Spatiotemporal microvascular changes following contusive spinal cord injury
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
MC_PC_16050
Medical Research Council - United Kingdom
MR/S011110/1
Medical Research Council - United Kingdom
PubMed
37025098
PubMed Central
PMC10070689
DOI
10.3389/fnana.2023.1152131
Knihovny.cz E-zdroje
- Klíčová slova
- angiogenesis, blood vessels, capillaries, central nervous system, neural trauma, regeneration, stereology, timeline,
- Publikační typ
- časopisecké články MeSH
Microvascular integrity is disrupted following spinal cord injury (SCI) by both primary and secondary insults. Changes to neuronal structures are well documented, but little is known about how the capillaries change and recover following injury. Spatiotemporal morphological information is required to explore potential treatments targeting the microvasculature post-SCI to improve functional recovery. Sprague-Dawley rats were given a T10 moderate/severe (200 kDyn) contusion injury and were perfuse-fixed at days 2, 5, 15, and 45 post-injury. Unbiased stereology following immunohistochemistry in four areas (ventral and dorsal grey and white matter) across seven spinal segments (n = 4 for each group) was used to calculate microvessel density, surface area, and areal density. In intact sham spinal cords, average microvessel density across the thoracic spinal cord was: ventral grey matter: 571 ± 45 mm-2, dorsal grey matter: 484 ± 33 mm-2, ventral white matter: 90 ± 8 mm-2, dorsal white matter: 88 ± 7 mm-2. Post-SCI, acute microvascular disruption was evident, particularly at the injury epicentre, and spreading three spinal segments rostrally and caudally. Damage was most severe in grey matter at the injury epicentre (T10) and T11. Reductions in all morphological parameters (95-99% at day 2 post-SCI) implied vessel regression and/or collapse acutely. Transmission electron microscopy (TEM) revealed disturbed aspects of neurovascular unit fine structure at day 2 post-SCI (n = 2 per group) at T10 and T11. TEM demonstrated a more diffuse and disrupted basement membrane and wider intercellular clefts at day 2, suggesting a more permeable blood spinal cord barrier and microvessel remodelling. Some evidence of angiogenesis was seen during recovery from days 2 to 45, indicated by increased vessel density, surface area, and areal density at day 45. These novel results show that the spinal cord microvasculature is highly adaptive following SCI, even at chronic stages and up to three spinal segments from the injury epicentre. Multiple measures of gross and fine capillary structure from acute to chronic time points provide insight into microvascular remodelling post-SCI. We have identified key vascular treatment targets, namely stabilising damaged capillaries and replacing destroyed vessels, which may be used to improve functional outcomes following SCI in the future.
Centre for Reconstructive Neuroscience Czech Academy of Sciences Prague Czechia
Department of Neuroscience 2nd Faculty of Medicine Charles University Prague Czechia
School of Biomedical Sciences University of Leeds Leeds United Kingdom
School of Molecular and Cellular Biology University of Leeds Leeds United Kingdom
Zobrazit více v PubMed
Adamska A., Pilacinski S., Zozulinska-Ziolkiewicz D., Gandecka A., Grzelka A., Konwerska A., et al. . (2019). An increased skin microvessel density is associated with neurovascular complications in type 1 diabetes mellitus. Diab. Vasc. Dis. Res. 16, 513–522. 10.1177/1479164119850831 PubMed DOI
Ahuja C. S., Wilson J. R., Nori S., Kotter M. R.N., Druschel C., Curt A., et al. . (2017). Traumatic spinal cord injury. Nat. Rev. Dis. Primers 3:17018. 10.1038/nrdp.2017.18 PubMed DOI
Bartanusz V., Jezova D., Alajajian B., Digicaylioglu M. (2011). The blood-spinal cord barrier: morphology and clinical implications. Ann. Neurol. 70, 194–206. 10.1002/ana.22421 PubMed DOI
Benton R. L., Maddie M. A., Minnillo D. R., Hagg T., Whittemore S. R. (2008). Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J. Comp. Neurol. 507, 1031–1052. 10.1002/cne.21570 PubMed DOI PMC
