• This record comes from PubMed

Unusual enantiomeric D,L-N-acyl homoserine lactones in Pectobacterium atrosepticum and Pseudomonas aeruginosa

. 2023 ; 18 (3) : e0283657. [epub] 20230331

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Quorum Sensing allows bacteria to sense their population density via diffusible N-acyl homoserine lactone (N-HL) signaling molecules. Upon reaching a high enough cell density, bacteria will collectively exhibit a phenotype. Until recently, methods used for detection of N-HLs have not considered the chirality of these molecules and it was assumed that only the L-enantiomer was produced by bacteria. The production and effects of D-N-HLs have rarely been studied. In this work, the temporal production of D-N-HLs by the plant pathogen Pectobacterium atrosepticum and the human pathogen Pseudomonas aeruginosa are reported. Both bacteria produced D-N-HLs in significant amounts and in some cases their concentrations were higher than other low abundance L-N-HLs. Previously unreported D-enantiomers of N-3-oxoacyl and N-3-hydroxyacyl homoserine lactones were detected in P. atrosepticum. Interestingly, L-N-HLs produced in the lowest concentrations had relatively higher amounts of their corresponding D-enantiomers. Potential sources of D-N-HLs and their significance are considered.

See more in PubMed

Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970;104: 313–322. doi: 10.1128/jb.104.1.313-322.1970 PubMed DOI PMC

Tomasz A. Control of the competent state in pneumococcus by a hormone-like cell product: An example for a new type of regulatory mechanism in bacteria. Nature. 1965;208: 155–159. doi: 10.1038/208155a0 PubMed DOI

Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: The LuxR-LuxI family of cell density- responsive transcriptional regulators. Journal of Bacteriology. 1994. doi: 10.1128/jb.176.2.269-275.1994 PubMed DOI PMC

Fuqua C, Greenberg EP. Listening in on bacteria: Acyl-homoserine lactone signalling. Nature Reviews Molecular Cell Biology. 2002. doi: 10.1038/nrm907 PubMed DOI

Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nature Reviews Microbiology 2019 17:6. 2019;17: 371–382. doi: 10.1038/s41579-019-0186-5 PubMed DOI PMC

Morin D, Grasland B, Vallée-Réhel K, Dufau C, Haras D. On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A. 2003;1002: 79–92. doi: 10.1016/s0021-9673(03)00730-1 PubMed DOI

Mohamed NM, Cicirelli EM, Kan J, Chen F, Fuqua C, Hill RT. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environ Microbiol. 2008;10. doi: 10.1111/j.1462-2920.2007.01431.x PubMed DOI

Readel E, Portillo A, Talebi M, Armstrong DW. Enantiomeric separation of quorum sensing autoinducer homoserine lactones using GC-MS and LC-MS. Anal Bioanal Chem. 2020;412: 2927–2937. doi: 10.1007/s00216-020-02534-7 PubMed DOI

Portillo AE, Readel E, Armstrong DW. Production of both l- and d- N-acyl-homoserine lactones by Burkholderia cepacia and Vibrio fischeri. Microbiologyopen. 2021;10: 1–9. doi: 10.1002/mbo3.1242 PubMed DOI PMC

Latour X, Diallo S, Chevalier S, Morin D, Smadja B, Burini JF, et al.. Thermoregulation of N-acyl homoserine lactone-based quorum sensing in the soft rot bacterium Pectobacterium atrosepticum. Appl Environ Microbiol. 2007;73: 4078–4081. doi: 10.1128/AEM.02681-06 PubMed DOI PMC

Smadja B, Latour X, Faure D, Chevalier S, Dessaux Y, Orange N. Involvement of N-acylhomoserine lactones throughout plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum). Molecular Plant-Microbe Interactions. 2004;17: 1269–1278. doi: 10.1094/MPMI.2004.17.11.1269 PubMed DOI

Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev. 2001;25. doi: 10.1111/j.1574-6976.2001.tb00583.x PubMed DOI

Burr T, Barnard AML, Corbett MJ, Pemberton CL, Simpson NJL, Salmond GPC. Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: The VirR repressor. Mol Microbiol. 2006;59. doi: 10.1111/j.1365-2958.2005.04939.x PubMed DOI

