COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds

. 2021 Jan 30 ; 26 (3) : . [epub] 20210130

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33573318

Grantová podpora
VEGA 1/0589/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

During the time of the novel coronavirus disease 2019 (COVID-19) pandemic, it has been crucial to search for novel antiviral drugs from plants and well as other natural sources as alternatives for prophylaxis. This work reviews the antiviral potential of plant extracts, and the results of previous research for the treatment and prophylaxis of coronavirus disease and previous kinds of representative coronaviruses group. Detailed descriptions of medicinal herbs and crops based on their origin native area, plant parts used, and their antiviral potentials have been conducted. The possible role of plant-derived natural antiviral compounds for the development of plant-based drugs against coronavirus has been described. To identify useful scientific trends, VOSviewer visualization of presented scientific data analysis was used.

Zobrazit více v PubMed

Liu Y.-C., Kuo R.-L., Shih S.-R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J. 2020;43:328–333. doi: 10.1016/j.bj.2020.04.007. PubMed DOI PMC

Coronaviridae Study Group of the International Committee on Taxonomy of V The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z. PubMed DOI PMC

Chan J.F.-W., Yuan S., Kok K.-H., To K.K.-W., Chu H., Yang J., Xing F., Liu J., Yip C.C.-Y., Poon R.W.-S., et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9. PubMed DOI PMC

Rehman I.U., Khan H.R., E Zainab W., Ahmed A., Ishaq M.D., Ullah I. Barriers in Social Distancing during Covid19 pandemic -Is a message for forced lockdown? J. Med. Res. Innov. 2020;4:e000222. doi: 10.32892/jmri.222. DOI

Balachandar V., Mahalaxmi I., Kaavya J., Vivekanandhan G., Ajithkumar S., Arul N., Singaravelu G., Kumar N.S., Dev S.M. COVID-19: Emerging protective measures. Eur. Rev. Med. Pharmacol. Sci. 2020;24:3422–3425. PubMed

Dong Y., Dai T., Wei Y., Zhang L., Zheng M., Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Sig. Transduct. Target Ther. 2020;5:237. doi: 10.1038/s41392-020-00352-y. PubMed DOI PMC

COVID-19 Vaccines. [(accessed on 10 January 2020)]; Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines.

Huang J., Tao G., Liu J., Cai J., Huang Z., Chen J.-X. Current Prevention of COVID-19: Natural Products and Herbal Medicine. Front. Pharmacol. 2020;11:588508. doi: 10.3389/fphar.2020.588508. PubMed DOI PMC

Mahmood N., Nasir S.B., Hefferon K. Plant-Based Drugs and Vaccines for COVID-19. Vaccines. 2020;9:15. doi: 10.3390/vaccines9010015. PubMed DOI PMC

Liew P.S., Hair-Bejo M. Farming of plant-based veterinary vaccines and their applications for disease prevention in animal. Adv. Virol. 2015;2015:936940. doi: 10.1155/2015/936940. PubMed DOI PMC

Naja F., Hamadeh R. Nutrition amid the COVID-19 pandemic: A multi-level framework for action. Eur. J. Clin. Nutr. 2020;74:1117–1121. doi: 10.1038/s41430-020-0634-3. PubMed DOI PMC

Galanakis C.M. The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods. 2020;9:523. doi: 10.3390/foods9040523. PubMed DOI PMC

Panyod S., Ho C.-T., Sheen L.-Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med. 2020;10:420–427. doi: 10.1016/j.jtcme.2020.05.004. PubMed DOI PMC

Ben-Shabat S., Yarmolinsky L., Porat D., Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2019;10:354–367. doi: 10.1007/s13346-019-00691-6. PubMed DOI PMC

Joshi B., Panda S.K., Jouneghani R.S., Liu M., Parajuli N., Leyssen P., Neyts J., Luyten W. Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of Nepal selected sased on ethnobotanical evidence. Evid. Based Complementary Altern. Med. 2020 doi: 10.1155/2020/1043471. PubMed DOI PMC

Zambounis A., Sytar O., Valasiadis D., Hilioti Z. Effect of photosensitisers on growth and morphology of Phytophthora citrophthora coupled with leaf bioassays in pear seedlings. Plant Protect. Sci. 2020;56:74–82. doi: 10.17221/102/2019-PPS. DOI

Ríos J.L., Recio M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005;100:80–84. doi: 10.1016/j.jep.2005.04.025. PubMed DOI

Ghildiyal R., Prakash V., Chaudhary V.K., Gupta V., Gabrani R. Phytochemicals as Antiviral Agents: Recent Updates. In: Swamy M., editor. Plant-Derived Bioactives. Springer; Singapore: 2020.

Gautret P., Lagier J.-C., Honoré S., Hoang V.T., Raoult D. Clinical efficacy and safety profile of hydroxychloroquine and azithromycin against COVID-19. Int. J. Antimicrob. Agents. 2021;57:106242. doi: 10.1016/j.ijantimicag.2020.106242. PubMed DOI PMC

Zhang D.-H., Wu K.-L., Zhang X., Deng S.-Q., Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med. 2020;18:152–158. doi: 10.1016/j.joim.2020.02.005. PubMed DOI PMC

Sampangi-Ramaiah M.H., Vishwakarma R., Shaanker R.U. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr. Sci. 2020;118:1087–1092.

Lee H., Lei H., Santarsiero B.D., Gatuz J.L., Cao S., Rice A.J., Patel K., Szypulinski M.Z., Ojeda I., Ghosh A.K., et al. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV. ACS Chem. Biol. 2015;10:1456–1465. doi: 10.1021/cb500917m. PubMed DOI PMC

Liu A., Du G.-H. Antiviral Properties of Phytochemicals. In: Patra A., editor. Dietary Phytochemicals and Microbes. Springer; Dordrecht, The Netherlands: 2012.

