Back to the roots, desiccation and radiation resistances are ancestral characters in bdelloid rotifers
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu přehledy, časopisecké články, práce podpořená grantem
PubMed
37024917
PubMed Central
PMC10080820
DOI
10.1186/s12915-023-01554-w
PII: 10.1186/s12915-023-01554-w
Knihovny.cz E-zdroje
- Klíčová slova
- Ancestral character reconstructions, Antarctica, Atacama Desert, Bdelloid rotifers, DNA repair, Desiccation, Extreme tolerance,
- MeSH
- dvouřetězcové zlomy DNA MeSH
- lidé MeSH
- oprava DNA MeSH
- vířníci * genetika MeSH
- voda MeSH
- vysoušení * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- voda MeSH
BACKGROUND: Bdelloid rotifers are micro-invertebrates distributed worldwide, from temperate latitudes to the most extreme areas of the planet like Antarctica or the Atacama Desert. They have colonized any habitat where liquid water is temporarily available, including terrestrial environments such as soils, mosses, and lichens, tolerating desiccation and other types of stress such as high doses of ionizing radiation (IR). It was hypothesized that bdelloid desiccation and radiation resistance may be attributed to their potential ability to repair DNA double-strand breaks (DSBs). Here, these properties are investigated and compared among nine bdelloid species collected from both mild and harsh habitats, addressing the correlation between the ability of bdelloid rotifers to survive desiccation and their capacity to repair massive DNA breakage in a phylogenetically explicit context. Our research includes both specimens isolated from habitats that experience frequent desiccation (at least 1 time per generation), and individuals sampled from habitats that rarely or never experienced desiccation. RESULTS: Our analysis reveals that DNA repair prevails in somatic cells of both desiccation-tolerant and desiccation-sensitive bdelloid species after exposure to X-ray radiation. Species belonging to both categories are able to withstand high doses of ionizing radiation, up to 1000 Gy, without experiencing any negative effects on their survival. However, the fertility of two desiccation-sensitive species, Rotaria macrura and Rotaria rotatoria, was more severely impacted by low doses of radiation than that of desiccation-resistant species. Surprisingly, the radioresistance of desiccation-resistant species is not related to features of their original habitat. Indeed, bdelloids isolated from Atacama Desert or Antarctica were not characterized by a higher radioresistance than species found in more temperate environments. CONCLUSIONS: Tolerance to desiccation and radiation are supported as ancestral features of bdelloid rotifers, with a group of species of the genus Rotaria having lost this trait after colonizing permanent water habitats. Together, our results provide a comprehensive overview of the evolution of desiccation and radiation resistance among bdelloid rotifers.
Faculty of Science University of Ostrava Chittussiho 10 71000 Ostrava Czech Republic
Laboratory of Analysis by Nuclear Reactions University of Namur Namur Belgium
Louvain Institute of Biomolecular Science and Technology UCLouvain B 1348 Louvain la Neuve Belgium
Medical Physics Department Institut Jules Bordet Université Libre de Bruxelles Brussels Belgium
Molecular Ecology Group Verbania Pallanza Italy
Panorama Research Institute Sunnyvale CA USA
Research Unit in Environmental and Evolutionary Biology University of Namur Namur Belgium
Zobrazit více v PubMed
Ricci C, Melone G. Key to the identification of the genera of bdelloid rotifers. Hydrobiologia. 2000;418:73–80. doi: 10.1023/A:1003840216827. DOI
Judson O, Normark B. Ancient asexual scandals. Trends ecol evol. 1996;11(2):41–6. PubMed
Segers H. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa. 2007;1564:104. doi: 10.11646/zootaxa.1564.1.1. DOI
Maynard SJ. Contemplating life without sex. Nature. 1986;324:300–301. doi: 10.1038/324300a0. PubMed DOI
Robeson MS, Costello EK, Freeman KR, Whiting J, Adams B, Martin AP, et al. Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers. BMC Ecol. 2009;9:1–10. PubMed PMC
Iakovenko NS, Smykla J, Convey P, Kasparova E, Kozeretska IA, Trokhymets V, et al. Antarctic bdelloid rotifers: diversity, endemism and evolution. Springer International Publishing; 2015.
