COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VEGA 1/0589/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
33573318
PubMed Central
PMC7866841
DOI
10.3390/molecules26030727
PII: molecules26030727
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, biological active compounds, coronaviruses group, plant chemo-diversity,
- MeSH
- alkaloidy chemie farmakologie MeSH
- antivirové látky chemie terapeutické užití MeSH
- COVID-19 prevence a kontrola MeSH
- farmakoterapie COVID-19 MeSH
- flavonoidy chemie farmakologie MeSH
- léčivé rostliny chemie MeSH
- lidé MeSH
- rostlinné extrakty chemie farmakologie terapeutické užití MeSH
- terpeny chemie farmakologie MeSH
- vizualizace dat MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- alkaloidy MeSH
- antivirové látky MeSH
- flavonoidy MeSH
- rostlinné extrakty MeSH
- terpeny MeSH
During the time of the novel coronavirus disease 2019 (COVID-19) pandemic, it has been crucial to search for novel antiviral drugs from plants and well as other natural sources as alternatives for prophylaxis. This work reviews the antiviral potential of plant extracts, and the results of previous research for the treatment and prophylaxis of coronavirus disease and previous kinds of representative coronaviruses group. Detailed descriptions of medicinal herbs and crops based on their origin native area, plant parts used, and their antiviral potentials have been conducted. The possible role of plant-derived natural antiviral compounds for the development of plant-based drugs against coronavirus has been described. To identify useful scientific trends, VOSviewer visualization of presented scientific data analysis was used.
Department of Agriculture Food and Environment University of Pisa 56126 Behbahan Italy
Department of Plant Physiology Slovak University of Agriculture A Hlinku 2 94976 Nitra Slovakia
Zobrazit více v PubMed
Liu Y.-C., Kuo R.-L., Shih S.-R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J. 2020;43:328–333. doi: 10.1016/j.bj.2020.04.007. PubMed DOI PMC
Coronaviridae Study Group of the International Committee on Taxonomy of V The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z. PubMed DOI PMC
Chan J.F.-W., Yuan S., Kok K.-H., To K.K.-W., Chu H., Yang J., Xing F., Liu J., Yip C.C.-Y., Poon R.W.-S., et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9. PubMed DOI PMC
Rehman I.U., Khan H.R., E Zainab W., Ahmed A., Ishaq M.D., Ullah I. Barriers in Social Distancing during Covid19 pandemic -Is a message for forced lockdown? J. Med. Res. Innov. 2020;4:e000222. doi: 10.32892/jmri.222. DOI
Balachandar V., Mahalaxmi I., Kaavya J., Vivekanandhan G., Ajithkumar S., Arul N., Singaravelu G., Kumar N.S., Dev S.M. COVID-19: Emerging protective measures. Eur. Rev. Med. Pharmacol. Sci. 2020;24:3422–3425. PubMed
Dong Y., Dai T., Wei Y., Zhang L., Zheng M., Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Sig. Transduct. Target Ther. 2020;5:237. doi: 10.1038/s41392-020-00352-y. PubMed DOI PMC
COVID-19 Vaccines. [(accessed on 10 January 2020)]; Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines.
Huang J., Tao G., Liu J., Cai J., Huang Z., Chen J.-X. Current Prevention of COVID-19: Natural Products and Herbal Medicine. Front. Pharmacol. 2020;11:588508. doi: 10.3389/fphar.2020.588508. PubMed DOI PMC
Mahmood N., Nasir S.B., Hefferon K. Plant-Based Drugs and Vaccines for COVID-19. Vaccines. 2020;9:15. doi: 10.3390/vaccines9010015. PubMed DOI PMC
Liew P.S., Hair-Bejo M. Farming of plant-based veterinary vaccines and their applications for disease prevention in animal. Adv. Virol. 2015;2015:936940. doi: 10.1155/2015/936940. PubMed DOI PMC
Naja F., Hamadeh R. Nutrition amid the COVID-19 pandemic: A multi-level framework for action. Eur. J. Clin. Nutr. 2020;74:1117–1121. doi: 10.1038/s41430-020-0634-3. PubMed DOI PMC
Galanakis C.M. The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods. 2020;9:523. doi: 10.3390/foods9040523. PubMed DOI PMC
Panyod S., Ho C.-T., Sheen L.-Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med. 2020;10:420–427. doi: 10.1016/j.jtcme.2020.05.004. PubMed DOI PMC
Ben-Shabat S., Yarmolinsky L., Porat D., Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2019;10:354–367. doi: 10.1007/s13346-019-00691-6. PubMed DOI PMC
Joshi B., Panda S.K., Jouneghani R.S., Liu M., Parajuli N., Leyssen P., Neyts J., Luyten W. Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of Nepal selected sased on ethnobotanical evidence. Evid. Based Complementary Altern. Med. 2020 doi: 10.1155/2020/1043471. PubMed DOI PMC
Zambounis A., Sytar O., Valasiadis D., Hilioti Z. Effect of photosensitisers on growth and morphology of Phytophthora citrophthora coupled with leaf bioassays in pear seedlings. Plant Protect. Sci. 2020;56:74–82. doi: 10.17221/102/2019-PPS. DOI
Ríos J.L., Recio M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005;100:80–84. doi: 10.1016/j.jep.2005.04.025. PubMed DOI
Ghildiyal R., Prakash V., Chaudhary V.K., Gupta V., Gabrani R. Phytochemicals as Antiviral Agents: Recent Updates. In: Swamy M., editor. Plant-Derived Bioactives. Springer; Singapore: 2020.
Gautret P., Lagier J.-C., Honoré S., Hoang V.T., Raoult D. Clinical efficacy and safety profile of hydroxychloroquine and azithromycin against COVID-19. Int. J. Antimicrob. Agents. 2021;57:106242. doi: 10.1016/j.ijantimicag.2020.106242. PubMed DOI PMC
Zhang D.-H., Wu K.-L., Zhang X., Deng S.-Q., Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med. 2020;18:152–158. doi: 10.1016/j.joim.2020.02.005. PubMed DOI PMC
Sampangi-Ramaiah M.H., Vishwakarma R., Shaanker R.U. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr. Sci. 2020;118:1087–1092.