Monajjemi M., Mollaamin F., Shojaei S. An overview on Coronaviruses family from past to Covid-19: Introduce some inhibitors as antiviruses from Gillan’s plants. Biointerface Res. Appl. Chem. 2020;10:5575–5585.

Eng Y.S., Lee C.-H., Lee W.C., Huang C.C., Chang J.S. Unraveling the molecular mechanism of traditional chinese medicine: Formulas against acute airway viral infections as examples. Molecules. 2019;24:3505. doi: 10.3390/molecules24193505. PubMed DOI PMC

Yang Y., Islam S., Wang J., Li Y., Chen X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int. J. Biol. Sci. 2020;16:1708–1717. doi: 10.7150/ijbs.45538. PubMed DOI PMC

Ameri A., Heydarirad G., Jafari J.M., Ghobadi A., Rezaeizadeh H., Choopani R. Medicinal plants contain mucilage used in traditional Persian medicine (TPM) Pharm. Biol. 2015;53:615–623. doi: 10.3109/13880209.2014.928330. PubMed DOI

Buso P., Manfredini S., Ashtiani H.R.A., Sciabica S., Buzzi R., Vertuani S., Baldisserotto A. Iranian Medicinal Plants: From Ethnomedicine to Actual Studies. Medicina (Kaunas) 2020;56:97. doi: 10.3390/medicina56030097. PubMed DOI PMC

Raheel R., Ashraf M., Ejaz S., Javeed A., Altaf I. Assessment of the cytotoxic and antiviral potential of aqueous extracts from different parts of Acacia nilotica (Linn) Delile against Peste des petits ruminants virus. Environ. Toxicol. Pharmacol. 2013;35:72–81. doi: 10.1016/j.etap.2012.11.005. PubMed DOI

Ramezany F., Kiyani N., Khademizadeh M. Persian manna in the past and the present: An overview. Am. J. Pharmacol. Sci. 2013;1:35–37. doi: 10.12691/ajps-1-3-1. DOI

Shojai T.M., Langeroudi A.G., Karimi V., Barin A., Sadri N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J. Phytomedicine. 2016;6:458-267. PubMed PMC

Pontin M., Bottini R., Burba J.L., Piccoli P.N. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochemistry. 2015;115:152–160. doi: 10.1016/j.phytochem.2015.02.003. PubMed DOI

Mustafayeva I.R., Ibadullayeva S.J., Alakbarov R.A., Ismayilov A.H., Qasimov H.Z., Qasimova S.S. Science-Education; Baku, Azerbaijan: 2015. Pharmacognosis with the Basis of Botany.615p

Shah S.M.A., Akhtar N., Akram M., Shah P.A., Tariq Saeed T., Ahmed K., Asif H.M. Pharmacological activity of Althaea officinalis L. J. Med. Plants Res. 2011;5:5662–5666.

Munir O., Volkan A., Ernaz A., Ibadullayeva S.J., Aslanipour B., Günenç T.M. Ethnobotany and Physiology. Volume 1. Springer; Berlin/Heidelberg, Germany: 2018. Herbals in Iğdır (Turkey), Nakhchivan (Azerbaijan), and Tabriz (Iran)/Herbs and Human Health; pp. 197–262.

Peçanha L.M.T., Fernandes P.D., Simen T.J.-M., De Oliveira D.R., Finotelli P.V., Pereira M.V.A., Barboza F.F., Almeida T.D.S., Carvalhal S., Pierucci A.P.T.R., et al. Immunobiologic and antiinflammatory properties of a bark extract from Ampelozizyphus amazonicus Ducke. BioMed. Res. Int. 2013;2013:451679. doi: 10.1155/2013/451679. PubMed DOI PMC

Hossain S., Urbi Z., Sule A., Rahman K.M.H. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci. World J. 2014;2014:274905. doi: 10.1155/2014/274905. PubMed DOI PMC

Ulasli M., Gurses S.A., Bayraktar R., Yumrutas O., Oztuzcu S., Igci M., Igci Y.Z., Cakmak E.A., Arslan A. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol. Biol. Rep. 2014;41:1703–1711. doi: 10.1007/s11033-014-3019-7. PubMed DOI PMC

Brandão G., Kroon E., Dos Santos J., Stehmann J., Lombardi J., De Oliveira A.B. Antiviral activity of Bignoniaceae species occurring in the State of Minas Gerais (Brazil): Part 1. Lett. Appl. Microbiol. 2010;51:469–476. doi: 10.1111/j.1472-765X.2010.02924.x. PubMed DOI

Shin H.-B., Choi M.-S., Ryu B., Lee N.-R., Kim H.-I., Choi H.-E., Chang J., Lee K.-T., Jang D.S., Inn K.-S. Antiviral activity of carnosic acid against respiratory syncytial virus. Virol. J. 2013;10:303. doi: 10.1186/1743-422X-10-303. PubMed DOI PMC

Nigam M., Atanassova M., Mishra A.P., Pezzani R., Devkota H.P., Plygun S., Salehi B., Setzer W.N., Sharifi-Rad J. Bioactive compounds and health benefits of Artemisia species. Nat. Prod. Commun. 2019;14:1–17. doi: 10.1177/1934578x19850354. DOI

Kohn L., Foglio M., Rodrigues R., De O Sousa I., Martini M., Padilla M., Neto D.D.L., Arns C. In-Vitro Antiviral Activities of Extracts of Plants of The Brazilian Cerrado against the Avian Metapneumovirus (aMPV) Braz. J. Poult. Sci. 2015;17:275–280. doi: 10.1590/1516-635X1703275-280. DOI

LaRocca D.G., Da Silva I.V., Junior N.G.R., Saldanha K.L.A., Rocha J.A., De Andrade Royo V. Characterizing Casca d´anta: An Apocynaceae used to treat tropical diseases in the Amazonian region. Idesia (Arica) 2019;37:65–73. doi: 10.4067/S0718-34292019000300065. DOI

