Prognostic value and multifaceted roles of tetraspanin CD9 in cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37007105
PubMed Central
PMC10063841
DOI
10.3389/fonc.2023.1140738
Knihovny.cz E-zdroje
- Klíčová slova
- CD9, cancer, exosomes, immunohistochemistry, prognosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
CD9 is a crucial regulator of cell adhesion in the immune system and plays important physiological roles in hematopoiesis, blood coagulation or viral and bacterial infections. It is involved in the transendothelial migration of leukocytes which might also be hijacked by cancer cells during their invasion and metastasis. CD9 is found at the cell surface and the membrane of exosomes affecting cancer progression and therapy resistance. High expression of CD9 is mostly associated with good patients outcome, with a few exceptions. Discordant findings have been reported for breast, ovarian, melanoma, pancreatic and esophageal cancer, which might be related to using different antibodies or inherent cancer heterogeneity. According to in vitro and in vivo studies, tetraspanin CD9 is not clearly associated with either tumor suppression or promotion. Further mechanistic experiments will elucidate the role of CD9 in particular cancer types and specific conditions.
Department of Clinical and Molecular Pathology University Hospital Olomouc Olomouc Czechia
Department of Cytokinetics Institute of Biophysics of the Czech Academy of Sciences Brno Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Pathology EUC Laboratore CGB a s Ostrava Czechia
International Clinical Research Center St Anne's University Hospital Brno Czechia
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czechia
Proteomics Core Facility Central European Institute of Technology Masaryk University Brno Czechia
Zobrazit více v PubMed
Reyes R, Cardenes B, Machado-Pineda Y, Cabanas C. Tetraspanin CD9: A key regulator of cell adhesion in the immune system. Front Immunol (2018) 9:863. doi: 10.3389/fimmu.2018.00863 PubMed DOI PMC
Brosseau C, Colas L, Magnan A, Brouard S. CD9 tetraspanin: A new pathway for the regulation of inflammation? Front Immunol (2018) 9:2316. doi: 10.3389/fimmu.2018.02316 PubMed DOI PMC
Yang XH, Kovalenko OV, Kolesnikova TV, Andzelm MM, Rubinstein E, Strominger JL, et al. . Contrasting effects of EWI proteins, integrins, and protein palmitoylation on cell surface CD9 organization. J Biol Chem (2006) 281:12976–85. doi: 10.1074/jbc.M510617200 PubMed DOI
Rubinstein E, Charrin S, Tomlinson MG. Organisation of the tetraspanin web. In: Tetraspanins. Dordrecht: Springer Netherlands; (2013). p. 47–90. doi: 10.1007/978-94-007-6070-7 DOI
Berditchevski F, Odintsova E. Characterization of integrin-tetraspanin adhesion complexes: Role of tetraspanins in integrin signaling. J Cell Biol (1999) 146:477–92. doi: 10.1083/jcb.146.2.477 PubMed DOI PMC
Sugiura T, Berditchevski F. Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J Cell Biol (1999) 146:1375–89. doi: 10.1083/jcb.146.6.1375 PubMed DOI PMC
Hwang JR, Jo K, Lee Y, Sung B-J, Park YW, Lee J-H. Upregulation of CD9 in ovarian cancer is related to the induction of TNF- alpha gene expression and constitutive NF-kappaB activation. Carcinogenesis (2012) 33:77–83. doi: 10.1093/carcin/bgr257 PubMed DOI
Murayama Y, Shinomura Y, Oritani K, Miyagawa J-I, Yoshida H, Nishida M, et al. . The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol (2008) 216:135–43. doi: 10.1002/jcp.21384 PubMed DOI