Lee H., Lei H., Santarsiero B.D., Gatuz J.L., Cao S., Rice A.J., Patel K., Szypulinski M.Z., Ojeda I., Ghosh A.K., et al. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV. ACS Chem. Biol. 2015;10:1456–1465. doi: 10.1021/cb500917m. PubMed DOI PMC
Liu A., Du G.-H. Antiviral Properties of Phytochemicals. In: Patra A., editor. Dietary Phytochemicals and Microbes. Springer; Dordrecht, The Netherlands: 2012.
Monajjemi M., Mollaamin F., Shojaei S. An overview on Coronaviruses family from past to Covid-19: Introduce some inhibitors as antiviruses from Gillan’s plants. Biointerface Res. Appl. Chem. 2020;10:5575–5585.
Eng Y.S., Lee C.-H., Lee W.C., Huang C.C., Chang J.S. Unraveling the molecular mechanism of traditional chinese medicine: Formulas against acute airway viral infections as examples. Molecules. 2019;24:3505. doi: 10.3390/molecules24193505. PubMed DOI PMC
Yang Y., Islam S., Wang J., Li Y., Chen X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int. J. Biol. Sci. 2020;16:1708–1717. doi: 10.7150/ijbs.45538. PubMed DOI PMC
Ameri A., Heydarirad G., Jafari J.M., Ghobadi A., Rezaeizadeh H., Choopani R. Medicinal plants contain mucilage used in traditional Persian medicine (TPM) Pharm. Biol. 2015;53:615–623. doi: 10.3109/13880209.2014.928330. PubMed DOI
Buso P., Manfredini S., Ashtiani H.R.A., Sciabica S., Buzzi R., Vertuani S., Baldisserotto A. Iranian Medicinal Plants: From Ethnomedicine to Actual Studies. Medicina (Kaunas) 2020;56:97. doi: 10.3390/medicina56030097. PubMed DOI PMC
Raheel R., Ashraf M., Ejaz S., Javeed A., Altaf I. Assessment of the cytotoxic and antiviral potential of aqueous extracts from different parts of Acacia nilotica (Linn) Delile against Peste des petits ruminants virus. Environ. Toxicol. Pharmacol. 2013;35:72–81. doi: 10.1016/j.etap.2012.11.005. PubMed DOI
Ramezany F., Kiyani N., Khademizadeh M. Persian manna in the past and the present: An overview. Am. J. Pharmacol. Sci. 2013;1:35–37. doi: 10.12691/ajps-1-3-1. DOI
Shojai T.M., Langeroudi A.G., Karimi V., Barin A., Sadri N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J. Phytomedicine. 2016;6:458-267. PubMed PMC
Pontin M., Bottini R., Burba J.L., Piccoli P.N. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochemistry. 2015;115:152–160. doi: 10.1016/j.phytochem.2015.02.003. PubMed DOI
Mustafayeva I.R., Ibadullayeva S.J., Alakbarov R.A., Ismayilov A.H., Qasimov H.Z., Qasimova S.S. Science-Education; Baku, Azerbaijan: 2015. Pharmacognosis with the Basis of Botany.615p
Shah S.M.A., Akhtar N., Akram M., Shah P.A., Tariq Saeed T., Ahmed K., Asif H.M. Pharmacological activity of Althaea officinalis L. J. Med. Plants Res. 2011;5:5662–5666.
Munir O., Volkan A., Ernaz A., Ibadullayeva S.J., Aslanipour B., Günenç T.M. Ethnobotany and Physiology. Volume 1. Springer; Berlin/Heidelberg, Germany: 2018. Herbals in Iğdır (Turkey), Nakhchivan (Azerbaijan), and Tabriz (Iran)/Herbs and Human Health; pp. 197–262.
Peçanha L.M.T., Fernandes P.D., Simen T.J.-M., De Oliveira D.R., Finotelli P.V., Pereira M.V.A., Barboza F.F., Almeida T.D.S., Carvalhal S., Pierucci A.P.T.R., et al. Immunobiologic and antiinflammatory properties of a bark extract from Ampelozizyphus amazonicus Ducke. BioMed. Res. Int. 2013;2013:451679. doi: 10.1155/2013/451679. PubMed DOI PMC
Hossain S., Urbi Z., Sule A., Rahman K.M.H. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci. World J. 2014;2014:274905. doi: 10.1155/2014/274905. PubMed DOI PMC
Ulasli M., Gurses S.A., Bayraktar R., Yumrutas O., Oztuzcu S., Igci M., Igci Y.Z., Cakmak E.A., Arslan A. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol. Biol. Rep. 2014;41:1703–1711. doi: 10.1007/s11033-014-3019-7. PubMed DOI PMC
Brandão G., Kroon E., Dos Santos J., Stehmann J., Lombardi J., De Oliveira A.B. Antiviral activity of Bignoniaceae species occurring in the State of Minas Gerais (Brazil): Part 1. Lett. Appl. Microbiol. 2010;51:469–476. doi: 10.1111/j.1472-765X.2010.02924.x. PubMed DOI
Shin H.-B., Choi M.-S., Ryu B., Lee N.-R., Kim H.-I., Choi H.-E., Chang J., Lee K.-T., Jang D.S., Inn K.-S. Antiviral activity of carnosic acid against respiratory syncytial virus. Virol. J. 2013;10:303. doi: 10.1186/1743-422X-10-303. PubMed DOI PMC
Nigam M., Atanassova M., Mishra A.P., Pezzani R., Devkota H.P., Plygun S., Salehi B., Setzer W.N., Sharifi-Rad J. Bioactive compounds and health benefits of Artemisia species. Nat. Prod. Commun. 2019;14:1–17. doi: 10.1177/1934578x19850354. DOI
