Genetic and clinical characteristics including occurrence of testicular adrenal rest tumors in Slovak and Slovenian patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37008950
PubMed Central
PMC10064884
DOI
10.3389/fendo.2023.1134133
Knihovny.cz E-resources
- Keywords
- 21 hydroxylase deficiency, 21-OH deficiency, CAH, CYP21A2, congenital adrenal hyperplasia, genotype-phenotype, newborn screening, testicular adrenal rest tumors (TART),
- MeSH
- Adrenal Hyperplasia, Congenital * epidemiology genetics diagnosis MeSH
- Humans MeSH
- Adrenal Rest Tumor * epidemiology genetics MeSH
- Steroid 21-Hydroxylase genetics MeSH
- Testicular Neoplasms * epidemiology genetics MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Slovakia epidemiology MeSH
- Names of Substances
- CYP21A2 protein, human MeSH Browser
- Steroid 21-Hydroxylase MeSH
OBJECTIVE: To analyze the mutational spectrum, clinical characteristics, genotype-phenotype correlations, testicular adrenal rests tumor prevalence, and role of neonatal screening in congenital adrenal hyperplasia (CAH) patients from Slovakia and Slovenia. DESIGN AND METHODS: Data were obtained from 104 patients with CAH registered in Slovak and Slovenian databases. Low-resolution genotyping was performed to detect the most common point mutations. To detect deletions, conversions, point mutations, or other sequence changes in the CYP21A2 gene, high-resolution genotyping was performed. Genotypes were classified according to residual 21-hydroxylase activity (null, A, B, C). RESULTS: 64% of the individuals had the salt-wasting form (SW-CAH), 15% the simple virilizing form (SV-CAH), and 21% the non-classic (NC-CAH). CYP21A2 gene deletion/conversion and c.293-13A/C>G pathogenic variant accounted together for 55.5% of the affected alleles. In SV-CAH p.Ile172Asn was the most common pathogenic variant (28.13%), while in NC-CAH p.Val282Leu (33.33%), CYP21A2 gene deletion/conversion (21.43%), c.293-13A/C>G (14.29%), Pro30Leu (11.90%). The frequency of alleles with multiple pathogenic variants was higher in Slovenian patients (15.83% of all alleles). Severe genotypes (0 and A) correlated well with the expected phenotype (SW in 94.74% and 97.3%), while less severe genotypes (B and C) correlated weaklier (SV in 50% and NC in 70.8%). The median age of SW-CAH patients at the time of diagnosis was 6 days in Slovakia vs. 28.5 days in Slovenia (p=0.01). Most of the Slovak patients in the cohort were detected by NBS. (24 out of 29). TARTs were identified in 7 out of 24 male patients, of whom all (100%) had SW-CAH and all had poor hormonal control. The median age at the diagnosis of TARTs was 13 years. CONCLUSION: The study confirmed the importance of neonatal screening, especially in the speed of diagnosis of severe forms of CAH. The prediction of the 21-OH deficiency phenotype was reasonably good in the case of severe pathogenic variants, but less reliable in the case of milder pathogenic variants, which is consistent compared to data from other populations. Screening for TARTs should be realized in all male patients with CAH, since there is possible remission when identified early.
Faculty of Medicine Comenius University Bratislava Slovakia
Faculty of Medicine University of Ljubljana Ljubljana Slovenia
See more in PubMed
White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev (2000) 21:245–91. doi: 10.1210/edrv.21.3.0398 PubMed DOI
Claahsen-van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, et al. . Congenital adrenal hyperplasia-current insights in pathophysiology, diagnostics, and management. Endocr Rev (2022) 43(1):91–159. doi: 10.1210/endrev/bnab016 PubMed DOI PMC
Riedl S, Röhl FW, Bonfig W, Brämswig J, Richter-Unruh A, Fricke-Otto S, et al. . Genotype/phenotype correlations in 538 congenital adrenal hyperplasia patients from Germany and Austria: Discordances in milder genotypes and in screened versus prescreening patients. Endocr connections (2019) 8(2):86–94. doi: 10.1530/EC-18-0281 PubMed DOI PMC
New MI, Abraham M, Gonzalez B, Dumic M, Razzaghy-Azar M, Chitayat D, et al. . Genotype-phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc Natl Acad Sci USA (2013) 110(7):2611–6. doi: 10.1073/pnas.1300057110 PubMed DOI PMC
