An Observational Pilot Study using a Digital Phenotyping Approach in Patients with Major Depressive Disorder Treated with Trazodone
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37032913
PubMed Central
PMC10080076
DOI
10.3389/fpsyt.2023.1127511
Knihovny.cz E-zdroje
- Klíčová slova
- active data collection, digital phenotyping, major depressive disorder, mental health, passive data collection, trazodone,
- Publikační typ
- časopisecké články MeSH
This 8-week study was designed to explore any correlation between a passive data collection approach using a wearable device (i.e., digital phenotyping), active data collection (patient's questionnaires), and a traditional clinical evaluation [Montgomery-Åsberg Depression Rating Scale (MADRS)] in patients with major depressive disorder (MDD) treated with trazodone once a day (OAD). Overall, 11 out of 30 planned patients were enrolled. Passive parameters measured by the wearable device included number of steps, distance walked, calories burned, and sleep quality. A relationship between the sleep score (derived from passively measured data) and MADRS score was observed, as was a relationship between data collected actively (assessing depression, sleep, anxiety, and warning signs) and MADRS score. Despite the limited sample size, the efficacy and safety results were consistent with those previously reported for trazodone. The small population in this study limits the conclusions that can be drawn about the correlation between the digital phenotyping approach and traditional clinical evaluation; however, the positive trends observed suggest the need to increase synergies among clinicians, patients, and researchers to overcome the cultural barriers toward implementation of digital tools in the clinical setting. This study is a step toward the use of digital data in monitoring symptoms of depression, and the preliminary data obtained encourage further investigations of a larger population of patients monitored over a longer period of time.
Angelini Pharma S p A Rome Italy
Centrum Duševního Zdraví Psychiatrie s r o Kutná Hora Czechia
Zobrazit více v PubMed
Torous J, Keshavan M. The future of psychoses as seen from the history of its evolution. Curr Behav Neurosci Rep. (2014) 1:94–9. doi: 10.1007/s40473-014-0011-4 DOI
Melbye S, Kessing LV, Bardram JE, Faurholt-Jepsen M. Smartphone-based self-monitoring, treatment, and automatically generated data in children, adolescents, and young adults with psychiatric disorders: systematic review. JMIR Ment Health. (2020) 7:e17453. doi: 10.2196/17453, PMID: PubMed DOI PMC
Haller CS, Padmanabhan JL, Lizano P, Torous J, Keshavan M. Recent advances in understanding schizophrenia. F1000Prime Rep. (2014) 6:57. doi: 10.12703/P6-57 PubMed DOI PMC
Onnela J-P, Rauch SL. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology. (2016) 41:1691–6. doi: 10.1038/npp.2016.7, PMID: PubMed DOI PMC
Bankmycell (2022). How many smartphones are in the world? Available at: https://www.bankmycell.com/blog/how-many-phones-are-in-the-world (Accessed August 31, 2022).
Torous J, Chan SR, Yee-Marie Tan S, Behrens J, Mathew I, Conrad EJ, et al. . Patient smartphone ownership and interest in mobile apps to monitor symptoms of mental health conditions: a survey in four geographically distinct psychiatric clinics. JMIR Ment Health. (2014) 1:e5. doi: 10.2196/mental.4004, PMID: PubMed DOI PMC
Stawarz K, Preist C, Coyle D. Use of smartphone apps, social media, and web-based resources to support mental health and well-being: online survey (preprint). JMIR Ment Health. (2019). 6:e12546. doi: 10.2196/12546 PubMed DOI PMC
Torous J, Staples P, Shanahan M, Lin C, Peck P, Keshavan M, et al. . Utilizing a personal smartphone custom app to assess the patient health questionnaire-9 (PHQ-9) depressive symptoms in patients with major depressive disorder. JMIR Ment Health. (2015) 2:e8. doi: 10.2196/mental.3889, PMID: PubMed DOI PMC
Mohr DC, Shilton K, Hotopf M. Digital phenotyping, behavioral sensing, or personal sensing: names and transparency in the digital age. NPJ Digit Med. (2020) 3:45. doi: 10.1038/s41746-020-0251-5, PMID: PubMed DOI PMC
Torous J, Kiang MV, Lorme J, Onnela J-P. New tools for new research in psychiatry: a scalable and customizable platform to empower data driven smartphone research. JMIR Ment Health. (2016) 3:e16. doi: 10.2196/mental.5165, PMID: PubMed DOI PMC
Torous J, Onnela JP, Keshavan M. New dimensions and new tools to realize the potential of RDoC: digital phenotyping via smartphones and connected devices. Transl Psychiatry. (2017) 7:e1053. doi: 10.1038/tp.2017.25, PMID: PubMed DOI PMC
Insel TR. Digital phenotyping: a global tool for psychiatry. World Psychiatry. (2018) 17:276–7. doi: 10.1002/wps.20550, PMID: PubMed DOI PMC
Hollis C, Sampson S, Simons L, Davies EB, Churchill R, Betton V, et al. . Identifying research priorities for digital technology in mental health care: results of the James Lind Alliance priority setting partnership. Lancet Psychiatry. (2018) 5:845–54. doi: 10.1016/S2215-0366(18)30296-7, PMID: PubMed DOI
Glenn T, Monteith S. New measures of mental state and behavior based on data collected from sensors, smartphones, and the internet. Curr Psychiatry Rep. (2014) 16:523. doi: 10.1007/s11920-014-0523-3, PMID: PubMed DOI
Miller G. The smartphone psychology manifesto. Perspect Psychol Sci. (2012) 7:221–37. doi: 10.1177/1745691612441215, PMID: PubMed DOI
World Health Organization (WHO) . Depression and other common mental disorders: Global Health estimates. World health Organization (2017).