Kohn L., Foglio M., Rodrigues R., De O Sousa I., Martini M., Padilla M., Neto D.D.L., Arns C. In-Vitro Antiviral Activities of Extracts of Plants of The Brazilian Cerrado against the Avian Metapneumovirus (aMPV) Braz. J. Poult. Sci. 2015;17:275–280. doi: 10.1590/1516-635X1703275-280. DOI
LaRocca D.G., Da Silva I.V., Junior N.G.R., Saldanha K.L.A., Rocha J.A., De Andrade Royo V. Characterizing Casca d´anta: An Apocynaceae used to treat tropical diseases in the Amazonian region. Idesia (Arica) 2019;37:65–73. doi: 10.4067/S0718-34292019000300065. DOI
Lebedeva A.A., Zakharchenko N.S., Trubnikova E.V., Medvedeva O.A., Kuznetsova T., Masgutova G.A., Zylkova M.V., Buryanov Y.I., Belous A.S. Bactericide, immunomodulating, and wound healing properties of transgenic Kalanchoe pinnata Synergize with antimicrobial peptide cecropin P1 in vivo. J. Immunol. Res. 2017;2017:4645701. doi: 10.1155/2017/4645701. PubMed DOI PMC
Yang J.L., Ha T.K.Q., Oh W.K. Discovery of inhibitory materials against PEDV corona virus from medicinal plants. Jpn. J. Vet. Res. 2016;64:S53–S63. doi: 10.14943/jjvr.64.suppl.s53. DOI
Yang J.-L., Ha T.-K.-Q., Dhodary B., Pyo E., Nguyen N.H., Cho H., Kim E., Oh W.K. Oleanane triterpenes from the flowers of Camellia japonica inhibit porcine epidemic diarrhea virus (PEDV) replication. J. Med. Chem. 2015;58:1268–1280. doi: 10.1021/jm501567f. PubMed DOI
Ziai S.A., Hamkar R., Monavari H.R., Norooz-Babaei Z., Adibi L. Antiviral effect assay of twenty five species of various medicinal plants families in Iran. J. Med. Plants. 2007;1:1–9.
Fatima M., Zaidi N.-U.-S.S., Amraiz D., Afzal F. In vitro antiviral activity of cinnamomum cassia and its nanoparticles against H7N3 Influenza A Virus. J. Microbiol. Biotechnol. 2016;26:151–159. doi: 10.4014/jmb.1508.08024. PubMed DOI
Yeh C.F., Chang J.S., Wang K.C., Shieh D.E., Chiang L.C. Water extract of Cinnamomum cassia Blume inhibited human respiratory syncytial virus by preventing viral attachment, internalization, and syncytium formation. J. Ethnopharmacol. 2013;147:321–326. doi: 10.1016/j.jep.2013.03.010. PubMed DOI
Ooi L.S.M., Li Y., Kam S.-L., Wang H., Wong E.Y.L., Ooi V.E.C. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am. J. Chin. Med. 2006;34:511–522. doi: 10.1142/S0192415X06004041. PubMed DOI
Heo Y., Cho Y., Ju K.S., Cho H., Park K.H., Choi H., Yoon J.K., Moon C., Kim Y.B. Antiviral activity of Poncirus trifoliata seed extract against oseltamivir-resistant influenza virus. J. Microbiol. 2018;56:586–592. doi: 10.1007/s12275-018-8222-0. PubMed DOI
Elsebai M.F., Mocan A., Atanasov A.G. Cynaropicrin: A comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Front. Pharmacol. 2016;7:472. doi: 10.3389/fphar.2016.00472. PubMed DOI PMC
Lelešius R., Karpovaitė A., Mickienė R., Drevinskas T., Tiso N., Ragažinskienė O., Kubilienė L., Maruška A., Salomskas A. In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC Vet. Res. 2019;15:178. doi: 10.1186/s12917-019-1925-6. PubMed DOI PMC
Sharma M., Shawn A., Anderson S.A., Schoop R., Hudson J.B. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antivir. Res. 2009;83:165–170. doi: 10.1016/j.antiviral.2009.04.009. PubMed DOI
Nasseri M.A., Keshtkar H., Kazemnejadi M., Allahresani A. Phytochemical properties and antioxidant activity of Echinops persicus plant extract: Green synthesis of carbon quantum dots from the plant extract. SN Appl. Sci. 2020;2:1–12. doi: 10.1007/s42452-020-2466-0. DOI
Farahani M. Antiviral effect assay of aqueous extract of Echium amoenum L. against HSV-1. Zahedan J. Res. Med Sci. (Tabib-E-Shargh) 2013;15:46–48.
Abolhassani M. Antiviral activity of borage (Echium amoenum) Arch Med. Sci. 2010;3:366–369. doi: 10.5114/aoms.2010.14256. PubMed DOI PMC
A Betancur-Galvis L., E Morales G., E Forero J., Roldan J. Cytotoxic and antiviral activities of colombian medicinal plant extracts of the Euphorbia genus. Mem. Inst. Oswaldo Cruz. 2002;97:541–546. doi: 10.1590/S0074-02762002000400017. PubMed DOI
Gyuris A., Szlávik L., Minárovits J., Vasas A., Molnár J., Hohmann J. Antiviral activities of extracts of Euphorbia hirta L. against HIV-1, HIV-2 and SIVmac251. In Vivo. 2009;23:429–432. PubMed
Iranshahy M., Iranshahi M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)-a review. J. Ethnopharmacol. 2011;134:1–10. doi: 10.1016/j.jep.2010.11.067. PubMed DOI
Lee C.-L., Chiang L.-C., Cheng L.-H., Liaw C.-C., El-Razek M.H.A., Chang F.-R., Wu Y.-C. Influenza A (H(1)N(1)) Antiviral and Cytotoxic Agents from Ferula assa-foetida. J. Nat. Prod. 2009;72:1568–1572. doi: 10.1021/np900158f. PubMed DOI
Kakhramanova M., Ibadullaeva S.J. Science-Education; Baku, Azerbaijan: 2017. Mysterious World of Plants (Grass Plants) p. 350.