Wang G-P, Han X-F. CD9 modulates proliferation of human glioblastoma cells via epidermal growth factor receptor signaling. Mol Med Rep (2015) 12:1381–6. doi: 10.3892/mmr.2015.3466 PubMed DOI
Furuya M, Kato H, Nishimura N, Ishiwata I, Ikeda H, Ito R, et al. . Down-regulation of CD9 in human ovarian carcinoma cell might contribute to peritoneal dissemination: Morphologic alteration and reduced expression of beta1 integrin subsets. Cancer Res (2005) 65:2617–25. doi: 10.1158/0008-5472.CAN-04-3123 PubMed DOI
Remsik J, Fedr R, Navratil J, Bino L, Slabakova E, Fabian P, et al. . Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer. Br J Cancer (2018) 118:813–9. doi: 10.1038/bjc.2017.497 PubMed DOI PMC
Iwasaki T, Takeda Y, Maruyama K, Yokosaki Y, Tsujino K, Tetsumoto S, et al. . Deletion of tetraspanin CD9 diminishes lymphangiogenesis in vivo and in vitro . J Biol Chem (2013) 288:2118–31. doi: 10.1074/jbc.M112.424291 PubMed DOI PMC
Longo N, Yáñez-Mó M, Mittelbrunn M, de la Rosa G, Muñoz ML, Sánchez-Madrid F, et al. . Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood (2001) 98:3717–26. doi: 10.1182/blood.v98.13.3717 PubMed DOI
Miki Y, Yashiro M, Okuno T, Kitayama K, Masuda G, Hirakawa K, et al. . CD9-positive exosomes from cancer-associated fibroblasts stimulate the migration ability of scirrhous-type gastric cancer cells. Br J Cancer (2018) 118:867–77. doi: 10.1038/bjc.2017.487 PubMed DOI PMC
Nigri J, Leca J, Tubiana S-S, Finetti P, Guillaumond F, Martinez S, et al. . CD9 mediates the uptake of extracellular vesicles from cancer-associated fibroblasts that promote pancreatic cancer cell aggressiveness. Sci Signal (2022) 15:eabg8191. doi: 10.1126/scisignal.abg8191 PubMed DOI
Rajagopal C, Harikumar KB. The origin and functions of exosomes in cancer. Front Oncol (2018) 8:66. doi: 10.3389/fonc.2018.00066 PubMed DOI PMC
Tai Y-L, Chen K-C, Hsieh J-T, Shen T-L. Exosomes in cancer development and clinical applications. Cancer Sci (2018) 109:2364–74. doi: 10.1111/cas.13697 PubMed DOI PMC
Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. . Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med (2012) 18:883–91. doi: 10.1038/nm.2753 PubMed DOI PMC
Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, et al. . Tumour exosome integrins determine organotropic metastasis. Nature (2015) 527:329–35. doi: 10.1038/nature15756 PubMed DOI PMC
Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. . Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol (2015) 17:816–26. doi: 10.1038/ncb3169 PubMed DOI PMC
Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, et al. . Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther (2005) 4:1595–604. doi: 10.1158/1535-7163.MCT-05-0102 PubMed DOI
Jorfi S, Ansa-Addo EA, Kholia S, Stratton D, Valley S, Lange S, et al. . Inhibition of microvesiculation sensitizes prostate cancer cells to chemotherapy and reduces docetaxel dose required to limit tumor growth in vivo . Sci Rep (2015) 5:13006. doi: 10.1038/srep13006 PubMed DOI PMC
Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M, Lahmann M, et al. . Exosomal evasion of humoral immunotherapy in aggressive b-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U.S.A. (2011) 108:15336–41. doi: 10.1073/pnas.1102855108 PubMed DOI PMC
Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol (2005) 6:801–11. doi: 10.1038/nrm1736 PubMed DOI
Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers (Basel) (2017) 9:8. doi: 10.3390/cancers9010008 PubMed DOI PMC