Marino R, Ramirez P, Galeano J, Perez Garrido N, Rocco C, Ciaccio M, et al. . Steroid 21-hydroxylase gene mutational spectrum in 454 argentinean patients: Genotype-phenotype correlation in a large cohort of patients with congenital adrenal hyperplasia. Clin Endocrinol (2011) 75(4):427–35. doi: 10.1111/j.1365-2265.2011.04123.x PubMed DOI
Stikkelbroeck NM, Hoefsloot LH, de Wijs IJ, Otten BJ, Hermus AR, Sistermans EA. CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in the Netherlands: Six novel mutations and a specific cluster of four mutations. J Clin Endocrinol Metab (2003) 88(8):3852–9. doi: 10.1210/jc.2002-021681 PubMed DOI
Dolzan V, Sólyom J, Fekete G, Kovács J, Rakosnikova V, Votava F, et al. . Mutational spectrum of steroid 21-hydroxylase and the genotype-phenotype association in middle European patients with congenital adrenal hyperplasia. Eur J Endocrinol (2005) 153(1):99–106. doi: 10.1530/eje.1.01944 PubMed DOI
de Carvalho DF, Miranda MC, Gomes LG, Madureira G, Marcondes JA, Billerbeck AE, et al. . Molecular CYP21A2 diagnosis in 480 Brazilian patients with congenital adrenal hyperplasia before newborn screening introduction. Eur J Endocrinol (2016) 175(2):107–16. doi: 10.1530/EJE-16-0171 PubMed DOI
Kurzyńska A, Skalniak A, Franson K, Bistika V, Hubalewska-Dydejczyk A, Przybylik-Mazurek E. Molecular analysis and genotype-phenotype correlations in patients with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency from southern Poland - experience of a clinical center. Hormones (Athens) (2022) 21(2):241–9. doi: 10.1007/s42000-022-00348-z PubMed DOI PMC
Parsa AA, New MI. Steroid 21-hydroxylase deficiency in congenital adrenal hyperplasia. J Steroid Biochem Mol Biol (2017) 165:2–11. doi: 10.1016/j.jsbmb.2016.06.015 PubMed DOI
Heather NL, Nordenstrom A. Newborn screening for CAH-challenges and opportunities. Int J Neonatal Screen (2021) 7(1):11. doi: 10.3390/ijns7010011 PubMed DOI PMC
Pastoráková A, Petrovič R, Pribilincová Z. Molekulovo genetická podstata a diagnostika kongenitálnej adrenálnej hyperplázie na slovensku. Lekársky obzor (2020) 2020:112–21.
Engels M, Span PN, van Herwaarden AE, Sweep FCGJ, Stikkelbroeck NMML, Claahsen-van der Grinten HL. Testicular adrenal rest tumors: Current insights on prevalence, characteristics, origin, and treatment. Endocr Rev (2019) 40(4):973–87. doi: 10.1210/er.2018-00258 PubMed DOI
Baş F, Kayserili H, Darendeliler F, Uyguner O, Günöz H, Yüksel Apak M, et al. . CYP21A2 gene mutations in congenital adrenal hyperplasia: Genotype-phenotype correlation in Turkish children. J Clin Res Pediatr Endocrinol (2009) 1(3):116–28. doi: 10.4008/jcrpe.v1i3.49 PubMed DOI PMC
Dolzan V, Prezelj J, Vidan-Jeras B, Breskvar K. Adrenal 21-hydroxylase gene mutations in Slovenian hyperandrogenic women: Evaluation of corticotrophin stimulation and HLA polymorphisms in screening for carrier status. Eur J Endocrinol (1999) 141(2):132–9. doi: 10.1530/eje.0.1410132 PubMed DOI
Krone N, Arlt W. Genetics of congenital adrenal hyperplasia. Best practice & research. Clin Endocrinol Metab (2009) 23(2):181–92. doi: 10.1016/j.beem.2008.10.014 PubMed DOI PMC
Ordoñez-Sánchez ML, Ramírez-Jiménez S, López-Gutierrez AU, Riba L, Gamboa-Cardiel S, Cerrillo-Hinojosa M, et al. . Molecular genetic analysis of patients carrying steroid 21-hydroxylase deficiency in the Mexican population: Identification of possible new mutations and high prevalence of apparent germ-line mutations. Hum Genet (1998) 102(2):170–7. doi: 10.1007/s004390050672 PubMed DOI
Rodrigues NR, Dunham I, Yu CY, Carroll MC, Porter RR, Campbell RD. Molecular characterization of the HLA-linked steroid 21-hydroxylase b gene from an individual with congenital adrenal hyperplasia. EMBO J (1987) 6(6):1653–61. doi: 10.1002/j.1460-2075.1987.tb02414.x PubMed DOI PMC
Levo A, Partanen J. Mutation-haplotype analysis of steroid 21-hydroxylase (CYP21) deficiency in finland. implications for the population history of defective alleles. Hum Genet (1997) 99(4):488–97. doi: 10.1007/s004390050394 PubMed DOI
Gidlöf S, Falhammar H, Thilén A, von Döbeln U, Ritzén M, Wedell A, et al. . One hundred years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol (2013) 1(1):35–42. doi: 10.1016/S2213-8587(13)70007-X PubMed DOI