Kakhramanova M., Ibadullaeva S.J. Immunostimulatory Phytospore with a General Strengthening Effect. Eurasian Patent Office; Moscow, Russia: 2017. pp. 1–4.
Anagha K., Manasi D., Meera M. Scope of Glycyrrhiza glabra (Yashtimadhu) as an antiviral agent: A Review. Int. J. Curr. Microbiol. App. Sci. 2014;3:657–665.
Khan F., Sarker M.R., Ming L.C., Mohamed I.N., Zhao C., Sheikh B.Y., Tsong H.F., Rashid M.A. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front. Pharmacol. 2019;10:1223. doi: 10.3389/fphar.2019.01223. PubMed DOI PMC
Mishra K.P., Chanda S., Karan D., Ganju L., Sawhney R.C. Effect of Seabuckthorn (Hippophae rhamnoides) flavone on immune system: An in-vitro approach. Phytother. Res. 2008;22:1490–1495. doi: 10.1002/ptr.2518. PubMed DOI
Ibadullayeva S.J., Mamedova S.E., Sultanova Z.R., Movsumova N.V., Jafarli I.A. Medicinal plants of Azerbaijan flora used in the treatment of certain diseases. Afr. J. Pharm. Pharmacol. 2010;4:545–548.
Enkhtaivan G., John K.M., Pandurangan M., Hur J.H., Leutou A.S., Kim D.H. Extreme effects of Seabuckthorn extracts on influenza viruses and human cancer cells and correlation between flavonol glycosides and biological activities of extracts. Saudi J. Biol. Sci. 2017;24:1646–1656. doi: 10.1016/j.sjbs.2016.01.004. PubMed DOI PMC
Lau K.-M., Lee K.-M., Koon C.-M., Cheung C.S.-F., Lau C.-P., Ho H.-M., Lee M.Y.-H., Au S.W.-N., Cheng C.H.-K., Lau C.B.-S., et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol. 2008;118:79–85. doi: 10.1016/j.jep.2008.03.018. PubMed DOI PMC
E Buckwold V., Wilson R.J.H., Nalca A., Beer B.B., Voss T.G., A Turpin J., Buckheit R.W., Wei J., Wenzel-Mathers M., Walton E.M. Antiviral activity of hop constituents against a series of DNA and RNA viruses. Antivir. Res. 2004;61:57–62. doi: 10.1016/S0166-3542(03)00155-4. PubMed DOI
Ibadullayeva S., Alekperov R. Medicinal Herbs (Ethnobotany and Phyitotherapy) Baku. ELM; Baku, Azerbaijan: 2013. p. 337.
Di Sotto A., Checconi P., Celestino I., Locatelli M., Carissimi S., De Angelis M., Rossi V., Limongi D., Toniolo C., Martinoli L., et al. Antiviral and Antioxidant Activity of a Hydroalcoholic Extract from Humulus lupulus L. Oxidative Med. Cell. Longev. 2018;2018:5919237. doi: 10.1155/2018/5919237. PubMed DOI PMC
Amber R., Adnan M., Tariq A., Mussarat S. A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms. J. Pharm. Pharmacol. 2017;69:109–122. doi: 10.1111/jphp.12669. PubMed DOI PMC
Rajbhandari M., Mentel R., Jha P.K., Chaudhary R.P., Bhattarai S., Gewali M.B., Karmacharya N., Hipper M., Lindequist U. Antiviral activity of some plants used in Nepalese traditional medicine. Evid. Based Complement. Altern. Med. 2009;6:517–522. doi: 10.1093/ecam/nem156. PubMed DOI PMC
Akram M., Tahir I.M., Shah S.M.A., Mahmood Z., Altaf A., Ahmad K., Munir N., Daniyal M., Nasir S., Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res. 2018;32:811–822. doi: 10.1002/ptr.6024. PubMed DOI
Li R.-S., Chen C., Zhang H.-Q., Guo H.-Y., Wang H., Wang L., Zhang X., Hua S.-N., Yu J., Xiao P.-G. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir. Res. 2005;67:18–23. doi: 10.1016/j.antiviral.2005.02.007. PubMed DOI PMC
Speranza J., Miceli N., Taviano M.F., Ragusa S., Kwiecień I., Szopa A., Ekiert H.M. Isatis tinctoria L. (Woad): A Review of its botany, ethnobotanical uses, phytochemistry, biological activities, and biotechnological studies. Plants. 2020;9:298. doi: 10.3390/plants9030298. PubMed DOI PMC
Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145. PubMed DOI PMC
Bais S., Gill N.S., Rana N., Shandil S. A phytopharmacological review on a medicinal Plant: Juniperus communis. Int. Sch. Res. Not. 2014;2014:634723. doi: 10.1155/2014/634723. PubMed DOI PMC
Gong S.J., Su X.J., Yu H.P., Li J., Qin Y.J., Xu Q., Luo W.-S. A study on anti-SARS-CoV 3CL protein of flavonoids from litchi chinensis sonn core. Chin. Pharmacol. Bull. 2008;24:699–700.