Radford KJ, Thorne RF, Hersey P. CD63 associates with transmembrane 4 superfamily members, CD9 and CD81, and with beta 1 integrins in human melanoma. Biochem Biophys Res Commun (1996) 222:13–8. doi: 10.1006/bbrc.1996.0690 PubMed DOI
Wang H-X, Li Q, Sharma C, Knoblich K, Hemler ME. Tetraspanin protein contributions to cancer. Biochem Soc Trans (2011) 39:547–52. doi: 10.1042/BST0390547 PubMed DOI
Iwamoto R, Higashiyama S, Mitamura T, Taniguchi N, Klagsbrun M, Mekada E. Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J (1994) 13:2322–30. doi: 10.1002/j.1460-2075.1994.tb06516.x PubMed DOI PMC
Machado-Pineda Y, Cardenes B, Reyes R, Lopez-Martin S, Toribio V, Sanchez-Organero P, et al. . CD9 controls integrin alpha5beta1-mediated cell adhesion by modulating its association with the metalloproteinase ADAM17. Front Immunol (2018) 9:2474. doi: 10.3389/fimmu.2018.02474 PubMed DOI PMC
Anzai N, Lee Y, Youn B-S, Fukuda S, Kim Y-J, Mantel C, et al. . C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors. Blood (2002) 99:4413–21. doi: 10.1182/blood.v99.12.4413 PubMed DOI
Horvath G, Serru V, Clay D, Billard M, Boucheix C, Rubinstein E. CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82. J Biol Chem (1998) 273:30537–43. doi: 10.1074/jbc.273.46.30537 PubMed DOI
Gutierrez-Lopez MD, Gilsanz A, Yanez-Mo M, Ovalle S, Lafuente EM, Dominguez C, et al. . The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci (2011) 68:3275–92. doi: 10.1007/s00018-011-0639-0 PubMed DOI PMC
Herr MJ, Mabry SE, Jennings LK. Tetraspanin CD9 regulates cell contraction and actin arrangement via RhoA in human vascular smooth muscle cells. PloS One (2014) 9:e106999. doi: 10.1371/journal.pone.0106999 PubMed DOI PMC
Arnaud M-P, Vallée A, Robert G, Bonneau J, Leroy C, Varin-Blank N, et al. . CD9, a key actor in the dissemination of lymphoblastic leukemia, modulating CXCR4-mediated migration via RAC1 signaling. Blood (2015) 126:1802–12. doi: 10.1182/blood-2015-02-628560 PubMed DOI
Zhang XA, Bontrager AL, Hemler ME. Transmembrane-4 superfamily proteins associate with activated protein kinase c (PKC) and link PKC to specific beta(1) integrins. J Biol Chem (2001) 276:25005–13. doi: 10.1074/jbc.M102156200 PubMed DOI
Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, et al. . Requirement of CD9 on the egg plasma membrane for fertilization. Science (2000) 287:321–4. doi: 10.1126/science.287.5451.321 PubMed DOI
Kagawa T, Mekada E, Shishido Y, Ikenaka K. Immune system-related CD9 is expressed in mouse central nervous system myelin at a very late stage of myelination. J Neurosci Res (1997) 50:312–20. doi: 10.1002/(SICI)1097-4547(19971015)50:2<312::AID-JNR19>3.0.CO;2-9 PubMed DOI
Charrin S, Latil M, Soave S, Polesskaya A, Chretien F, Boucheix C, et al. . Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nat Commun (2013) 4:1674. doi: 10.1038/ncomms2675 PubMed DOI
Dharan R, Goren S, Cheppali SK, Shendrik P, Brand G, Vaknin A, et al. . Transmembrane proteins tetraspanin 4 and CD9 sense membrane curvature. Proc Natl Acad Sci U.S.A. (2022) 119:e2208993119. doi: 10.1073/pnas.2208993119 PubMed DOI PMC
Umeda R, Satouh Y, Takemoto M, Nakada-Nakura Y, Liu K, Yokoyama T, et al. . Structural insights into tetraspanin CD9 function. Nat Commun (2020) 11:1606. doi: 10.1038/s41467-020-15459-7 PubMed DOI PMC
Clay D, Rubinstein E, Mishal Z, Anjo A, Prenant M, Jasmin C, et al. . CD9 and megakaryocyte differentiation. Blood (2001) 97:1982–9. doi: 10.1182/blood.v97.7.1982 PubMed DOI