Ricci C. Ecology of bdelloids: how to be successful. Hydrobiologia. 1987;147:117–127. doi: 10.1007/BF00025734. DOI
Ricci C. Bdelloid rotifers: ‘sleeping beauties’ and ‘evolutionary scandals’, but not only. Hydrobiologia. 2017;796:277–285. doi: 10.1007/s10750-016-2919-z. DOI
Melone G, Fontaneto D. Trophi structure in bdelloid rotifers. Hydrobiologia. 2005;546:197–202. doi: 10.1007/s10750-005-4197-z. DOI
Ricci C, Caprioli M, Fontaneto D. Stress and fitness in parthenogens: is dormancy a key feature for bdelloid rotifers? BMC Evol Biol. 2007;7(SUPPL. 2):1–7. PubMed PMC
Ricci C, Covino C. Anhydrobiosis of Adineta ricciae: costs and benefits. Hydrobiologia. 2005;546:307–314. doi: 10.1007/s10750-005-4238-7. DOI
Sommer S, Fontaneto D, Ozgul A. Demographic processes underlying fitness restoration in bdelloid rotifers emerging from dehydration. Freshw Biol. 2019;64:1295–1302. doi: 10.1111/fwb.13305. DOI
Eyres I, Boschetti C, Crisp A, Smith TP, Fontaneto D, Tunnacliffe A, et al. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol. 2015;13:90. doi: 10.1186/s12915-015-0202-9. PubMed DOI PMC
Nowell RW, Almeida P, Wilson CG, Smith TP, Fontaneto D, Crisp A, et al. Comparative genomics of bdelloid rotifers: insights from desiccating and nondesiccating species. 2018. PubMed PMC
Fontaneto D, Ambrosini R. Spatial niche partitioning in epibiont rotifers on the waterlouse Asellus aquaticus. Limnol Oceanogr. 2010;55:1327–1337. doi: 10.4319/lo.2010.55.3.1327. DOI
Ricci C, Caprioli M, Boschetti C, Santo N. Macrotrachela quadricornifera featured in a space experiment. Hydrobiologia. 2005;534:239–244. doi: 10.1007/s10750-004-1509-7. DOI
Gladyshev E, Meselson M. Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci U S A. 2008;105:5139–5144. doi: 10.1073/pnas.0800966105. PubMed DOI PMC
Fischer C, Ahlrichs WH, Buma AGJ, van de Poll WH, Bininda-Emonds ORP. How does the “ancient” asexual Philodina roseola (Rotifera: Bdelloidea) handle potential UVB-induced mutations? J Exp Biol. 2013;216(Pt 16):3090–3095. PubMed
Hespeels B, Knapen M, Hanot-Mambres D, Heuskin A-C, Pineux F, Lucas S, et al. Gateway to genetic exchange? DNA double-strand breaks in the bdelloid rotifer Adineta vaga submitted to desiccation. J Evol Biol. 2014;27:1334–1345. doi: 10.1111/jeb.12326. PubMed DOI
Hespeels B, Penninckx S, Cornet V, Bruneau L, Bopp C, Baumlé V, et al. Iron ladies – how desiccated asexual rotifer Adineta vaga deal with X-rays and heavy ions?. Front Microbiol. 2020;11:1792. PubMed PMC
Gladyshev E, Meselson M, Arkhipova IR. Massive horizontal gene transfer in bdelloid rotifers. Science. 2008;320:1210–1213. doi: 10.1126/science.1156407. PubMed DOI
Mattimore V, Battista JR. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol. 1996;178:633–637. doi: 10.1128/jb.178.3.633-637.1996. PubMed DOI PMC
Gladyshev EA, Arkhipova IR. Genome structure of bdelloid rotifers: shaped by asexuality or desiccation? J Hered. 2010;101(SUPPL. 1):85–93. doi: 10.1093/jhered/esq008. PubMed DOI
Boschetti C, Carr A, Crisp A, Eyres I, Wang-Koh Y, Lubzens E, et al. Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genet. 2012;8:e1003035. doi: 10.1371/journal.pgen.1003035. PubMed DOI PMC
Debortoli N, Li X, Eyres I, Fontaneto D, Hespeels B, Tang CQ, et al. Genetic exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to meiotic sex. Curr Biol. 2016;26:723–732. doi: 10.1016/j.cub.2016.01.031. PubMed DOI
Li X, Fang C, Zhao JP, Zhou XY, Ni Z, Niu DK. Desiccation does not drastically increase the accessibility of exogenous DNA to nuclear genomes: evidence from the frequency of endosymbiotic DNA transfer. BMC Genomics. 2020;21:1–12. PubMed PMC
Flot JF, Hespeels B, Li X, et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500. 2013;453–57. 10.1038/nature12326. PubMed
Ricci C. Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia. 1998;387:388.
Ricci C. Dormancy patterns in rotifers. Hydrobiologia. 2001;446–447:1–11. doi: 10.1023/A:1017548418201. DOI
Fontaneto D, Kaya M, Herniou EA, Barraclough TG. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Mol Phylogenet Evol. 2009;53:182–189. doi: 10.1016/j.ympev.2009.04.011. PubMed DOI
Donner J. Ordnung Bdelloidea (Rotatoria, Rädertiere). Bestimmungsbücher zur Bodenfauna Europas, vol 6. Berlin: Akademie; 1965. p. 1–297.