Jo S., Kim S., Shin D.H., Kim M.-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzym. Inhib. Med. Chem. 2020;35:145–151. doi: 10.1080/14756366.2019.1690480. PubMed DOI PMC
Nimmanpipug P., Lee V.S., Wolschann P., Hannongbua S. Litchi chinensis-derived terpenoid as anti-HIV-1 protease agent: Structural design from molecular dynamics simulations. Molecular Simulation Mol. Simul. 2009;35:673–680. doi: 10.1080/08927020802714841. DOI
Wu Q., Yu C., Yan Y., Chen J., Zhang C., Wen X. Antiviral flavonoids from Mosla scabra. Fitoterapia. 2010;81:429–433. doi: 10.1016/j.fitote.2009.12.005. PubMed DOI
Wu Q., Wang W., Dai X.-Y., Wang Z.-Y., Shen Z.-H., Ying H.-Z., Yu C.-H. Chemical compositions and anti-influenza activities of essential oils from Mosla dianthera. J. Ethnopharmacol. 2012;139:668–671. doi: 10.1016/j.jep.2011.11.056. PubMed DOI
Mahboubi M. Natural therapeutic approach of Nigella sativa (Black seed) fixed oil in management of sinusitis. Integr. Med. Res. 2018;7:27–32. doi: 10.1016/j.imr.2018.01.005. PubMed DOI PMC
Mohamed S., Hossain M.S. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int. J. Immunopharmacol. 2000;22:729–740. doi: 10.1016/s0192-0561(00)00036-9. PubMed DOI
Ahmad A., Rehman M.U., Lkharfy K.M. An alternative approach to minimize the risk of coronavirus (Covid-19) and similar infections. Eur. Rev. Med Pharmacol. Sci. 2020;24:4030–4034. doi: 10.26355/eurrev_202004_20873. PubMed DOI
Molla S., Azad A.K., Hasib A.A.A., Hossain M.M., Ahammed S., Rana S., Islam M.T. A review on antiviral effects of Nigella sativa L. Pharmacologyonline. 2019;2:47–53.
Yoon T.J., Hur J.W., Cho E.H., Lee B.K., Lee U. The enhanced effect of Oplopanax elatus Nakai on the immune system and antitumor activity. Korean J. Food Nutr. 2013;26:375–382. doi: 10.9799/ksfan.2013.26.3.375. DOI
Shikov A.N., Pozharitskaya O.N., Makarov V.G., Yang W., Guo D.-A. Oplopanax elatus (Nakai) Nakai: Chemistry, traditional use and pharmacology. Chin. J. Nat. Med. 2014;12:721–729. doi: 10.1016/S1875-5364(14)60111-4. PubMed DOI
Agayeva N.A., Rafiyeva S.R., Shiraliyeva G.S., Ibadullayeva S.J. Antimicrobe characteristics of essential oil of the Origanum vulgare L. Int. J. Curr. Microbiol. Appl. Sci. (IJCMAS) 2017;6:019–027. doi: 10.20546/ijcmas. DOI
Blank D.E., Hübner S.D.O., Alves G.H., Cardoso C.A.L., Freitag R.A., Cleff M.B. Chemical composition and antiviral effect of extracts of Origanum vulgare. Adv. Biosci. Biotechnol. 2019;10:188–196. doi: 10.4236/abb.2019.107014. DOI
Santoyo S., Jaime L., García-Risco M.R., Ruiz-Rodríguez A., Reglero G. Antiviral Properties of Supercritical CO2 Extracts from Oregano and Sage. Int. J. Food Prop. 2014;17:1150–1161. doi: 10.1080/10942912.2012.700539. DOI
Careddu D., Pettenazzo A. Pelargonium sidoides extract EPs 7630: A review of its clinical efficacy and safety for treating acute respiratory tract infections in children. Int. J. Gen. Med. 2018;11:91–98. doi: 10.2147/IJGM.S154198. PubMed DOI PMC
Chiang L., Chiang W., Chang M., Ng L., Lin C.-C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antivir. Res. 2002;55:53–62. doi: 10.1016/S0166-3542(02)00007-4. PubMed DOI
Chiang L.-C., Chiang W., Chang M.-Y., Lin C.-C. In vitro cytotoxic, antiviral and immunomodulatory effects of Plantago major and Plantago asiatica. Am. J. Chin. Med. 2003;31:225–234. doi: 10.1142/S0192415X03000874. PubMed DOI
Moradi M.-T., Karimi A., Shahrani M., Hashemi L., Ghaffari-Goosheh M.-S. Anti-influenza virus activity and phenolic content of pomegranate (Punica granatum L.) peel extract and fractions. Avicenna J. Med Biotechnol. 2019;11:285–291. PubMed PMC
Shin H.-Y. Ph.D. Thesis. Ajou University; Suwon, Korea: 2007. Coronavirus Replication Inhibition by Herbal.
Lee J.-H., Oh M., Seok J.H., Kim S., Lee D.B., Bae G., Bae H.-I., Bae S.Y., Hong Y.-M., Kwon S.-O., et al. Antiviral effects of black raspberry (Rubus coreanus) seed and its gallic acid against influenza virus infection. Viruses. 2016;8:157. doi: 10.3390/v8060157. PubMed DOI PMC
Oh M., Bae S.Y., Lee J.-H., Cho K.J., Kim K.H., Chung M.S. Antiviral effects of black raspberry (Rubus coreanus) juice on foodborne viral surrogates. Foodborne Pathog. Dis. 2012;9:915–921. doi: 10.1089/fpd.2012.1174. PubMed DOI
Parsania M., Rezaee M.B., Monavari S.H., Jaimand K., Mousavi Jazayeri S.M., Razazian M., Nadjarha M.H. Evaluation of antiviral effects of sumac (Rhus coriaria L.) fruit extract on acyclovir resistant Herpes simplex virus type 1. Med. Sci. 2017;27:1–8. PubMed
AbouReidah I., Jamous R., Shtayeh M. Phytochemistry, pharmacological properties and industrial applications of Rhus coriaria L. Jordan J. Biol. Sci. 2014;7:233–244.