Oritani K, Wu X, Medina K, Hudson J, Miyake K, Gimble JM, et al. . Antibody ligation of CD9 modifies production of myeloid cells in long-term cultures. Blood (1996) 87:2252–61. doi: 10.1182/blood.V87.6.2252.bloodjournal8762252 PubMed DOI
Aoyama K, Oritani K, Yokota T, Ishikawa J, Nishiura T, Miyake K, et al. . Stromal cell CD9 regulates differentiation of hematopoietic stem/progenitor cells. Blood (1999) 93:2586–94. doi: 10.1182/blood.V93.8.2586 PubMed DOI
Israels SJ, McMillan-Ward EM, Easton J, Robertson C, McNicol A. CD63 associates with the alphaIIb beta3 integrin-CD9 complex on the surface of activated platelets. Thromb Haemost (2001) 85:134–41. doi: 10.1055/s-0037-1612916 PubMed DOI
Yun S-H, Sim E-H, Goh R-Y, Park J-I, Han J-Y. Platelet activation: The mechanisms and potential biomarkers. BioMed Res Int (2016) 2016:9060143. doi: 10.1155/2016/9060143 PubMed DOI PMC
Sims B, Farrow AL, Williams SD, Bansal A, Krendelchtchikov A, Matthews QL. Tetraspanin blockage reduces exosome-mediated HIV-1 entry. Arch Virol (2018) 163:1683–9. doi: 10.1007/s00705-018-3737-6 PubMed DOI PMC
Ventress JK, Partridge LJ, Read RC, Cozens D, MacNeil S, Monk PN. Peptides from tetraspanin CD9 are potent inhibitors of staphylococcus aureus adherence to keratinocytes. PloS One (2016) 11:e0160387. doi: 10.1371/journal.pone.0160387 PubMed DOI PMC
Green LR, Monk PN, Partridge LJ, Morris P, Gorringe AR, Read RC. Cooperative role for tetraspanins in adhesin-mediated attachment of bacterial species to human epithelial cells. Infect Immun (2011) 79:2241–9. doi: 10.1128/IAI.01354-10 PubMed DOI PMC
Earnest JT, Hantak MP, Park J-E, Gallagher T. Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains. J Virol (2015) 89:6093–104. doi: 10.1128/JVI.00543-15 PubMed DOI PMC
Earnest JT, Hantak MP, Li K, McCray PBJ, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PloS Pathog (2017) 13:e1006546. doi: 10.1371/journal.ppat.1006546 PubMed DOI PMC
Pironti G, Andersson DC, Lund LH. Mechanistic and therapeutic implications of extracellular vesicles as a potential link between covid-19 and cardiovascular disease manifestations. Front Cell Dev Biol (2021) 9:640723. doi: 10.3389/fcell.2021.640723 PubMed DOI PMC
Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol (2014) 5:442. doi: 10.3389/fimmu.2014.00442 PubMed DOI PMC
Lorico A, Lorico-Rappa M, Karbanová J, Corbeil D, Pizzorno G. CD9, a tetraspanin target for cancer therapy? Exp Biol Med (Maywood) (2021) 246:1121–38. doi: 10.1177/1535370220981855 PubMed DOI PMC
Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics (2010) 73:1907–20. doi: 10.1016/j.jprot.2010.06.006 PubMed DOI
Rappa G, Santos MF, Green TM, Karbanová J, Hassler J, Bai Y, et al. . Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes. Oncotarget (2017) 8:14443–61. doi: 10.18632/oncotarget.14804 PubMed DOI PMC
Mazurov D, Barbashova L, Filatov A. Tetraspanin protein CD9 interacts with metalloprotease CD10 and enhances its release via exosomes. FEBS J (2013) 280:1200–13. doi: 10.1111/febs.12110 PubMed DOI
Smollich M, Götte M, Yip GW, Yong E-S, Kersting C, Fischgräbe J, et al. . On the role of endothelin-converting enzyme-1 (ECE-1) and neprilysin in human breast cancer. Breast Cancer Res Treat (2007) 106:361–9. doi: 10.1007/s10549-007-9516-9 PubMed DOI
Deschamps L, Handra-Luca A, O’Toole D, Sauvanet A, Ruszniewski P, Belghiti J, et al. . CD10 expression in pancreatic endocrine tumors: Correlation with prognostic factors and survival. Hum Pathol (2006) 37:802–8. doi: 10.1016/j.humpath.2006.02.024 PubMed DOI