Lebedeva A.A., Zakharchenko N.S., Trubnikova E.V., Medvedeva O.A., Kuznetsova T., Masgutova G.A., Zylkova M.V., Buryanov Y.I., Belous A.S. Bactericide, immunomodulating, and wound healing properties of transgenic Kalanchoe pinnata Synergize with antimicrobial peptide cecropin P1 in vivo. J. Immunol. Res. 2017;2017:4645701. doi: 10.1155/2017/4645701. PubMed DOI PMC

Yang J.L., Ha T.K.Q., Oh W.K. Discovery of inhibitory materials against PEDV corona virus from medicinal plants. Jpn. J. Vet. Res. 2016;64:S53–S63. doi: 10.14943/jjvr.64.suppl.s53. DOI

Yang J.-L., Ha T.-K.-Q., Dhodary B., Pyo E., Nguyen N.H., Cho H., Kim E., Oh W.K. Oleanane triterpenes from the flowers of Camellia japonica inhibit porcine epidemic diarrhea virus (PEDV) replication. J. Med. Chem. 2015;58:1268–1280. doi: 10.1021/jm501567f. PubMed DOI

Ziai S.A., Hamkar R., Monavari H.R., Norooz-Babaei Z., Adibi L. Antiviral effect assay of twenty five species of various medicinal plants families in Iran. J. Med. Plants. 2007;1:1–9.

Fatima M., Zaidi N.-U.-S.S., Amraiz D., Afzal F. In vitro antiviral activity of cinnamomum cassia and its nanoparticles against H7N3 Influenza A Virus. J. Microbiol. Biotechnol. 2016;26:151–159. doi: 10.4014/jmb.1508.08024. PubMed DOI

Yeh C.F., Chang J.S., Wang K.C., Shieh D.E., Chiang L.C. Water extract of Cinnamomum cassia Blume inhibited human respiratory syncytial virus by preventing viral attachment, internalization, and syncytium formation. J. Ethnopharmacol. 2013;147:321–326. doi: 10.1016/j.jep.2013.03.010. PubMed DOI

Ooi L.S.M., Li Y., Kam S.-L., Wang H., Wong E.Y.L., Ooi V.E.C. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am. J. Chin. Med. 2006;34:511–522. doi: 10.1142/S0192415X06004041. PubMed DOI

Heo Y., Cho Y., Ju K.S., Cho H., Park K.H., Choi H., Yoon J.K., Moon C., Kim Y.B. Antiviral activity of Poncirus trifoliata seed extract against oseltamivir-resistant influenza virus. J. Microbiol. 2018;56:586–592. doi: 10.1007/s12275-018-8222-0. PubMed DOI

Elsebai M.F., Mocan A., Atanasov A.G. Cynaropicrin: A comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Front. Pharmacol. 2016;7:472. doi: 10.3389/fphar.2016.00472. PubMed DOI PMC

Lelešius R., Karpovaitė A., Mickienė R., Drevinskas T., Tiso N., Ragažinskienė O., Kubilienė L., Maruška A., Salomskas A. In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC Vet. Res. 2019;15:178. doi: 10.1186/s12917-019-1925-6. PubMed DOI PMC

Sharma M., Shawn A., Anderson S.A., Schoop R., Hudson J.B. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antivir. Res. 2009;83:165–170. doi: 10.1016/j.antiviral.2009.04.009. PubMed DOI

Nasseri M.A., Keshtkar H., Kazemnejadi M., Allahresani A. Phytochemical properties and antioxidant activity of Echinops persicus plant extract: Green synthesis of carbon quantum dots from the plant extract. SN Appl. Sci. 2020;2:1–12. doi: 10.1007/s42452-020-2466-0. DOI

Farahani M. Antiviral effect assay of aqueous extract of Echium amoenum L. against HSV-1. Zahedan J. Res. Med Sci. (Tabib-E-Shargh) 2013;15:46–48.

Abolhassani M. Antiviral activity of borage (Echium amoenum) Arch Med. Sci. 2010;3:366–369. doi: 10.5114/aoms.2010.14256. PubMed DOI PMC

A Betancur-Galvis L., E Morales G., E Forero J., Roldan J. Cytotoxic and antiviral activities of colombian medicinal plant extracts of the Euphorbia genus. Mem. Inst. Oswaldo Cruz. 2002;97:541–546. doi: 10.1590/S0074-02762002000400017. PubMed DOI

Gyuris A., Szlávik L., Minárovits J., Vasas A., Molnár J., Hohmann J. Antiviral activities of extracts of Euphorbia hirta L. against HIV-1, HIV-2 and SIVmac251. In Vivo. 2009;23:429–432. PubMed

Iranshahy M., Iranshahi M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)-a review. J. Ethnopharmacol. 2011;134:1–10. doi: 10.1016/j.jep.2010.11.067. PubMed DOI

Lee C.-L., Chiang L.-C., Cheng L.-H., Liaw C.-C., El-Razek M.H.A., Chang F.-R., Wu Y.-C. Influenza A (H(1)N(1)) Antiviral and Cytotoxic Agents from Ferula assa-foetida. J. Nat. Prod. 2009;72:1568–1572. doi: 10.1021/np900158f. PubMed DOI

Kakhramanova M., Ibadullaeva S.J. Science-Education; Baku, Azerbaijan: 2017. Mysterious World of Plants (Grass Plants) p. 350.

Kakhramanova M., Ibadullaeva S.J. Immunostimulatory Phytospore with a General Strengthening Effect. Eurasian Patent Office; Moscow, Russia: 2017. pp. 1–4.

Anagha K., Manasi D., Meera M. Scope of Glycyrrhiza glabra (Yashtimadhu) as an antiviral agent: A Review. Int. J. Curr. Microbiol. App. Sci. 2014;3:657–665.