Agayeva E., Ibadullaeva S., Movsumova N., Mammadova R., Abbasova V., Ganbarly I. Screening of microbicidal activity of some plants of the azerbaijan flora in relation to antibiotic-resistant microorganisms. IOSR J. Pharm. Biol. Sci. 2020;15:33–36. doi: 10.9790/3008-1502013336. DOI
Mani J.S., Johnson J.B., Steel J.C., Broszczak D.A., Neilsen P.M., Walsh K.B., Naiker M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020;284:197989. doi: 10.1016/j.virusres.2020.197989. PubMed DOI PMC
Mármol I., De Diego C.S., Jiménez-Moreno N., Azpilicueta C.A., Rodríguez-Yoldi M.J. Therapeutic applications of rose hips from different rosa species. Int. J. Mol. Sci. 2017;18:1137. doi: 10.3390/ijms18061137. PubMed DOI PMC
Modarressi M.H., Namazi R., Sadat S.M., Zabihollahi R., Aghasadeghi M.R., Esfahani A.F. The in vitro antiviral potential of Setarud (IMOD™), a commercial herbal medicine with protective activity against acquired immune deficiency syndrome in clinical trials. Indian J. Pharmacol. 2012;44:448–453. doi: 10.4103/0253-7613.99301. PubMed DOI PMC
Loizzo M.R., Saab A.M., Tundis R., Statti G.A., Menichini F., Lampronti I., Gambari R., Cinatl J., Doerr H.W. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem. Biodivers. 2008;5:461–470. doi: 10.1002/cbdv.200890045. PubMed DOI PMC
Porter R.S., Bode R.F. A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytother. Res. 2017;31:533–554. doi: 10.1002/ptr.5782. PubMed DOI
Khan T., Khan M.A., Mashwani Z., Ullah N., Nadhman A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal. Agric. Biotechnol. 2021;31:101890. doi: 10.1016/j.bcab.2020.101890. PubMed DOI PMC
Yu M.-S., Lee J., Lee J.M., Kim Y., Chin Y.-W., Jee J.-G., Keum Y.-S., Jeong Y.-J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic Med. Chem. Lett. 2012;22:4049–4054. doi: 10.1016/j.bmcl.2012.04.081. PubMed DOI PMC
Zhao T., Tang H., Xie L., Zheng Y., Ma Z., Sun Q., Li X. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Pharm. Pharmacol. 2019;71:1353–1369. doi: 10.1111/jphp.13129. PubMed DOI
Galani V.J., Patel B.G., Rana D.G. Sphaeranthus indicus Linn.: A phytopharmacological review. Int. J. Ayurveda Res. 2010;1:247–253. doi: 10.4103/0974-7788.76790. PubMed DOI PMC
Mohammadi N., Shaghaghi N. Inhibitory Effect of Eight Secondary Metabolites from Conventional Medicinal Plants on COVID_19 Virus Protease by Molecular Docking Analysis. ChemRxiv. Preprint. 2020 doi: 10.26434/chemrxiv.11987475.v1. DOI
Liu T., Liu X., Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget. 2016;7:40800–40815. doi: 10.18632/oncotarget.8315. PubMed DOI PMC
Kim D.E., Min J.S., Jang M.S., Lee J.Y., Shin Y.S., Park C.M., Song J.H., Kim H.R., Kim S., Jin Y.-H., et al. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 Human Lung Cells. Biomolecules. 2019;9:696. doi: 10.3390/biom9110696. PubMed DOI PMC
Tsai Y.-C., Lee C.-L., Yen H.-R., Chang Y.-S., Lin Y.-P., Huang S.-H., Lin C.-W. Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules. 2020;10:366. doi: 10.3390/biom10030366. PubMed DOI PMC
Gu W., Wang W., Li X.-N., Zhang Y., Wang L.-P., Yuan C., Huang L., Hao X.-J. A novel isocoumarin with anti-influenza virus activity from Strobilanthes cusia. Fitoterapia. 2015;107:60–62. doi: 10.1016/j.fitote.2015.10.009. PubMed DOI
Jiménez-González F.J., Veloza L.A., Sepúlveda-Arias J.C. Anti-infectious activity in plants of the genus Tabebuia. Univ. Sci. 2013;18:257–267. doi: 10.11144/Javeriana.SC18-3.aapg. DOI
Nepomuceno J.C. Plants and Crop the Biology and Biotechnology Research. 1st ed. iConcept Press Ltd.; Hong Kong, China: 2014. Lapachol and its derivatives as potential drugs for cancer treatment. Chapter: Lapachol and its derivatives as potential drugs for cancer treatment.
Naser B., Bodinet C., Tegtmeier M., Lindequist U. Thuja occidentalis (Arbor vitae): A review of its pharmaceutical, pharmacological and clinical properties. Evid. Based Complementary Altern. Med. 2005;2:69–78. doi: 10.1093/ecam/neh065. PubMed DOI PMC
Kumaki Y., Wandersee M.K., Smith A.J., Zhou Y., Simmons G., Nelson N.M., Bailey K.W., Vest Z.G., Li J.K.-K., Chan P.K.-S., et al. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antivir. Res. 2011;90:22–32. doi: 10.1016/j.antiviral.2011.02.003. PubMed DOI PMC
Altun M.L., Çitoğlu G.S., Yilmaz B.S., Özbek H. Antinociceptive and anti-inflammatory activities of Viburnum opulus. Pharm. Biol. 2009;47:653–658. doi: 10.1080/13880200902918345. DOI
Vimalanathan S., Ignacimuthu S., Hudson J.B. Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharm. Biol. 2009;47:422–429. doi: 10.1080/13880200902800196. DOI
Chang J.S., Wang K.C., Yeh C.F., Shieh D.E., Chiang L.C. Fresh ginger (Zingiber officinale) has antiviral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol. 2013;145:146–151. doi: 10.1016/j.jep.2012.10.043. PubMed DOI