Brzozowski JS, Bond DR, Jankowski H, Goldie BJ, Burchell R, Naudin C, et al. . Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion. Sci Rep (2018) 8:8822. doi: 10.1038/s41598-018-27180-z PubMed DOI PMC
Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H, et al. . Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587. Cancer Res (2017) 77:5808–19. doi: 10.1158/0008-5472.CAN-16-2524 PubMed DOI PMC
Dong L, Zieren RC, Wang Y, de Reijke TM, Xue W, Pienta KJ. Recent advances in extracellular vesicle research for urological cancers: From technology to application. Biochim Biophys Acta Rev Cancer (2019) 1871:342–60. doi: 10.1016/j.bbcan.2019.01.008 PubMed DOI
Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev (2018) 118:1917–50. doi: 10.1021/acs.chemrev.7b00534 PubMed DOI PMC
Suárez H, Andreu Z, Mazzeo C, Toribio V, Pérez-Rivera AE, López-Martín S, et al. . CD9 inhibition reveals a functional connection of extracellular vesicle secretion with mitophagy in melanoma cells. J Extracell Vesicles (2021) 10:e12082. doi: 10.1002/jev2.12082 PubMed DOI PMC
Santos MF, Rappa G, Fontana S, Karbanová J, Aalam F, Tai D, et al. . Anti-human CD9 fab fragment antibody blocks the extracellular vesicle-mediated increase in malignancy of colon cancer cells. Cells (2022) 11:2474. doi: 10.3390/cells11162474 PubMed DOI PMC
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, et al. . Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. Oncotarget (2017) 8:52237–55. doi: 10.18632/oncotarget.11111 PubMed DOI PMC
Dos Anjos Pultz B, Andrés Cordero da Luz F, Socorro Faria S, Peixoto Ferreira de Souza L, Cristina Brígido Tavares P, Alonso Goulart V, et al. . The multifaceted role of extracellular vesicles in metastasis: Priming the soil for seeding. Int J Cancer (2017) 140:2397–407. doi: 10.1002/ijc.30595 PubMed DOI
Corcoran C, Rani S, O’Brien K, O’Neill A, Prencipe M, Sheikh R, et al. . Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PloS One (2012) 7:e50999. doi: 10.1371/journal.pone.0050999 PubMed DOI PMC
Chen W, Liu X, Lv M, Chen L, Zhao J, Zhong S, et al. . Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PloS One (2014) 9:e95240. doi: 10.1371/journal.pone.0095240 PubMed DOI PMC
Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, et al. . Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell (2014) 159:499–513. doi: 10.1016/j.cell.2014.09.051 PubMed DOI PMC
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, et al. . GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford) (2017) 2017:bax028. doi: 10.1093/database/bax028 PubMed DOI PMC
Khuon S, Liang L, Dettman RW, Sporn PHS, Wysolmerski RB, Chew T-L. Myosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: A three-dimensional FRET study. J Cell Sci (2010) 123:431–40. doi: 10.1242/jcs.053793 PubMed DOI PMC
Rappa G, Green TM, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget (2015) 6:7970–91. doi: 10.18632/oncotarget.3419 PubMed DOI PMC
Kischel P, Bellahcene A, Deux B, Lamour V, Dobson R, DE Pauw E, et al. . Overexpression of CD9 in human breast cancer cells promotes the development of bone metastases. Anticancer Res (2012) 32:5211–20. PubMed
Rappa G, Green TM, Lorico A. The nuclear pool of tetraspanin CD9 contributes to mitotic processes in human breast carcinoma. Mol Cancer Res (2014) 12:1840–50. doi: 10.1158/1541-7786.MCR-14-0242 PubMed DOI
Sauer G, Windisch J, Kurzeder C, Heilmann V, Kreienberg R, Deissler H. Progression of cervical carcinomas is associated with down-regulation of CD9 but strong local re-expression at sites of transendothelial invasion. Clin Cancer Res (2003) 9:6426–31. PubMed