Khan F., Sarker M.R., Ming L.C., Mohamed I.N., Zhao C., Sheikh B.Y., Tsong H.F., Rashid M.A. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front. Pharmacol. 2019;10:1223. doi: 10.3389/fphar.2019.01223. PubMed DOI PMC

Mishra K.P., Chanda S., Karan D., Ganju L., Sawhney R.C. Effect of Seabuckthorn (Hippophae rhamnoides) flavone on immune system: An in-vitro approach. Phytother. Res. 2008;22:1490–1495. doi: 10.1002/ptr.2518. PubMed DOI

Ibadullayeva S.J., Mamedova S.E., Sultanova Z.R., Movsumova N.V., Jafarli I.A. Medicinal plants of Azerbaijan flora used in the treatment of certain diseases. Afr. J. Pharm. Pharmacol. 2010;4:545–548.

Enkhtaivan G., John K.M., Pandurangan M., Hur J.H., Leutou A.S., Kim D.H. Extreme effects of Seabuckthorn extracts on influenza viruses and human cancer cells and correlation between flavonol glycosides and biological activities of extracts. Saudi J. Biol. Sci. 2017;24:1646–1656. doi: 10.1016/j.sjbs.2016.01.004. PubMed DOI PMC

Lau K.-M., Lee K.-M., Koon C.-M., Cheung C.S.-F., Lau C.-P., Ho H.-M., Lee M.Y.-H., Au S.W.-N., Cheng C.H.-K., Lau C.B.-S., et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol. 2008;118:79–85. doi: 10.1016/j.jep.2008.03.018. PubMed DOI PMC

E Buckwold V., Wilson R.J.H., Nalca A., Beer B.B., Voss T.G., A Turpin J., Buckheit R.W., Wei J., Wenzel-Mathers M., Walton E.M. Antiviral activity of hop constituents against a series of DNA and RNA viruses. Antivir. Res. 2004;61:57–62. doi: 10.1016/S0166-3542(03)00155-4. PubMed DOI

Ibadullayeva S., Alekperov R. Medicinal Herbs (Ethnobotany and Phyitotherapy) Baku. ELM; Baku, Azerbaijan: 2013. p. 337.

Di Sotto A., Checconi P., Celestino I., Locatelli M., Carissimi S., De Angelis M., Rossi V., Limongi D., Toniolo C., Martinoli L., et al. Antiviral and Antioxidant Activity of a Hydroalcoholic Extract from Humulus lupulus L. Oxidative Med. Cell. Longev. 2018;2018:5919237. doi: 10.1155/2018/5919237. PubMed DOI PMC

Amber R., Adnan M., Tariq A., Mussarat S. A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms. J. Pharm. Pharmacol. 2017;69:109–122. doi: 10.1111/jphp.12669. PubMed DOI PMC

Rajbhandari M., Mentel R., Jha P.K., Chaudhary R.P., Bhattarai S., Gewali M.B., Karmacharya N., Hipper M., Lindequist U. Antiviral activity of some plants used in Nepalese traditional medicine. Evid. Based Complement. Altern. Med. 2009;6:517–522. doi: 10.1093/ecam/nem156. PubMed DOI PMC

Akram M., Tahir I.M., Shah S.M.A., Mahmood Z., Altaf A., Ahmad K., Munir N., Daniyal M., Nasir S., Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res. 2018;32:811–822. doi: 10.1002/ptr.6024. PubMed DOI

Li R.-S., Chen C., Zhang H.-Q., Guo H.-Y., Wang H., Wang L., Zhang X., Hua S.-N., Yu J., Xiao P.-G. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir. Res. 2005;67:18–23. doi: 10.1016/j.antiviral.2005.02.007. PubMed DOI PMC

Speranza J., Miceli N., Taviano M.F., Ragusa S., Kwiecień I., Szopa A., Ekiert H.M. Isatis tinctoria L. (Woad): A Review of its botany, ethnobotanical uses, phytochemistry, biological activities, and biotechnological studies. Plants. 2020;9:298. doi: 10.3390/plants9030298. PubMed DOI PMC

Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145. PubMed DOI PMC

Bais S., Gill N.S., Rana N., Shandil S. A phytopharmacological review on a medicinal Plant: Juniperus communis. Int. Sch. Res. Not. 2014;2014:634723. doi: 10.1155/2014/634723. PubMed DOI PMC

Gong S.J., Su X.J., Yu H.P., Li J., Qin Y.J., Xu Q., Luo W.-S. A study on anti-SARS-CoV 3CL protein of flavonoids from litchi chinensis sonn core. Chin. Pharmacol. Bull. 2008;24:699–700.

Jo S., Kim S., Shin D.H., Kim M.-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzym. Inhib. Med. Chem. 2020;35:145–151. doi: 10.1080/14756366.2019.1690480. PubMed DOI PMC

Nimmanpipug P., Lee V.S., Wolschann P., Hannongbua S. Litchi chinensis-derived terpenoid as anti-HIV-1 protease agent: Structural design from molecular dynamics simulations. Molecular Simulation Mol. Simul. 2009;35:673–680. doi: 10.1080/08927020802714841. DOI

Wu Q., Yu C., Yan Y., Chen J., Zhang C., Wen X. Antiviral flavonoids from Mosla scabra. Fitoterapia. 2010;81:429–433. doi: 10.1016/j.fitote.2009.12.005. PubMed DOI

Wu Q., Wang W., Dai X.-Y., Wang Z.-Y., Shen Z.-H., Ying H.-Z., Yu C.-H. Chemical compositions and anti-influenza activities of essential oils from Mosla dianthera. J. Ethnopharmacol. 2012;139:668–671. doi: 10.1016/j.jep.2011.11.056. PubMed DOI

Mahboubi M. Natural therapeutic approach of Nigella sativa (Black seed) fixed oil in management of sinusitis. Integr. Med. Res. 2018;7:27–32. doi: 10.1016/j.imr.2018.01.005. PubMed DOI PMC

Mohamed S., Hossain M.S. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int. J. Immunopharmacol. 2000;22:729–740. doi: 10.1016/s0192-0561(00)00036-9. PubMed DOI

Ahmad A., Rehman M.U., Lkharfy K.M. An alternative approach to minimize the risk of coronavirus (Covid-19) and similar infections. Eur. Rev. Med Pharmacol. Sci. 2020;24:4030–4034. doi: 10.26355/eurrev_202004_20873. PubMed DOI

Molla S., Azad A.K., Hasib A.A.A., Hossain M.M., Ahammed S., Rana S., Islam M.T. A review on antiviral effects of Nigella sativa L. Pharmacologyonline. 2019;2:47–53.