Hong E.-H., Song J.H., Bin Kang K., Sung S.H., Ko H.-J., Yang H. Anti-influenza activity of betulinic acid from Zizyphus jujuba on Influenza A/PR/8 Virus. Biomol. Ther. 2015;23:345–349. doi: 10.4062/biomolther.2015.019. PubMed DOI PMC
Kim E.B., Kwak J.H. Antiviral phenolic compounds from the whole plants of Zostera marina against influenza A virus. Planta Medica. 2015;81:1494. doi: 10.1055/s-0035-1565630. DOI
Al-Ansary L.A., Bawazeer G.A., Beller E., Clark J., Conly J., Del Mar C., Dooley E., Ferroni E., Glasziou P., Hoffman T., et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Part 2—Hand hygiene and other hygiene measures: Systematic review and meta-analysis. MedRxiv. 2020 doi: 10.1101/2020.04.14.20065250. DOI
Lin L.-T., Hsu W.-C., Lin C.-C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med. 2014;4:24–35. doi: 10.4103/2225-4110.124335. PubMed DOI PMC
Huang J., Wu L., Ren X., Wu X., Chen Y., Ran G., Huang A., Huang L., Zhong D. Traditional Chinese medicine for corona virus disease 2019: A protocol for systematic review. Medicine. 2020;99:e21774. doi: 10.1097/MD.0000000000021774. PubMed DOI PMC
Yang R., Liu H., Bai C., Wang Y., Zhang X., Guo R., Wu S., Wang J., Leung E., Chang H., et al. Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacol. Res. 2020;157:104820. doi: 10.1016/j.phrs.2020.104820. PubMed DOI PMC
Khailany R.A., Safdar M., Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020;19:100682. doi: 10.1016/j.genrep.2020.100682. PubMed DOI PMC
Arunkumar G., Mudgal P.P., Maity H., Dowarha D., Devadiga S., Nag S., Arunkumar G. Herbal plants and plant preparations as remedial approach for viral diseases. Virus. 2015;26:225–236. doi: 10.1007/s13337-015-0276-6. PubMed DOI PMC
Williamson E.M., Liu X., Izzo A.A. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 2020;177:1227–1240. doi: 10.1111/bph.14943. PubMed DOI PMC
Islam T., Sarkar C., El-Kersh D.M., Jamaddar S., Uddin S.J., Shilpi J.A., Mubarak M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res. 2020;34:2471–2492. doi: 10.1002/ptr.6700. PubMed DOI
Ložienė K., Švedienė J., Paškevičius A., Raudoniene V., Sytar O., Kosyan A. Influence of plant origin natural α-pinene with different enantiomeric composition on bacteria, yeasts and fungi. Fitoterapia. 2018;127:20–24. doi: 10.1016/j.fitote.2018.04.013. PubMed DOI
Schwarz S., Sauter D., Wang K., Zhang R., Sun B., Karioti A., Bilia A.R., Efferth T., Schwarz W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Medica. 2014;80:177–182. doi: 10.1055/s-0033-1360277. PubMed DOI PMC
Roviello V., Roviello G.N. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environ. Chem. Lett. 2020:1–12. doi: 10.1007/s10311-020-01063-0. PubMed DOI PMC
Song J.-W., Long J.-Y., Xie L., Zhang L.-L., Xie Q.-X., Chen H.-J., Deng M., Li X. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: A review. Chin. Med. 2020;15:1–26. doi: 10.1186/s13020-020-00384-0. PubMed DOI PMC
Sytar O., Švedienė J., Ložienė K., Paškevičius A., Kosyan A., Taran N. Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharm. Biol. 2016;54:3121–3125. doi: 10.1080/13880209.2016.1211716. PubMed DOI
Morán-Santibañez K., Peña-Hernández M.A., Cruz-Suarez L.E., Ricque-Marie D., Skouta R., Vasquez A.H., Rodríguez-Padilla M.C., Trejo-Avila L.M. Virucidal and synergistic activity of polyphenol-rich extracts of seaweeds against measles virus. Viruses. 2018;10:465. doi: 10.3390/v10090465. PubMed DOI PMC
Salehi B., Iriti M., Vitalini S., Antolak H., Pawlikowska E., Kręgiel D., Sharifi-Rad J., Oyeleye S.I., Ademiluyi A.O., Czopek K., et al. Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance. Biomolecules. 2019;9:337. doi: 10.3390/biom9080337. PubMed DOI PMC
Yang W., Chen X., Li Y., Guo S., Wang Z., Yu X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020;15 doi: 10.1177/1934578X20903555. DOI
Cheng P.-W., Ng L.-T., Chiang L.-C., Lin C.-C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol. 2006;33:612–616. doi: 10.1111/j.1440-1681.2006.04415.x. PubMed DOI PMC
Azuma C.M., Dos Santos F.C.S., Lago J.H. Flavonoids and fatty acids of Camellia japonica leaves extract. Rev. Bras. Farmacogn. 2011;21:1159–1162. doi: 10.1590/S0102-695X2011005000128. DOI
Itokawa H., Nakajima H., Ikuta A., Iitaka Y. Two triterpenes from the flowers of Camellia japonica. Phytochemistry. 1981;20:2539–2542. doi: 10.1016/0031-9422(81)83089-0. DOI
Kato M., Hiroshi A. Biosynthesis and catabolism of purine alkaloids in camellia plants. Nat. Prod. Commun. 2008;3:1429–1435. doi: 10.1177/1934578X0800300907. DOI
Pompei R., Flore O., Marccialis M.A., Pani A., Loddo B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature. 1979;281:689–690. doi: 10.1038/281689a0. PubMed DOI
Munir O., Ernaz A., Ibadullayeva S.J., Altay V., Aslanipour B. A comparative analysis of medicinal and aromatic plants in the traditional medicine of İgdir (Turkey), Nakhchivan (Azerbaijan) and Tabriz (İran) Pak. J. Bot. 2018;50:337–343.