Bulters D., Gaastra B., Zolnourian A., Alexander S., Ren D., Blackburn S. L., et al. . (2018). Haemoglobin scavenging in intracranial bleeding: biology and clinical implications. Nat. Rev. Neurol. 14, 416–432. 10.1038/s41582-018-0020-0 PubMed DOI
Cao Y., Zhou Y., Ni S., Wu T., Li P., Liao S., et al. . (2017). Three dimensional quantification of microarchitecture and vessel regeneration by synchrotron radiation microcomputed tomography in a rat model of spinal cord injury. J. Neurotrauma 34, 1187–1199. 10.1089/neu.2016.4697 PubMed DOI
Casella G. T., Marcillo A., Bunge M. B., Wood P. M. (2002). New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord. Exp. Neurol. 173, 63–76. 10.1006/exnr.2001.7827 PubMed DOI
Cavaglia M., Dombrowski S. M., Drazba J., Vasanji A., Bokesch P. M., Janigro D. (2001). Regional variation in brain capillary density and vascular response to ischemia. Brain Res. 910, 81–93. 10.1016/s0006-8993(01)02637-3 PubMed DOI
Cheriyan T., Ryan D. J., Weinreb J. H., Cheriyan J., Paul J. C., Lafage V., et al. . (2014). Spinal cord injury models: a review. Spinal Cord 52, 588–595. 10.1038/sc.2014.91 PubMed DOI
Dumont R. J., Okonkwo D. O., Verma S., Hurlbert R. J., Boulos P. T., Ellegala D. B., et al. . (2001). Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin. Neuropharmacol. 24, 254–264. 10.1097/00002826-200109000-00002 PubMed DOI
Durham-Lee J. C., Wu Y., Mokkapati V. U., Paulucci-Holthauzen A. A., Nesic O. (2012). Induction of angiopoietin-2 after spinal cord injury. Neuroscience 202, 454–464. 10.1016/j.neuroscience.2011.09.058 PubMed DOI PMC
Evanko S. P., Chan C. K., Johnson P. Y., Frevert C. W., Wight T. N. (2018). The biochemistry and immunohistochemistry of versican. Methods Cell Biol. 143, 261–279. 10.1016/bs.mcb.2017.08.015 PubMed DOI PMC
Figley S. A., Khosravi R., Legasto J. M., Tseng Y. F., Fehlings M. G. (2014). Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J. Neurotrauma 31, 541–552. 10.1089/neu.2013.3034 PubMed DOI PMC
Goritz C., Dias D. O., Tomilin N., Barbacid M., Shupliakov O., Frisen J. (2011). A pericyte origin of spinal cord scar tissue. Science 333, 238–242. 10.1126/science.1203165 PubMed DOI
Howard C. V., Reed M. G. (1998). Unbiased Stereology: Three-dimensional Measurement in Microscopy (Advanced Methods). London, UK: Taylor & Francis.
Kjell J., Olson L. (2016). Rat models of spinal cord injury: from pathology to potential therapies. Dis. Model. Mech. 9, 1125–1137. 10.1242/dmm.025833 PubMed DOI PMC
Kolluru G. K., Bir S. C., Kevil C. G. (2012). Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling and wound healing. Int. J. Vasc. Med. 2012:918267. 10.1155/2012/918267 PubMed DOI PMC
Krum J. M., More N. S., Rosenstein J. M. (1991). Brain angiogenesis: variations in vascular basement membrane glycoprotein immunoreactivity. Exp. Neurol. 111, 152–165. 10.1016/0014-4886(91)90002-t PubMed DOI
Kubíková T., Kochová P., Tomášek P., Witter K., Tonar Z. (2018). Numerical and length densities of microvessels in the human brain: Correlation with preferential orientation of microvessels in the cerebral cortex, subcortical grey matter and white matter, pons and cerebellum. J. Chem. Neuroanat. 88, 22–32. 10.1016/j.jchemneu.2017.11.005 PubMed DOI
Li Y., Lucas-Osma A. M., Black S., Bandet M. V., Stephens M. J., Vavrek R., et al. . (2017). Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat. Med. 23, 733–741. 10.1038/nm.4331 PubMed DOI PMC
Loy D. N., Crawford C. H., Darnall J. B., Burke D. A., Onifer S. M., Whittemore S. R. (2002). Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat. J. Comp. Neurol. 445, 308–324. 10.1002/cne.10168 PubMed DOI
Luo Y., Yao F., Hu X., Li Y., Chen Y., Li Z., et al. . (2022). M1 macrophages impair tight junctions between endothelial cells after spinal cord injury. Brain Res. Bull. 180, 59–72. 10.1016/j.brainresbull.2021.12.019 PubMed DOI
Mautes A. E., Weinzierl M. R., Donovan F., Noble L. J. (2000). Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys. Ther. 80, 673–687. 10.1093/ptj/80.7.673 PubMed DOI