Yoon T.J., Hur J.W., Cho E.H., Lee B.K., Lee U. The enhanced effect of Oplopanax elatus Nakai on the immune system and antitumor activity. Korean J. Food Nutr. 2013;26:375–382. doi: 10.9799/ksfan.2013.26.3.375. DOI

Shikov A.N., Pozharitskaya O.N., Makarov V.G., Yang W., Guo D.-A. Oplopanax elatus (Nakai) Nakai: Chemistry, traditional use and pharmacology. Chin. J. Nat. Med. 2014;12:721–729. doi: 10.1016/S1875-5364(14)60111-4. PubMed DOI

Agayeva N.A., Rafiyeva S.R., Shiraliyeva G.S., Ibadullayeva S.J. Antimicrobe characteristics of essential oil of the Origanum vulgare L. Int. J. Curr. Microbiol. Appl. Sci. (IJCMAS) 2017;6:019–027. doi: 10.20546/ijcmas. DOI

Blank D.E., Hübner S.D.O., Alves G.H., Cardoso C.A.L., Freitag R.A., Cleff M.B. Chemical composition and antiviral effect of extracts of Origanum vulgare. Adv. Biosci. Biotechnol. 2019;10:188–196. doi: 10.4236/abb.2019.107014. DOI

Santoyo S., Jaime L., García-Risco M.R., Ruiz-Rodríguez A., Reglero G. Antiviral Properties of Supercritical CO2 Extracts from Oregano and Sage. Int. J. Food Prop. 2014;17:1150–1161. doi: 10.1080/10942912.2012.700539. DOI

Careddu D., Pettenazzo A. Pelargonium sidoides extract EPs 7630: A review of its clinical efficacy and safety for treating acute respiratory tract infections in children. Int. J. Gen. Med. 2018;11:91–98. doi: 10.2147/IJGM.S154198. PubMed DOI PMC

Chiang L., Chiang W., Chang M., Ng L., Lin C.-C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antivir. Res. 2002;55:53–62. doi: 10.1016/S0166-3542(02)00007-4. PubMed DOI

Chiang L.-C., Chiang W., Chang M.-Y., Lin C.-C. In vitro cytotoxic, antiviral and immunomodulatory effects of Plantago major and Plantago asiatica. Am. J. Chin. Med. 2003;31:225–234. doi: 10.1142/S0192415X03000874. PubMed DOI

Moradi M.-T., Karimi A., Shahrani M., Hashemi L., Ghaffari-Goosheh M.-S. Anti-influenza virus activity and phenolic content of pomegranate (Punica granatum L.) peel extract and fractions. Avicenna J. Med Biotechnol. 2019;11:285–291. PubMed PMC

Shin H.-Y. Ph.D. Thesis. Ajou University; Suwon, Korea: 2007. Coronavirus Replication Inhibition by Herbal.

Lee J.-H., Oh M., Seok J.H., Kim S., Lee D.B., Bae G., Bae H.-I., Bae S.Y., Hong Y.-M., Kwon S.-O., et al. Antiviral effects of black raspberry (Rubus coreanus) seed and its gallic acid against influenza virus infection. Viruses. 2016;8:157. doi: 10.3390/v8060157. PubMed DOI PMC

Oh M., Bae S.Y., Lee J.-H., Cho K.J., Kim K.H., Chung M.S. Antiviral effects of black raspberry (Rubus coreanus) juice on foodborne viral surrogates. Foodborne Pathog. Dis. 2012;9:915–921. doi: 10.1089/fpd.2012.1174. PubMed DOI

Parsania M., Rezaee M.B., Monavari S.H., Jaimand K., Mousavi Jazayeri S.M., Razazian M., Nadjarha M.H. Evaluation of antiviral effects of sumac (Rhus coriaria L.) fruit extract on acyclovir resistant Herpes simplex virus type 1. Med. Sci. 2017;27:1–8. PubMed

AbouReidah I., Jamous R., Shtayeh M. Phytochemistry, pharmacological properties and industrial applications of Rhus coriaria L. Jordan J. Biol. Sci. 2014;7:233–244.

Agayeva E., Ibadullaeva S., Movsumova N., Mammadova R., Abbasova V., Ganbarly I. Screening of microbicidal activity of some plants of the azerbaijan flora in relation to antibiotic-resistant microorganisms. IOSR J. Pharm. Biol. Sci. 2020;15:33–36. doi: 10.9790/3008-1502013336. DOI

Mani J.S., Johnson J.B., Steel J.C., Broszczak D.A., Neilsen P.M., Walsh K.B., Naiker M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020;284:197989. doi: 10.1016/j.virusres.2020.197989. PubMed DOI PMC

Mármol I., De Diego C.S., Jiménez-Moreno N., Azpilicueta C.A., Rodríguez-Yoldi M.J. Therapeutic applications of rose hips from different rosa species. Int. J. Mol. Sci. 2017;18:1137. doi: 10.3390/ijms18061137. PubMed DOI PMC

Modarressi M.H., Namazi R., Sadat S.M., Zabihollahi R., Aghasadeghi M.R., Esfahani A.F. The in vitro antiviral potential of Setarud (IMOD™), a commercial herbal medicine with protective activity against acquired immune deficiency syndrome in clinical trials. Indian J. Pharmacol. 2012;44:448–453. doi: 10.4103/0253-7613.99301. PubMed DOI PMC