Billerbeck AE, Mendonca BB, Pinto EM, Madureira G, Arnhold IJ, Bachega TA. Three novel mutations in CYP21 gene in Brazilian patients with the classical form of 21-hydroxylase deficiency due to a founder effect. J Clin Endocrinol Metab (2002) 87(9):4314–7. doi: 10.1210/jc.2001-011939 PubMed DOI
Soardi FC, Barbaro M, Lau IF, Lemos-Marini SH, Baptista MT, Guerra-Junior G, et al. . Inhibition of CYP21A2 enzyme activity caused by novel missense mutations identified in Brazilian and Scandinavian patients. J Clin Endocrinol Metab (2008) 93(6):2416–20. doi: 10.1210/jc.2007-2594 PubMed DOI
Finkielstain GP, Chen W, Mehta SP, Fujimura FK, Hanna RM, Van Ryzin C, et al. . Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab (2011) 96(1):E161–72. doi: 10.1210/jc.2010-0319 PubMed DOI PMC
Wang R, Yu Y, Ye J, Han L, Qiu W, Zhang H, et al. . 21-hydroxylase deficiency-induced congenital adrenal hyperplasia in 230 Chinese patients: Genotype-phenotype correlation and identification of nine novel mutations. Steroids (2016) 108:47–55. doi: 10.1016/j.steroids.2016.01.007 PubMed DOI
Lee YJ, Tsai LP, Niu DM, Shu SG, Chao MC, Lee HH. The gene founder effect of two spontaneous mutations in ethnic Chinese (Taiwanese) CAH patients with 21-hydroxylase deficiency. Mol Genet Metab (2009) 97(1):75–9. doi: 10.1016/j.ymgme.2009.01.001 PubMed DOI
Speiser PW, Dupont J, Zhu D, Serrat J, Buegeleisen M, Tusie-Luna MT, et al. . Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Invest (1992) 90(2):584–95. doi: 10.1172/JCI115897 PubMed DOI PMC
Grošelj U, Žerjav Tanšek M, Trebušak Podkrajšek K, Hovnik T, Battelino T, Vita D. Clinical role of CYP2C19 polymorphisms in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Acta Chimica Slovenica. (2016) 63(1):33–7. doi: 10.17344/acsi.2015.1797 PubMed DOI
Baumgartner-Parzer SM, Schulze E, Waldhäusl W, Pauschenwein S, Rondot S, Nowotny P, et al. . Mutational spectrum of the steroid 21-hydroxylase gene in Austria: identification of a novel missense mutation. J Clin Endocrinol Metab (2001) 86(10):4771–5. doi: 10.1210/jcem.86.10.7898 PubMed DOI
Hu MC, Hsu LC, Hsu NC, Chung BC. Function and membrane topology of wild-type and mutated cytochrome p-450c21. Biochem J (1996) 316(Pt 1):325–9. doi: 10.1042/bj3160325 PubMed DOI PMC
Tusie-Luna MT, Traktman P, White PC. Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J Biol Chem (1990) 265(34):20916–22. doi: 10.1016/S0021-9258(17)45304-X PubMed DOI
Chiou SH, Hu MC, Chung BC. A missense mutation at Ile172–-Asn or Arg356–-Trp causes 21-hydroxylase deficiency. J Biol Chem (1990) 265(6):3549–52. doi: 10.1016/S0021-9258(19)39804-7 PubMed DOI
Claahsen-van der Grinten HL, Sweep FC, Blickman JG, Hermus AR, Otten BJ. Prevalence of testicular adrenal rest tumours in male children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur J Endocrinol (2007) 157:339–44. doi: 10.1530/EJE-07-0201 PubMed DOI
Aycan Z, Bas VN, Cetinkaya S, Yilmaz Agladioglu S, Tiryaki T. Prevalence and long-term follow-up outcomes of testicular adrenal rest tumours in children and adolescent males with congenital adrenal hyperplasia. Clin Endocrinol (2013) 78:667–72. doi: 10.1111/cen.12033 PubMed DOI
Kocova M, Janevska V, Anastasovska V. Testicular adrenal rest tumors in boys with 21-hydroxylase deficiency, timely diagnosis and follow-up. Endocr Connections. (2018) 7:544–52. doi: 10.1530/EC-18-0097 PubMed DOI PMC
Corcioni B, Renzulli M, Marasco G, Baronio F, Gambineri A, Ricciardi D, et al. . Prevalence and ultrasound patterns of testicular adrenal rest tumors in adults with congenital adrenal hyperplasia. Trans Androl Urol (2021) 10(2):562–73. doi: 10.21037/tau-20-998 PubMed DOI PMC
Falhammar H, Nyström HF, Ekström U, Granberg S, Wedell A, Thorén M. Fertility, sexuality and testicular adrenal rest tumors in adults males with congenital adrenal hyperplasia. Eur J Endocrinol (2012) 166:441–9. doi: 10.1530/EJE-11-0828 PubMed DOI PMC
Stikkelbroeck NMML, Otten BJ, Pasic A, Jager GJ, Sweep CGJ, Noordam K, et al. . High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J Clin Endocrinol Metab (2001) 86:5721–8. doi: 10.1210/jcem.86.12.8090 PubMed DOI
Aycan Z, Keskin M, Lafcı NG, Savaş-Erdeve Ş, Baş F, Poyrazoğlu Ş, et al. . Genotype of congenital adrenal hyperplasia patients with testicular adrenal rest tumor. Eur J Med Genet (2022) 65(12):104654. doi: 10.1016/j.ejmg.2022.104654 PubMed DOI