van de Sand L., Bormann M., Alt M., Schipper L., Heilingloh C.S., Todt D., Dittmer U., Elsner C., Witzke O., Krawczyk A. Glycyrrhizin effectively neutralizes SARS-CoV-2 in vitro by inhibiting the viral main protease. bioRxiv. 2020:423104. doi: 10.1101/2020.12.18.423104. PubMed DOI PMC
Park J.-Y., Ko J.-A., Kim D.W., Kim Y.M., Kwon H.-J., Jeong H.J., Kim C.Y., Park K., Lee W.S., Ryu Y.B. Chalcones isolated from Angelicakeiskei inhibit cysteine proteases of SARS-CoV. J. Enzym. Inhib. Med. Chem. 2016;31:23–30. doi: 10.3109/14756366.2014.1003215. PubMed DOI
Bailly C., Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol. Ther. 2020;214:107618. doi: 10.1016/j.pharmthera.2020.107618. PubMed DOI PMC
da Silva J.K.R., Figueiredo P.L., Byler K.G., Setzer W.N. Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 infection: An in-silico investigation. Int. J. Mol. Sci. 2020;21:3426. doi: 10.3390/ijms21103426. PubMed DOI PMC
Andre C.M., Hausman J.-F., Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016;7:19. doi: 10.3389/fpls.2016.00019. PubMed DOI PMC
Campos A.C., Moreira F.A., Gomes F.V., Del Bel E.A., Guimarães F.S. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philosophical Transactions of the Royal Society of London. Philos. Trans. R. Soc. B Biol. Sci. 2012;367:3364–3378. doi: 10.1098/rstb.2011.0389. PubMed DOI PMC
Mabou Tagne A., Pacchetti B., Sodergren M., Cosentino M., Marino F. Cannabidiol for Viral Diseases: Hype or Hope? Cannabis Cannabinoid Res. 2020;5:121–131. doi: 10.1089/can.2019.0060. PubMed DOI PMC
de ASilva J.R., Geone M.C., Carvalho R., Renyer A.C., Pinheiro M.L.B., Araujo Lídia M., Amaral Ana Claudia F. Analyses of Ampelozizyphus amazonicus, a plant used in folk medicine of the Amazon Region. Pharmacogn. Mag. 2009;5:75–80.
Kapepula P.M., Kabengele J.K., Kingombe M., Van Bambeke F., Tulkens P.M., Sadiki Kishabongo A., Decloedt E., Zumla A., Tiberi S., Suleman F., et al. Artemisia spp. Derivatives for COVID-19 Treatment: Anecdotal Use, Political Hype, Treatment Potential, Challenges, and Road Map to Randomized Clinical Trials. Am. J. Trop. Med. Hyg. 2020;103:960–964. doi: 10.4269/ajtmh.20-0820. PubMed DOI PMC
Layne T.H., Roach J.S., Tinto W.F. Review of β-carboline alkaloids from the genus Aspidosperma. Nat. Prod. Commun. 2015;10:183–186. doi: 10.1177/1934578X1501000139. PubMed DOI
Hudson J., Lee M., Rasoanaivo P. Antiviral activities in plants endemic to madagascar. Pharm. Biol. 2000;38:36–39. doi: 10.1076/1388-0209(200001)3811-BFT036. PubMed DOI
Qing Z.-X., Yang P., Tang Q., Cheng P., Liu X.-B., Zheng Y.-J., Liu Y.-S., Zeng J. Isoquinoline alkaloids and their antiviral, antibacterial, and antifungal activities and structure-activity relationship. Curr. Org. Chem. 2017;21:1920–1934. doi: 10.2174/1385272821666170207114214. DOI
Jahan I., Onay A. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turk. J. Biol. 2020;44:228–241. doi: 10.3906/biy-2005-114. PubMed DOI PMC
Kumar M., Prasad S.K., Hemalatha S. A current update on the phytopharmacological aspects of Houttuynia cordata Thunb. Pharmacogn. Rev. 2014;8:22–35. doi: 10.4103/0973-7847.125525. PubMed DOI PMC
Wang B., Kovalchuk A., Li D., Ilnytskyy Y., Kovalchuk I., Kovalchuk O. In Search of Preventative Strategies: Novel Anti-Inflammatory High-CBD Cannabis Sativa Extracts Modulate ACE2 Expression in COVID-19 Gateway Tissues. Preprints. 2020 doi: 10.20944/preprints202004.0315.v1. PubMed DOI PMC
Weng J.K. Plant solutions for the COVID-19 pandemic and beyond: Historical reflections and future perspectives. Mol. Plant. 2020;13:803–807. doi: 10.1016/j.molp.2020.05.014. PubMed DOI PMC
Bieski I.G.C., Leonti M., Arnason J.T., Ferrier J., Rapinski M., Violante I.M.P., Balogun S.O., Pereira J.F.C.A., Figueiredo R.D.C.F., Lopes C.R.A.S., et al. Ethnobotanical study of medicinal plants by population of Valley of Juruena Region, Legal Amazon, Mato Grosso, Brazil. J. Ethnopharmacol. 2015;173:383–423. doi: 10.1016/j.jep.2015.07.025. PubMed DOI
van Eck N.J., Ludo W. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics. 2017;111:1053–1070. doi: 10.1007/s11192-017-2300-7. PubMed DOI PMC
Sweileh W.M., Al-Jabi S.W., Zyoud S.H., Sawalha A.F., Abu-Taha A.S. Global research output in antimicrobial resistance among uropathogens: A bibliometric analysis (2002–2016) J. Glob. Antimicrob. Resist. 2018;13:104–114. doi: 10.1016/j.jgar.2017.11.017. PubMed DOI
Soosaraei M., Khasseh A.A., Fakhar M., Hezarjaribi H.Z. A decade bibliometric analysis of global research on leishmaniasis in Web of Science database. Ann. Med. Surg. 2018;26:30–37. doi: 10.1016/j.amsu.2017.12.014. PubMed DOI PMC
Yeung A.W.K., Mocan A., Atanasov A.G. Let food be thy medicine and medicine be thy food: A bibliometric analysis of the most cited papers focusing on nutraceuticals and functional foods. Food Chem. 2018;269:455–465. doi: 10.1016/j.foodchem.2018.06.139. PubMed DOI
World Health Organization Chikungunya Fact Sheet. [(accessed on 9 January 2020)];2020 Available online: https://www.who.int/news-room/fact-sheets/detail/chikungunya.
Sharma V., Kaushik S., Pandit P., Dhull D., Yadav J.P., Kaushik S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl. Microbiol. Biotechnol. 2019;103:881–891. doi: 10.1007/s00253-018-9488-1. PubMed DOI
Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006;27:1–93. doi: 10.1016/j.mam.2005.07.008. PubMed DOI
Lopez V. Are traditional medicinal plants and ethnobotany still valuable approaches in pharmaceutical research. Boletín Latinoam. y Del Caribe de Plantas Med. y Aromáticas. 2011;10:3–10.