Loizzo M.R., Saab A.M., Tundis R., Statti G.A., Menichini F., Lampronti I., Gambari R., Cinatl J., Doerr H.W. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem. Biodivers. 2008;5:461–470. doi: 10.1002/cbdv.200890045. PubMed DOI PMC

Porter R.S., Bode R.F. A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytother. Res. 2017;31:533–554. doi: 10.1002/ptr.5782. PubMed DOI

Khan T., Khan M.A., Mashwani Z., Ullah N., Nadhman A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal. Agric. Biotechnol. 2021;31:101890. doi: 10.1016/j.bcab.2020.101890. PubMed DOI PMC

Yu M.-S., Lee J., Lee J.M., Kim Y., Chin Y.-W., Jee J.-G., Keum Y.-S., Jeong Y.-J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic Med. Chem. Lett. 2012;22:4049–4054. doi: 10.1016/j.bmcl.2012.04.081. PubMed DOI PMC

Zhao T., Tang H., Xie L., Zheng Y., Ma Z., Sun Q., Li X. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Pharm. Pharmacol. 2019;71:1353–1369. doi: 10.1111/jphp.13129. PubMed DOI

Galani V.J., Patel B.G., Rana D.G. Sphaeranthus indicus Linn.: A phytopharmacological review. Int. J. Ayurveda Res. 2010;1:247–253. doi: 10.4103/0974-7788.76790. PubMed DOI PMC

Mohammadi N., Shaghaghi N. Inhibitory Effect of Eight Secondary Metabolites from Conventional Medicinal Plants on COVID_19 Virus Protease by Molecular Docking Analysis. ChemRxiv. Preprint. 2020 doi: 10.26434/chemrxiv.11987475.v1. DOI

Liu T., Liu X., Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget. 2016;7:40800–40815. doi: 10.18632/oncotarget.8315. PubMed DOI PMC

Kim D.E., Min J.S., Jang M.S., Lee J.Y., Shin Y.S., Park C.M., Song J.H., Kim H.R., Kim S., Jin Y.-H., et al. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 Human Lung Cells. Biomolecules. 2019;9:696. doi: 10.3390/biom9110696. PubMed DOI PMC

Tsai Y.-C., Lee C.-L., Yen H.-R., Chang Y.-S., Lin Y.-P., Huang S.-H., Lin C.-W. Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules. 2020;10:366. doi: 10.3390/biom10030366. PubMed DOI PMC

Gu W., Wang W., Li X.-N., Zhang Y., Wang L.-P., Yuan C., Huang L., Hao X.-J. A novel isocoumarin with anti-influenza virus activity from Strobilanthes cusia. Fitoterapia. 2015;107:60–62. doi: 10.1016/j.fitote.2015.10.009. PubMed DOI

Jiménez-González F.J., Veloza L.A., Sepúlveda-Arias J.C. Anti-infectious activity in plants of the genus Tabebuia. Univ. Sci. 2013;18:257–267. doi: 10.11144/Javeriana.SC18-3.aapg. DOI

Nepomuceno J.C. Plants and Crop the Biology and Biotechnology Research. 1st ed. iConcept Press Ltd.; Hong Kong, China: 2014. Lapachol and its derivatives as potential drugs for cancer treatment. Chapter: Lapachol and its derivatives as potential drugs for cancer treatment.

Naser B., Bodinet C., Tegtmeier M., Lindequist U. Thuja occidentalis (Arbor vitae): A review of its pharmaceutical, pharmacological and clinical properties. Evid. Based Complementary Altern. Med. 2005;2:69–78. doi: 10.1093/ecam/neh065. PubMed DOI PMC

Kumaki Y., Wandersee M.K., Smith A.J., Zhou Y., Simmons G., Nelson N.M., Bailey K.W., Vest Z.G., Li J.K.-K., Chan P.K.-S., et al. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antivir. Res. 2011;90:22–32. doi: 10.1016/j.antiviral.2011.02.003. PubMed DOI PMC

Altun M.L., Çitoğlu G.S., Yilmaz B.S., Özbek H. Antinociceptive and anti-inflammatory activities of Viburnum opulus. Pharm. Biol. 2009;47:653–658. doi: 10.1080/13880200902918345. DOI

Vimalanathan S., Ignacimuthu S., Hudson J.B. Medicinal plants of Tamil Nadu (Southern India) are a rich source of antiviral activities. Pharm. Biol. 2009;47:422–429. doi: 10.1080/13880200902800196. DOI

Chang J.S., Wang K.C., Yeh C.F., Shieh D.E., Chiang L.C. Fresh ginger (Zingiber officinale) has antiviral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol. 2013;145:146–151. doi: 10.1016/j.jep.2012.10.043. PubMed DOI

Hong E.-H., Song J.H., Bin Kang K., Sung S.H., Ko H.-J., Yang H. Anti-influenza activity of betulinic acid from Zizyphus jujuba on Influenza A/PR/8 Virus. Biomol. Ther. 2015;23:345–349. doi: 10.4062/biomolther.2015.019. PubMed DOI PMC

Kim E.B., Kwak J.H. Antiviral phenolic compounds from the whole plants of Zostera marina against influenza A virus. Planta Medica. 2015;81:1494. doi: 10.1055/s-0035-1565630. DOI

Al-Ansary L.A., Bawazeer G.A., Beller E., Clark J., Conly J., Del Mar C., Dooley E., Ferroni E., Glasziou P., Hoffman T., et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Part 2—Hand hygiene and other hygiene measures: Systematic review and meta-analysis. MedRxiv. 2020 doi: 10.1101/2020.04.14.20065250. DOI

Lin L.-T., Hsu W.-C., Lin C.-C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med. 2014;4:24–35. doi: 10.4103/2225-4110.124335. PubMed DOI PMC