Finch RG, Pritchard DI, Bycroft BW, Williams P, Stewart GSAB. Quorum sensing: A novel target for anti-infective therapy. Journal of Antimicrobial Chemotherapy. 1998;42: 569–571. doi: 10.1093/jac/42.5.569 PubMed DOI

Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci. 2021;22: 1–37. doi: 10.3390/ijms22063128 PubMed DOI PMC

Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol. 2022;24: 2630–2656. doi: 10.1111/1462-2920.15784 PubMed DOI

Coutinho H, Falcão-Silva VS, Gonçalves G. Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers. Int Arch Med. 2008;1: 24. doi: 10.1186/1755-7682-1-24 PubMed DOI PMC

Defez C, Fabbro-Peray P, Bouziges N, Gouby A, Mahamat A, Daurès JP, et al.. Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection. Journal of Hospital Infection. 2004;57. doi: 10.1016/j.jhin.2004.03.022 PubMed DOI

Mahmoudi E, Ahmadi A, Sayed-Tabatabaei BE, Ghobadi C, Akhavan A, Hasanzadeh N, et al.. A novel AHL-degrading rhizobacterium quenches the virulence of pectobacterium atrosepticum on potato plant. Journal of Plant Pathology. 2011;93.

Crépin A, Barbey C, Cirou A, Tannières M, Orange N, Feuilloley M, et al.. Biological control of pathogen communication in the rhizosphere: A novel approach applied to potato soft rot due to Pectobacterium atrosepticum. Plant Soil. 2012;358: 27–37. doi: 10.1007/s11104-011-1030-5 DOI

Crépin A, Beury-Cirou A, Barbey C, Farmer C, Hélias V, Burini JF, et al.. N-acyl homoserine lactones in diverse Pectobacterium and dickeya plant pathogens: Diversity, abundance, and involvement in virulence. Sensors. 2012;12: 3484–3497. doi: 10.3390/s120303484 PubMed DOI PMC

Musthafa KS, Saroja V, Pandian SK, Ravi AV. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine- lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). J Biosci. 2011;36: 55–67. doi: 10.1007/s12038-011-9011-7 PubMed DOI

Cataldi TRI, Bianco G, Palazzo L, Quaranta V. Occurrence of N-acyl-l-homoserine lactones in extracts of some Gram-negative bacteria evaluated by gas chromatography-mass spectrometry. Anal Biochem. 2007;361. doi: 10.1016/j.ab.2006.11.037 PubMed DOI

Hoang TPT, Barthélemy M, Lami R, Stien D, Eparvier V, Touboul D. Annotation and quantification of N-acyl homoserine lactones implied in bacterial quorum sensing by supercritical-fluid chromatography coupled with high-resolution mass spectrometry. Anal Bioanal Chem. 2020;412. doi: 10.1007/s00216-019-02265-4 PubMed DOI

Yang X, Sun J, Cui F, Ji J, Wang L, Zhang Y, et al.. An eco-friendly sensor based on CQD@MIPs for detection of N-acylated homoserine lactones and its 3D printing applications. Talanta. 2020;219. doi: 10.1016/j.talanta.2020.121343 PubMed DOI

Horáček O, Portillo AE, Dhaubhadel U, Sung YS, Readel ER, Kučera R, et al.. Comprehensive chiral GC-MS/MS and LC-MS/MS methods for identification and determination of N-acyl homoserine lactones. Talanta. 2023;253: 123957. doi: 10.1016/j.talanta.2022.123957 PubMed DOI

Armstrong DW, Gasper M, Lee SH, Zukowski J, Ercal N. D-amino acid levels in human physiological fluids. Chirality. 1993;5. doi: 10.1002/chir.530050519 PubMed DOI

Armstrong DW, Gasper MP, Lee SH, Ercal N, Zukowski J. Factors controlling the level and determination of D-amino acids in the urine and plasma of laboratory rodents. Amino Acids. 1993;5. doi: 10.1007/BF00805992 PubMed DOI

Malik AK, Fekete A, Gebefuegi I, Rothballer M, Schmitt-Kopplin P. Single drop microextraction of homoserine lactones based quorum sensing signal molecules, and the separation of their enantiomers using gas chromatography mass spectrometry in the presence of biological matrices. Microchimica Acta. 2009;166. doi: 10.1007/s00604-009-0183-x DOI