Lucarini G, Molinelli E, Licini C, Rizzetto G, Radi G, Goteri G, et al. . Tetraspanin CD9 expression predicts sentinel node status in patients with cutaneous melanoma. Int J Mol Sci (2022) 23:4775. doi: 10.3390/ijms23094775 PubMed DOI PMC
Hori H, Yano S, Koufuji K, Takeda J, Shirouzu K. CD9 expression in gastric cancer and its significance. J Surg Res (2004) 117:208–15. doi: 10.1016/j.jss.2004.01.014 PubMed DOI
Wang VM-Y, Ferreira RMM, Almagro J, Evan T, Legrave N, Zaw Thin M, et al. . CD9 identifies pancreatic cancer stem cells and modulates glutamine metabolism to fuel tumour growth. Nat Cell Biol (2019) 21:1425–35. doi: 10.1038/s41556-019-0407-1 PubMed DOI PMC
Shi Y, Zhou W, Cheng L, Chen C, Huang Z, Fang X, et al. . Tetraspanin CD9 stabilizes gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote STAT3 activation in glioma stem cells. Cell Death Differ (2017) 24:167–80. doi: 10.1038/cdd.2016.110 PubMed DOI PMC
Podergajs N, Motaln H, Rajčević U, Verbovšek U, Koršič M, Obad N, et al. . Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget (2016) 7:593–609. doi: 10.18632/oncotarget.5477 PubMed DOI PMC
Lin Q, Peng S, Yang Y. Inhibition of CD9 expression reduces the metastatic capacity of human hepatocellular carcinoma cell line MHCC97-h. Int J Oncol (2018) 53:266–74. doi: 10.3892/ijo.2018.4381 PubMed DOI
Suwatthanarak T, Tanaka M, Miyamoto Y, Miyado K, Okochi M. Inhibition of cancer-cell migration by tetraspanin CD9-binding peptide. Chem Commun (Camb) (2021) 57:4906–9. doi: 10.1039/d1cc01295a PubMed DOI
Suwatthanarak T, Ito K, Tanaka M, Sugiura K, Hoshino A, Miyamoto Y, et al. . A peptide binding to the tetraspanin CD9 reduces cancer metastasis. Biomater Adv (2023) 146:213283. doi: 10.1016/j.bioadv.2023.213283 PubMed DOI
Lu W, Fei A, Jiang Y, Chen L, Wang Y. Tetraspanin CD9 interacts with α-secretase to enhance its oncogenic function in pancreatic cancer. Am J Transl Res (2020) 12:5525–37. PubMed PMC
Kohmo S, Kijima T, Otani Y, Mori M, Minami T, Takahashi R, et al. . Cell surface tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res (2010) 70:8025–35. doi: 10.1158/0008-5472.CAN-10-0996 PubMed DOI
Houle CD, Ding X-Y, Foley JF, Afshari CA, Barrett JC, Davis BJ. Loss of expression and altered localization of KAI1 and CD9 protein are associated with epithelial ovarian cancer progression. Gynecol Oncol (2002) 86:69–78. doi: 10.1006/gyno.2002.6729 PubMed DOI
Takeda T, Hattori N, Tokuhara T, Nishimura Y, Yokoyama M, Miyake M. Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res (2007) 67:1744–9. doi: 10.1158/0008-5472.CAN-06-3090 PubMed DOI
Nakazawa Y, Sato S, Naito M, Kato Y, Mishima K, Arai H, et al. . Tetraspanin family member CD9 inhibits aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood (2008) 112:1730–9. doi: 10.1182/blood-2007-11-124693 PubMed DOI
Copeland BT, Bowman MJ, Boucheix C, Ashman LK. Knockout of the tetraspanin Cd9 in the TRAMP model of de novo prostate cancer increases spontaneous metastases in an organ-specific manner. Int J Cancer (2013) 133:1803–12. doi: 10.1002/ijc.28204 PubMed DOI
Tang M, Yin G, Wang F, Liu H, Zhou S, Ni J, et al. . Downregulation of CD9 promotes pancreatic cancer growth and metastasis through upregulation of epidermal growth factor on the cell surface. Oncol Rep (2015) 34:350–8. doi: 10.3892/or.2015.3960 PubMed DOI