Fontaneto D, De Smet WH, Ricci CN. Rotifers in saltwater environments, re-evaluation of an inconspicuous taxon. J Mar Biol Assoc UK. 2006;86:623. doi: 10.1017/S0025315406013531. DOI
Azua-Bustos A, Urrejola C, Vicuña R. Life at the dry edge: microorganisms of the Atacama Desert. FEBS Lett. 2012;586:2939–2945. doi: 10.1016/j.febslet.2012.07.025. PubMed DOI
Schulze-Makuch D, Wagner D, Kounaves SP, Mangelsdorf K, Devine KG, de Vera JP, Zamorano P. Transitory microbial habitat in the hyperarid Atacama Desert. Proc Natl Acad Sci. 2018;115(11):2670–75. PubMed PMC
Canganella F, Wiegel J. Extremophiles : from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften. 2011;98:253–279. doi: 10.1007/s00114-011-0775-2. PubMed DOI
Pulschen AA, Rodrigues F, Duarte RTD, Araujo GG, Santiago IF, Paulino-Lima IG, et al. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology. Microbiologyopen. 2015;4:574–588. doi: 10.1002/mbo3.262. PubMed DOI PMC
Dong N, Li HR, Yuan M, Zhang XH, Yu Y. Deinococcus antarcticus sp. Nov., isolated from soil. Int J Syst Evol Microbiol. 2015;65:331–335. doi: 10.1099/ijs.0.066324-0. PubMed DOI
Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, et al. Living at the frontiers of life: extremophiles in Chile and their potential for bioremediation. Front Microbiol. 2018;9:2309. PubMed PMC
Wilson CG, Sherman PW. Anciently asexual bdelloid rotifers escape lethal fungal parasites by drying up and blowing away. Science. 2010;327:574–576. doi: 10.1126/science.1179252. PubMed DOI
Terwagne M, Nicolas E, Hespeels B, Herter L, Virgo J, Demazy C, et al. Title: DNA repair during non-reductional meiosis in the asexual rotifer Adineta vaga. Sci Adv. 2022;8:1–8. doi: 10.1126/sciadv.adc8829. PubMed DOI PMC
Beltran-Pardo E, Jonsson KI, Harms-Ringdahl M, Haghdoost S, Wojcik A. Tolerance to gamma radiation in the tardigrade hypsibius dujardini from embryo to adult correlate inversely with cellular proliferation. PLoS One. 2015;10:1–13. doi: 10.1371/journal.pone.0133658. PubMed DOI PMC
Pagani M, Ricci C, Redi CA. Oogenesis in Macrotrachela quadricornifera (Rotifera, Bdelloidea) Hydrobiologia. 1993;255–256:225–230. doi: 10.1007/BF00025843. DOI
Wallace RE. Rotifers: exquisite metazoans. Integr Comp Biol. 2002;42:660–667. doi: 10.1093/icb/42.3.660. PubMed DOI
Dartnell LR. Ionizing radiation and life. Astrobiology. 2011;11:551–582. doi: 10.1089/ast.2010.0528. PubMed DOI
Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, et al. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 2007;5:e92. doi: 10.1371/journal.pbio.0050092. PubMed DOI PMC
Fredrickson JK, Li SW, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, et al. Protein oxidation: key to bacterial desiccation resistance? ISME J. 2008;2:393–403. doi: 10.1038/ismej.2007.116. PubMed DOI
França MB, Panek AD, Eleutherio ECA. Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol. 2007;146:621–631. doi: 10.1016/j.cbpa.2006.02.030. PubMed DOI
Krisko A, Radman M. Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proc Natl Acad Sci U S A. 2010;107:14373–14377. doi: 10.1073/pnas.1009312107. PubMed DOI PMC
Krisko A, Leroy M, Radman M, Meselson M. Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc Natl Acad Sci U S A. 2012;109:2354–2357. doi: 10.1073/pnas.1119762109. PubMed DOI PMC
Latta LC, Tucker KN, Haney RA. The relationship between oxidative stress, reproduction, and survival in a bdelloid rotifer. BMC Ecol. 2019;19:1–10. doi: 10.1186/s12898-019-0223-2. PubMed DOI PMC
Segers H, Shiel RJ. Tale of a sleeping beauty: a new and easily cultured model organism for experimental studies on bdelloid rotifers. Hydrobiologia. 2005;546:141–145. doi: 10.1007/s10750-005-4111-8. DOI
Mark Welch JL, Meselson M. Karyotypes of bdelloid rotifers from three families. Hydrobiologia. 1998;387:403–407. doi: 10.1023/A:1017007131386. DOI
Tang CQ, Leasi F, Obertegger U, Kieneke A, Barraclough TG, Fontaneto D. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc Natl Acad Sci U S A. 2012;109:16208–16212. doi: 10.1073/pnas.1209160109. PubMed DOI PMC
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019;15:1–28. doi: 10.1371/journal.pcbi.1006650. PubMed DOI PMC
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop, GCE. 2010:1–8.
Crawley MJ, The R. Book, Second Edition. John Wiley & Sons, Ltd; 2012.
R Core Team. R: A language andenvironment for statistical computing. R foundation for statistical computing. 2020. https://www.R-project.org.
Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac NPW. The caper package: comparative analyses in phylogenetics and evolution in R. 2012;5(2):1–36.
Garamszegi LZ. Modern phylogenetic comparative methods and their application in evolutionary biology. 2014.
Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things) Methods Ecol Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Fox J, Weisberg S. An {R} Companion to applied regression. Third. Thousand Oaks {CA}: Sage; 2019.
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Penninckx S, Pariset E, Cekanaviciute E, Costes SV. Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer. 2021;3:zcab046. doi: 10.1093/narcan/zcab046. PubMed DOI PMC