Huang J., Wu L., Ren X., Wu X., Chen Y., Ran G., Huang A., Huang L., Zhong D. Traditional Chinese medicine for corona virus disease 2019: A protocol for systematic review. Medicine. 2020;99:e21774. doi: 10.1097/MD.0000000000021774. PubMed DOI PMC

Yang R., Liu H., Bai C., Wang Y., Zhang X., Guo R., Wu S., Wang J., Leung E., Chang H., et al. Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacol. Res. 2020;157:104820. doi: 10.1016/j.phrs.2020.104820. PubMed DOI PMC

Khailany R.A., Safdar M., Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020;19:100682. doi: 10.1016/j.genrep.2020.100682. PubMed DOI PMC

Arunkumar G., Mudgal P.P., Maity H., Dowarha D., Devadiga S., Nag S., Arunkumar G. Herbal plants and plant preparations as remedial approach for viral diseases. Virus. 2015;26:225–236. doi: 10.1007/s13337-015-0276-6. PubMed DOI PMC

Williamson E.M., Liu X., Izzo A.A. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 2020;177:1227–1240. doi: 10.1111/bph.14943. PubMed DOI PMC

Islam T., Sarkar C., El-Kersh D.M., Jamaddar S., Uddin S.J., Shilpi J.A., Mubarak M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res. 2020;34:2471–2492. doi: 10.1002/ptr.6700. PubMed DOI

Ložienė K., Švedienė J., Paškevičius A., Raudoniene V., Sytar O., Kosyan A. Influence of plant origin natural α-pinene with different enantiomeric composition on bacteria, yeasts and fungi. Fitoterapia. 2018;127:20–24. doi: 10.1016/j.fitote.2018.04.013. PubMed DOI

Schwarz S., Sauter D., Wang K., Zhang R., Sun B., Karioti A., Bilia A.R., Efferth T., Schwarz W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Medica. 2014;80:177–182. doi: 10.1055/s-0033-1360277. PubMed DOI PMC

Roviello V., Roviello G.N. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environ. Chem. Lett. 2020:1–12. doi: 10.1007/s10311-020-01063-0. PubMed DOI PMC

Song J.-W., Long J.-Y., Xie L., Zhang L.-L., Xie Q.-X., Chen H.-J., Deng M., Li X. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: A review. Chin. Med. 2020;15:1–26. doi: 10.1186/s13020-020-00384-0. PubMed DOI PMC

Sytar O., Švedienė J., Ložienė K., Paškevičius A., Kosyan A., Taran N. Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharm. Biol. 2016;54:3121–3125. doi: 10.1080/13880209.2016.1211716. PubMed DOI

Morán-Santibañez K., Peña-Hernández M.A., Cruz-Suarez L.E., Ricque-Marie D., Skouta R., Vasquez A.H., Rodríguez-Padilla M.C., Trejo-Avila L.M. Virucidal and synergistic activity of polyphenol-rich extracts of seaweeds against measles virus. Viruses. 2018;10:465. doi: 10.3390/v10090465. PubMed DOI PMC

Salehi B., Iriti M., Vitalini S., Antolak H., Pawlikowska E., Kręgiel D., Sharifi-Rad J., Oyeleye S.I., Ademiluyi A.O., Czopek K., et al. Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance. Biomolecules. 2019;9:337. doi: 10.3390/biom9080337. PubMed DOI PMC

Yang W., Chen X., Li Y., Guo S., Wang Z., Yu X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020;15 doi: 10.1177/1934578X20903555. DOI

Cheng P.-W., Ng L.-T., Chiang L.-C., Lin C.-C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol. 2006;33:612–616. doi: 10.1111/j.1440-1681.2006.04415.x. PubMed DOI PMC

Azuma C.M., Dos Santos F.C.S., Lago J.H. Flavonoids and fatty acids of Camellia japonica leaves extract. Rev. Bras. Farmacogn. 2011;21:1159–1162. doi: 10.1590/S0102-695X2011005000128. DOI

Itokawa H., Nakajima H., Ikuta A., Iitaka Y. Two triterpenes from the flowers of Camellia japonica. Phytochemistry. 1981;20:2539–2542. doi: 10.1016/0031-9422(81)83089-0. DOI

Kato M., Hiroshi A. Biosynthesis and catabolism of purine alkaloids in camellia plants. Nat. Prod. Commun. 2008;3:1429–1435. doi: 10.1177/1934578X0800300907. DOI

Pompei R., Flore O., Marccialis M.A., Pani A., Loddo B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature. 1979;281:689–690. doi: 10.1038/281689a0. PubMed DOI

Munir O., Ernaz A., Ibadullayeva S.J., Altay V., Aslanipour B. A comparative analysis of medicinal and aromatic plants in the traditional medicine of İgdir (Turkey), Nakhchivan (Azerbaijan) and Tabriz (İran) Pak. J. Bot. 2018;50:337–343.

van de Sand L., Bormann M., Alt M., Schipper L., Heilingloh C.S., Todt D., Dittmer U., Elsner C., Witzke O., Krawczyk A. Glycyrrhizin effectively neutralizes SARS-CoV-2 in vitro by inhibiting the viral main protease. bioRxiv. 2020:423104. doi: 10.1101/2020.12.18.423104. PubMed DOI PMC

Park J.-Y., Ko J.-A., Kim D.W., Kim Y.M., Kwon H.-J., Jeong H.J., Kim C.Y., Park K., Lee W.S., Ryu Y.B. Chalcones isolated from Angelicakeiskei inhibit cysteine proteases of SARS-CoV. J. Enzym. Inhib. Med. Chem. 2016;31:23–30. doi: 10.3109/14756366.2014.1003215. PubMed DOI

Bailly C., Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol. Ther. 2020;214:107618. doi: 10.1016/j.pharmthera.2020.107618. PubMed DOI PMC

da Silva J.K.R., Figueiredo P.L., Byler K.G., Setzer W.N. Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 infection: An in-silico investigation. Int. J. Mol. Sci. 2020;21:3426. doi: 10.3390/ijms21103426. PubMed DOI PMC