Metz G. A., Curt A., van de Meent H., Klusman I., Schwab M. E., Dietz V. (2000). Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J. Neurotrauma 17, 1–17. 10.1089/neu.2000.17.1 PubMed DOI
Muhlfeld C., Papadakis T., Krasteva G., Nyengaard J. R., Hahn U., Kummer W. (2010). An unbiased stereological method for efficiently quantifying the innervation of the heart and other organs based on total length estimations. J. Appl. Physiol. (1985) 108, 1402–1409. 10.1152/japplphysiol.01013.2009 PubMed DOI
Muoio V., Persson P. B., Sendeski M. M. (2014). The neurovascular unit - concept review. Acta Physiol. (Oxf) 210, 790–798. 10.1111/apha.12250 PubMed DOI
Nahirney P. C., Reeson P., Brown C. E. (2016). Ultrastructural analysis of blood-brain barrier breakdown in the peri-infarct zone in young adult and aged mice. J. Cereb. Blood Flow Metab. 36, 413–425. 10.1177/0271678X15608396 PubMed DOI PMC
Ng M. T., Stammers A. T., Kwon B. K. (2011). Vascular disruption and the role of angiogenic proteins after spinal cord injury. Transl. Stroke Res. 2, 474–491. 10.1007/s12975-011-0109-x PubMed DOI PMC
Noble L. J., Wrathall J. R. (1989). Distribution and time course of protein extravasation in the rat spinal cord after contusive injury. Brain Res. 482, 57–66. 10.1016/0006-8993(89)90542-8 PubMed DOI
Popovich P. G., Horner P. J., Mullin B. B., Stokes B. T. (1996). A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Exp. Neurol. 142, 258–275. 10.1006/exnr.1996.0196 PubMed DOI
Redondo Castro E., Udina E., Verdu E., Navarro X. (2011). Longitudinal study of wind-up responses after graded spinal cord injuries in the adult rat. Restor. Neurol. Neurosci. 29, 115–126. 10.3233/RNN-2011-0585 PubMed DOI
Santos-Nogueira E., Redondo Castro E., Mancuso R., Navarro X. (2012). Randall-Selitto test: a new approach for the detection of neuropathic pain after spinal cord injury. J. Neurotrauma 29, 898–904. 10.1089/neu.2010.1700 PubMed DOI PMC
Scheff S. W., Rabchevsky A. G., Fugaccia I., Main J. A., Lumpp J. E., Jr. (2003). Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J. Neurotrauma 20, 179–193. 10.1089/08977150360547099 PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. . (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Shaw K., Bell L., Boyd K., Grijseels D. M., Clarke D., Bonnar O., et al. . (2021). Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences. Nat. Commun. 12:3190. 10.1038/s41467-021-23508-y PubMed DOI PMC
Simard J. M., Tsymbalyuk O., Ivanov A., Ivanova S., Bhatta S., Geng Z., et al. . (2007). Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J. Clin. Invest. 117, 2105–2113. 10.1172/JCI32041 PubMed DOI PMC
Slomnicki L. P., Myers S. A., Saraswat Ohri S., Parsh M. V., Andres K. R., Chariker J. H., et al. . (2020). Improved locomotor recovery after contusive spinal cord injury in Bmal1(−/−) mice is associated with protection of the blood spinal cord barrier. Sci. Rep. 10:14212. 10.1038/s41598-020-71131-6 PubMed DOI PMC
Tsilibary E. C. (2003). Microvascular basement membranes in diabetes mellitus. J. Pathol. 200, 537–546. 10.1002/path.1439 PubMed DOI
Weibel E. R. (1980). Theoretical foundations. Stereol. Method 2, 1–348.
West M. J. (2012). Basic Stereology for Biologists and Neuroscientists. New York, NY: Cold Spring Harbor Laboratory Press.
Whetstone W. D., Hsu J.-Y. C., Eisenberg M., Werb Z., Noble-Haeusslein L. J. (2003). Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J. Neurosci. Res. 74, 227–239. 10.1002/jnr.10759 PubMed DOI PMC
Xu Y., He Q., Wang M., Wang X., Gong F., Bai L., et al. . (2019). Quantifying blood-brain-barrier leakage using a combination of evans blue and high molecular weight FITC-Dextran. J. Neurosci. Methods 325:108349. 10.1016/j.jneumeth.2019.108349 PubMed DOI
Xu J., Long H., Chen W., Cheng X., Yu H., Huang Y., et al. . (2017). Ultrastructural features of neurovascular units in a rat model of chronic compressive spinal cord injury. Front. Neuroanat. 11:136. 10.3389/fnana.2017.00136 PubMed DOI PMC