Funakoshi T, Tachibana I, Hoshida Y, Kimura H, Takeda Y, Kijima T, et al. . Expression of tetraspanins in human lung cancer cells: frequent downregulation of CD9 and its contribution to cell motility in small cell lung cancer. Oncogene (2003) 22:674–87. doi: 10.1038/sj.onc.1206106 PubMed DOI
Li Y, Yu S, Li L, Chen J, Quan M, Li Q, et al. . KLF4-mediated upregulation of CD9 and CD81 suppresses hepatocellular carcinoma development via JNK signaling. Cell Death Dis (2020) 11:299. doi: 10.1038/s41419-020-2479-z PubMed DOI PMC
Miyake M, Nakano K, Ieki Y, Adachi M, Huang CL, Itoi S, et al. . Motility related protein 1 (MRP-1/CD9) expression: inverse correlation with metastases in breast cancer. Cancer Res (1995) 55:4127–31. PubMed
Arihiro K, Fujii I. Loss of CD9 with expression of CD31 and VEGF in breast carcinoma, as predictive factors of lymph node metastasis. Breast Cancer (1998) 5:131–8. doi: 10.1007/BF02966685 PubMed DOI
Miyamoto S, Maruyama A, Okugawa K, Akazawa K, Baba H, Maehara Y, et al. . Loss of motility-related protein 1 (MRP1/CD9) and integrin alpha3 expression in endometrial cancers. Cancer (2001) 92:542–8. doi: 10.1002/1097-0142(20010801)92:3<542::aid-cncr1353>3.0.co;2-8 PubMed DOI
Mhawech P, Herrmann F, Coassin M, Guillou L, Iselin CE. Motility-related protein 1 (MRP-1/CD9) expression in urothelial bladder carcinoma and its relation to tumor recurrence and progression. Cancer (2003) 98:1649–57. doi: 10.1002/cncr.11698 PubMed DOI
Ai X, Zhang X, Wu Z, Ma X, Ju Z, Wang B, et al. . Expression of KAI1/CD82 and MRP-1/CD9 in transitional cell carcinoma of bladder. J Huazhong Univ Sci Technolog Med Sci (2007) 27:79–82. doi: 10.1007/s11596-007-0123-0 PubMed DOI
Buim MEC, Lourenco SV, Carvalho KC, Cardim R, Pereira C, Carvalho AL, et al. . Downregulation of CD9 protein expression is associated with aggressive behavior of oral squamous cell carcinoma. Oral Oncol (2010) 46:166–71. doi: 10.1016/j.oraloncology.2009.11.009 PubMed DOI
Kusukawa J, Ryu F, Kameyama T, Mekada E. Reduced expression of CD9 in oral squamous cell carcinoma: CD9 expression inversely related to high prevalence of lymph node metastasis. J Oral Pathol Med (2001) 30:73–9. doi: 10.1034/j.1600-0714.2001.300202.x PubMed DOI
Uchida S, Shimada Y, Watanabe G, Li ZG, Hong T, Miyake M, et al. . Motility-related protein (MRP-1/CD9) and KAI1/CD82 expression inversely correlate with lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer (1999) 79:1168–73. doi: 10.1038/sj.bjc.6690186 PubMed DOI PMC
Zou Q, Xiong L, Yang Z, Lv F, Yang L, Miao X. Expression levels of HMGA2 and CD9 and its clinicopathological significances in the benign and malignant lesions of the gallbladder. World J Surg Oncol (2012) 10:92. doi: 10.1186/1477-7819-10-92 PubMed DOI PMC
Khushman M, Patel GK, Laurini JA, Bhardwaj A, Roveda K, Donnell R, et al. . Exosomal markers (CD63 and CD9) expression and their prognostic significance using immunohistochemistry in patients with pancreatic ductal adenocarcinoma. J Gastrointest Oncol (2019) 10:695–702. doi: 10.21037/jgo.2018.07.02 PubMed DOI PMC
Kim K-J, Kwon HJ, Kim MC, Bae YK. CD9 expression in colorectal carcinomas and its prognostic significance. J Pathol Transl Med (2016) 50:459–68. doi: 10.4132/jptm.2016.10.02 PubMed DOI PMC
Hashida H, Takabayashi A, Tokuhara T, Hattori N, Taki T, Hasegawa H, et al. . Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer (2003) 89:158–67. doi: 10.1038/sj.bjc.6601015 PubMed DOI PMC