Andre C.M., Hausman J.-F., Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016;7:19. doi: 10.3389/fpls.2016.00019. PubMed DOI PMC

Campos A.C., Moreira F.A., Gomes F.V., Del Bel E.A., Guimarães F.S. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philosophical Transactions of the Royal Society of London. Philos. Trans. R. Soc. B Biol. Sci. 2012;367:3364–3378. doi: 10.1098/rstb.2011.0389. PubMed DOI PMC

Mabou Tagne A., Pacchetti B., Sodergren M., Cosentino M., Marino F. Cannabidiol for Viral Diseases: Hype or Hope? Cannabis Cannabinoid Res. 2020;5:121–131. doi: 10.1089/can.2019.0060. PubMed DOI PMC

de ASilva J.R., Geone M.C., Carvalho R., Renyer A.C., Pinheiro M.L.B., Araujo Lídia M., Amaral Ana Claudia F. Analyses of Ampelozizyphus amazonicus, a plant used in folk medicine of the Amazon Region. Pharmacogn. Mag. 2009;5:75–80.

Kapepula P.M., Kabengele J.K., Kingombe M., Van Bambeke F., Tulkens P.M., Sadiki Kishabongo A., Decloedt E., Zumla A., Tiberi S., Suleman F., et al. Artemisia spp. Derivatives for COVID-19 Treatment: Anecdotal Use, Political Hype, Treatment Potential, Challenges, and Road Map to Randomized Clinical Trials. Am. J. Trop. Med. Hyg. 2020;103:960–964. doi: 10.4269/ajtmh.20-0820. PubMed DOI PMC

Layne T.H., Roach J.S., Tinto W.F. Review of β-carboline alkaloids from the genus Aspidosperma. Nat. Prod. Commun. 2015;10:183–186. doi: 10.1177/1934578X1501000139. PubMed DOI

Hudson J., Lee M., Rasoanaivo P. Antiviral activities in plants endemic to madagascar. Pharm. Biol. 2000;38:36–39. doi: 10.1076/1388-0209(200001)3811-BFT036. PubMed DOI

Qing Z.-X., Yang P., Tang Q., Cheng P., Liu X.-B., Zheng Y.-J., Liu Y.-S., Zeng J. Isoquinoline alkaloids and their antiviral, antibacterial, and antifungal activities and structure-activity relationship. Curr. Org. Chem. 2017;21:1920–1934. doi: 10.2174/1385272821666170207114214. DOI

Jahan I., Onay A. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turk. J. Biol. 2020;44:228–241. doi: 10.3906/biy-2005-114. PubMed DOI PMC

Kumar M., Prasad S.K., Hemalatha S. A current update on the phytopharmacological aspects of Houttuynia cordata Thunb. Pharmacogn. Rev. 2014;8:22–35. doi: 10.4103/0973-7847.125525. PubMed DOI PMC

Wang B., Kovalchuk A., Li D., Ilnytskyy Y., Kovalchuk I., Kovalchuk O. In Search of Preventative Strategies: Novel Anti-Inflammatory High-CBD Cannabis Sativa Extracts Modulate ACE2 Expression in COVID-19 Gateway Tissues. Preprints. 2020 doi: 10.20944/preprints202004.0315.v1. PubMed DOI PMC

Weng J.K. Plant solutions for the COVID-19 pandemic and beyond: Historical reflections and future perspectives. Mol. Plant. 2020;13:803–807. doi: 10.1016/j.molp.2020.05.014. PubMed DOI PMC

Bieski I.G.C., Leonti M., Arnason J.T., Ferrier J., Rapinski M., Violante I.M.P., Balogun S.O., Pereira J.F.C.A., Figueiredo R.D.C.F., Lopes C.R.A.S., et al. Ethnobotanical study of medicinal plants by population of Valley of Juruena Region, Legal Amazon, Mato Grosso, Brazil. J. Ethnopharmacol. 2015;173:383–423. doi: 10.1016/j.jep.2015.07.025. PubMed DOI

van Eck N.J., Ludo W. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics. 2017;111:1053–1070. doi: 10.1007/s11192-017-2300-7. PubMed DOI PMC

Sweileh W.M., Al-Jabi S.W., Zyoud S.H., Sawalha A.F., Abu-Taha A.S. Global research output in antimicrobial resistance among uropathogens: A bibliometric analysis (2002–2016) J. Glob. Antimicrob. Resist. 2018;13:104–114. doi: 10.1016/j.jgar.2017.11.017. PubMed DOI

Soosaraei M., Khasseh A.A., Fakhar M., Hezarjaribi H.Z. A decade bibliometric analysis of global research on leishmaniasis in Web of Science database. Ann. Med. Surg. 2018;26:30–37. doi: 10.1016/j.amsu.2017.12.014. PubMed DOI PMC

Yeung A.W.K., Mocan A., Atanasov A.G. Let food be thy medicine and medicine be thy food: A bibliometric analysis of the most cited papers focusing on nutraceuticals and functional foods. Food Chem. 2018;269:455–465. doi: 10.1016/j.foodchem.2018.06.139. PubMed DOI

World Health Organization Chikungunya Fact Sheet. [(accessed on 9 January 2020)];2020 Available online: https://www.who.int/news-room/fact-sheets/detail/chikungunya.

Sharma V., Kaushik S., Pandit P., Dhull D., Yadav J.P., Kaushik S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl. Microbiol. Biotechnol. 2019;103:881–891. doi: 10.1007/s00253-018-9488-1. PubMed DOI

Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006;27:1–93. doi: 10.1016/j.mam.2005.07.008. PubMed DOI

Lopez V. Are traditional medicinal plants and ethnobotany still valuable approaches in pharmaceutical research. Boletín Latinoam. y Del Caribe de Plantas Med. y Aromáticas. 2011;10:3–10.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...