accumulation in plants. Environ. Technol. Innovation 21, 101323. doi: 10.1016/j.eti.2020.101323 DOI
Sangani M. F., Owens G., Fotovat A. (2019). Transport of engineered nanoparticles in soils and aquifers. Environ. Rev. 27 (1), 43–70. doi: 10.1139/er-2018-0022 DOI
Sengupta S., Pari A., Biswas L., Shit P., Bhattacharyya K., Chattopadhyay A. P. (2022). Adsorption of arsenic on graphene oxide, reduced graphene oxide, and their Fe3O4 doped nanocomposites. Biointerface Res. Appl. Chem. 12 (5), 6196–6210. doi: 10.33263/briac125.61966210 DOI
Soltanaeva A., Suleimenov B., Saparov G., Vassilina H. (2018). Effect of sulfur-containing fertilizers on the chemical properties of soil and winter wheat field. Bulgarian J. Agric. Sci. 24 (4), 586–591.
Steudel R. (2003). Aqueous sulfur sols. Elemental Sulfur Sulfur-Rich Compounds I 230, 153–166. doi: 10.1007/b12113 DOI
Tabak M., Lisowska A., Filipek-Mazur B. (2020). Bioavailability of sulfur from waste obtained during biogas desulfurization and the effect of sulfur on soil acidity and biological activity. Processes 8 (7), 863. doi: 10.3390/pr8070863 DOI
Teng Y., Zhou Q., Gao P. (2019). Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Crit. Rev. Environ. Sci. Technol. 49 (24), 2314–2358. doi: 10.1080/10643389.2019.1609856 DOI
Tourna M., Maclean P., Condron ’L., O'Callaghan M., Wakelin S. A. (2014). "Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxb functional gene analysis.". FEMS Microbiol. Ecol. 88 (3), 538–549. doi: 10.1111/1574-6941.12323 PubMed DOI
Tu Y., Lv M., Xiu P., Huynh T., Zhang M., Castelli M., et al. . (2013). Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8, 594–601. doi: 10.1038/nnano.2013.125 PubMed DOI
Wang D., Wang G., Zhang G., Xu X., Yang F. (2003). Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresour Technol. 131, 527–530. doi: 10.1016/j.biortech.2013.01.099 PubMed DOI
Watkinson J. H., Blair G. J. (1993). Modelling the oxidation of elemental sulfur in soils. Fertilizer Res. 35, 115–126. doi: 10.1007/BF00750225 DOI
Williams J. S., Cooper R. M. (2004). The oldest fungicide and newest phytoalexin - a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathol. 53 (3), 263–279. doi: 10.1111/j.0032-0862.2004.01010.x DOI
Xia T. J., Lin Y. X., Li S. L., Yan N., Xie Y., He M. R., et al. . (2021). Co-Transport of negatively charged nanoparticles in saturated porous media: Impacts of hydrophobicity and surface O-functional groups. J. Hazardous Materials 409, 9. doi: 10.1016/j.jhazmat.2020.124477 PubMed DOI
Xiao X., Wang X., Liu L., Chen C., Sha A., Li J. (2022). Effects of three graphene-based materials on the growth and photosynthesis of Brassica nanus l. Ecotoxicol Environ. Saf. 234, 113383. doi: 10.1016/j.ecoenv.2022.113383 PubMed DOI
Xie J., Ming Z., Li H., Yang H., Yu B., Wu R., et al. . (2016). Toxicity of graphene oxide to white rot fungus Phanerochaete chrysosporium . Chemosphere 151, 324–331. doi: 10.1016/j.chemosphere.2016.02.097 PubMed DOI
Yang X., Wan Y., Zheng Y., He F., Yu Z., Huang J., et al. . (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 366, 608–621. doi: 10.1016/j.cej.2019.02.119 PubMed DOI PMC
Yap P. L., Kabiri S., Auyoong Y. L., Tran D. N. H., Losic D. (2019). Tuning the multifunctional surface chemistry of reduced graphene oxide via combined elemental doping and chemical modifications. ACS Omega 4 (22), 19787–19798. doi: 10.1021/acsomega.9b02642 PubMed DOI PMC
Ye R., McCray J. M., Wright A. L. (2011). Microbial response of a calcareous histosol to sulfur amendment. Soil Sci. 176 (9), 479–486. doi: 10.1097/SS.0b013e31822769e7 DOI
Yu H. T., Zhang B. W., Bulin C. K., Li R. H., Xing R. G. (2016). High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 7. doi: 10.1038/srep36143 PubMed DOI PMC
Zahedi S. M., Abolhassani M., Hadian-Deljou M., Feyzi H., Akbari A., Rasouli F., et al. . (2023). Proline-functionalized graphene oxide nanoparticles (GO-pro NPs): A new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera l. cv sultana). Plant Stress 7, 10. doi: 10.1016/j.stress.2022.100128 DOI
Zakari S., Liu W., Wu J., Singh A. K., Jiang X., Yang B., et al. . (2020). Decay and erosion-related transport of sulfur compounds in soils of rubber based agroforestry. J. Environ. Manage 274, 111200. doi: 10.1016/j.jenvman.2020.111200 PubMed DOI
Zhang Q., Hou Q. X., Huang G. X., Fan Q. (2020). Removal of heavy metals in aquatic environment by graphene oxide composites: A review. Environ. Sci. pollut. Res. 27 (1), 190–209. doi: 10.1007/s11356-019-06683-w PubMed DOI
Zhao D. Q., Fang Z. W., Tang Y. H., Tao J. (2020). Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to Paeonia ostii without toxicity. Environ. Sci. Technol. 54 (13), 8269–8279. doi: 10.1021/acs.est.0c02040 PubMed DOI
Zhao L., Wang W., Fu X. H., Liu A., Cao J. F., Liu J. F. (2022). Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.810905 PubMed DOI PMC