Amatya VJ, Takeshima Y, Aoe K, Fujimoto N, Okamoto T, Yamada T, et al. . CD9 expression as a favorable prognostic marker for patients with malignant mesothelioma. Oncol Rep (2013) 29:21–8. doi: 10.3892/or.2012.2116 PubMed DOI PMC
Si Z, Hersey P. Expression of the neuroglandular antigen and analogues in melanoma CD9 expression appears inversely related to metastatic potential of melanoma. Int J Cancer (1993) 54:37–43. doi: 10.1002/ijc.2910540107 PubMed DOI
Woegerbauer M, Thurnher D, Houben R, Pammer J, Kloimstein P, Heiduschka G, et al. . Expression of the tetraspanins CD9, CD37, CD63, and CD151 in merkel cell carcinoma: strong evidence for a posttranscriptional fine-tuning of CD9 gene expression. Mod Pathol (2010) 23:751–62. doi: 10.1038/modpathol.2009.192 PubMed DOI
Adachi M, Taki T, Konishi T, Huang CI, Higashiyama M, Miyake M. Novel staging protocol for non-small-cell lung cancers according to MRP-1/CD9 and KAI1/CD82 gene expression. J Clin Oncol (1998) 16:1397–406. doi: 10.1200/JCO.1998.16.4.1397 PubMed DOI
Higashiyama M, Taki T, Ieki Y, Adachi M, Huang CL, Koh T, et al. . Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in non-small cell lung cancer. Cancer Res (1995) 55:6040–4. doi: 10.1002/cncr.11698 PubMed DOI
Kim T, Kim Y, Kwon HJ. Expression of CD9 and CD82 in papillary thyroid microcarcinoma and its prognostic significance. Endokrynol Pol (2019) 70:224–31. doi: 10.5603/EP.a2019.0009 PubMed DOI
Soyuer S, Soyuer I, Unal D, Ucar K, Yildiz OG, Orhan O. Prognostic significance of CD9 expression in locally advanced gastric cancer treated with surgery and adjuvant chemoradiotherapy. Pathol Res Pract (2010) 206:607–10. doi: 10.1016/j.prp.2010.04.004 PubMed DOI
Huan J, Gao Y, Xu J, Sheng W, Zhu W, Zhang S, et al. . Overexpression of CD9 correlates with tumor stage and lymph node metastasis in esophageal squamous cell carcinoma. Int J Clin Exp Pathol (2015) 8:3054–61. doi: 10.1034/j.1600-0714.2001.300202.x PubMed DOI PMC
Kwon HJ, Choi JE, Kang SH, Son Y, Bae YK. Prognostic significance of CD9 expression differs between tumour cells and stromal immune cells, and depends on the molecular subtype of the invasive breast carcinoma. Histopathology (2017) 70:1155–65. doi: 10.1111/his.13184 PubMed DOI
Baek J, Jang N, Choi JE, Kim J-R, Bae YK. CD9 expression in tumor cells is associated with poor prognosis in patients with invasive lobular carcinoma. J Breast Cancer (2019) 22:77–85. doi: 10.4048/jbc.2019.22.e9 PubMed DOI PMC
Han X, Zhang W-H, Gao H-L, Li T-J, Xu H-X, Li H, et al. . Neoadjuvant chemotherapy endows CD9 with prognostic value that differs between tumor and stromal areas in patients with pancreatic cancer. J Clin Lab Anal (2022) 36:e24517. doi: 10.1002/jcla.24517 PubMed DOI PMC
Wang J-C, Begin LR, Berube NG, Chevalier S, Aprikian AG, Gourdeau H, et al. . Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res (2007) 13:2354–61. doi: 10.1158/1078-0432.CCR-06-1692 PubMed DOI
Jamil F, Peston D, Shousha S. CD9 immunohistochemical staining of breast carcinoma: unlikely to provide useful prognostic information for routine use. Histopathology (2001) 39:572–7. doi: 10.1046/j.1365-2559.2001.01296.x PubMed DOI
Koh HM, Jang BG, Lee DH, Hyun CL. Increased CD9 expression predicts favorable prognosis in human cancers: A systematic review and meta-analysis. Cancer Cell Int (2021) 21:472. doi: 10.1186/s12935-021-02152-y PubMed DOI PMC
Zeng P, Si M, Sun R-X, Cheng X, Li X-Y, Chen M-B. Prognostic value of CD9 in solid tumor: A systematic review and meta-analysis. Front Oncol (2021) 11:764630. doi: 10.3389/fonc.2021.764630 PubMed DOI PMC