Joshi JR, Khazanov N, Khadka N, Charkowski AO, Burdman S, Carmi N, et al.. Direct Binding of Salicylic Acid to Pectobacterium N-Acyl-Homoserine Lactone Synthase. ACS Chem Biol. 2020;15: 1883–1891. doi: 10.1021/acschembio.0c00185 PubMed DOI

Barbey C, Crépin A, Bergeau D, Ouchiha A, Mijouin L, Taupin L, et al.. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway. PLoS One. 2013;8: 1–9. doi: 10.1371/journal.pone.0066642 PubMed DOI PMC

Chatterjee A, Cui Y, Hasegawa H, Leigh N, Dixit V, Chatterjee AK. Comparative analysis of two classes of quorum-sensing signaling systems that control production of extracellular proteins and secondary metabolites in Erwinia carotovora subspecies. J Bacteriol. 2005;187: 8026–8038. doi: 10.1128/JB.187.23.8026-8038.2005 PubMed DOI PMC

Patel NM, Moore JD, Blackwell HE, Amador-Noguez D. Identification of unanticipatedand novel N-Acyl L-homoserine lactones (AHLs) using a sensitive non-targeted LC-MS/MS method. PLoS One. 2016;11: 1–20. doi: 10.1371/journal.pone.0163469 PubMed DOI PMC

Ortori CA, Dubern JF, Chhabra SR, Cámara M, Hardie K, Williams P, et al.. Simultaneous quantitative profiling of N-acyl-l-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal Bioanal Chem. 2011;399: 839–850. doi: 10.1007/s00216-010-4341-0 PubMed DOI

Shin D, Gorgulla C, Boursier ME, Rexrode N, Brown EC, Arthanari H, et al.. N-Acyl Homoserine Lactone Analog Modulators of the Pseudomonas aeruginosa Rhll Quorum Sensing Signal Synthase. ACS Chem Biol. 2019;14: 2305–2314. doi: 10.1021/acschembio.9b00671 PubMed DOI PMC

Li SZ, Xu R, Ahmar M, Goux-Henry C, Queneau Y, Soulère L. Influence of the D/L configuration of N-acyl-homoserine lactones (AHLs) and analogues on their Lux-R dependent quorum sensing activity. Bioorg Chem. 2018;77. doi: 10.1016/j.bioorg.2018.01.005 PubMed DOI

Palmer AG, Senechal AC, Mukherjee A, Ané JM, Blackwell HE. Plant responses to bacterial N-acyl l-homoserine lactones are dependent on enzymatic degradation to l-homoserine. ACS Chem Biol. 2014;9: 1834–1845. doi: 10.1021/cb500191a PubMed DOI PMC

Thomas PW, Stone EM, Costello AL, Tierney DL, Fast W. The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein. Biochemistry. 2005;44: 7559–7569. doi: 10.1021/bi050050m PubMed DOI

Hodgkinson JT, Galloway WRJD, Casoli M, Keane H, Su X, Salmond GPC, et al.. Robust routes for the synthesis of N-acylated-l-homoserine lactone (AHL) quorum sensing molecules with high levels of enantiomeric purity. Tetrahedron Lett. 2011;52: 3291–3294. doi: 10.1016/j.tetlet.2011.04.059 DOI

Yoshimura T, Esaki N. Amino acid racemases: Functions and mechanisms. J Biosci Bioeng. 2003;96: 103–109. doi: 10.1016/s1389-1723(03)90111-3 PubMed DOI

Radkov AD, Moe LA. Bacterial synthesis of D-amino acids. Appl Microbiol Biotechnol. 2014;98: 5363–5374. doi: 10.1007/s00253-014-5726-3 PubMed DOI

Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO, Ferris CD, et al.. Purification of serine racemase: Biosynthesis of the neuromodulator d-serine. Proceedings of the National Academy of Sciences. 1999;96: 721–725. doi: 10.1073/pnas.96.2.721 PubMed DOI PMC

Armstrong DW, Duncan JD, Lee SH. Evaluation of D-amino acid levels in human urine and in commercial L-amino acid samples. Amino Acids 1991 1:1. 1991;1: 97–106. doi: 10.1007/BF00808096 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...