American Psychiatric Association (APA) . Diagnostic and Statistic Manual of Mental Disorders. 5th ed (2013).
Gutiérrez-Rojas L, Porras-Segovia A, Dunne H, Andrade-González N, Cervilla JA. Prevalence and correlates of major depressive disorder: a systematic review. Braz J Psychiatry. (2020) 42:657–72. doi: 10.1590/1516-4446-2020-0650 PubMed DOI PMC
Proudman D, Greenberg P, Nellesen D. The growing burden of major depressive disorders (MDD): implications for researchers and policy makers. PharmacoEconomics. (2021) 39:619–25. doi: 10.1007/s40273-021-01040-7, PMID: PubMed DOI PMC
Prigerson HGMTH, Reynolds CF, Begley A, Houck PR, Bierhals AJ, Kupfer DJ. Lifestyle regularity and activity level as protective factors against bereavement-related depression in late-life. Depression. (1995) 3:297–302. doi: 10.1002/depr.3050030607 DOI
Vallée J, Cadot E, Roustit C, Parizot I, Chauvin P. The role of daily mobility in mental health inequalities: the interactive influence of activity space and neighbourhood of residence on depression. Soc Sci Med. (2011) 73:1133–44. doi: 10.1016/j.socscimed.2011.08.009, PMID: PubMed DOI
Saeb S, Zhang M, Karr CJ, Schueller SM, Corden ME, Kording KP, et al. . Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. J Med Internet Res. (2015) 17:e175. doi: 10.2196/jmir.4273, PMID: PubMed DOI PMC
Stahl SM. Essential Psychopharmacology of Depression and Bipolar Disorder. New York: Cambridge University Press; (2000). 175 p.
Saltiel PF, Silvershein DI. Major depressive disorder: mechanism-based prescribing for personalized medicine. Neuropsychiatr Dis Treat. (2015) 11:875–88. doi: 10.2147/NDT.S73261, PMID: PubMed DOI PMC
Stahl SM. Mechanism of action of trazodone: a multifunctional drug. CNS Spectr. (2009) 14:536–46. doi: 10.1017/s1092852900024020, PMID: PubMed DOI
Fagiolini A, Comandini A, Catena Dell'Osso M, Kasper S. Rediscovering trazodone for the treatment of major depressive disorder. CNS Drugs. (2012) 26:1033–49. doi: 10.1007/s40263-012-0010-5, PMID: PubMed DOI PMC
Sheehan DV, Croft HA, Gossen ER, Levitt RJ, Brulle C, Bouchard S, et al. . Extended-release trazodone in major depressive disorder: a randomized, double-blind, placebo-controlled study. Psychiatry (Edgmont). (2009) 6:20–33. PubMed PMC
Ceskova E, Sedova M, Kellnerova R, Starobova O. Once-a-day trazodone in the treatment of depression in routine clinical practice. Pharmacology. (2018) 102:206–12. doi: 10.1159/000492079, PMID: PubMed DOI
Goldberg HM, Finnerty RJ. A double-blind study of trazodone. Psychopharmacol Bull. (1980) 16:47–9. PubMed
Patten SB. The comparative efficacy of trazodone and imipramine in the treatment of depression. CMAJ. (1992) 146:1177–82. PubMed PMC
Falk WE, Rosenbaum JF, Otto MW, Zusky PM, Weilburg JB, Nixon RA. Fluoxetine versus trazodone in depressed geriatric patients. J Geriatr Psychiatry Neurol. (1989) 2:208–14. doi: 10.1177/089198878900200407, PMID: PubMed DOI
Beasley CM, Jr, Dornseif BE, Pultz JA, Bosomworth JC, Sayler ME. Fluoxetine versus trazodone: efficacy and activating-sedating effects. J Clin Psychiatry. (1991) 52:294–9. PubMed
Munizza C, Olivieri L, Di Loreto G, Dionisio P. A comparative, randomized, double-blind study of trazodone prolonged-release and sertraline in the treatment of major depressive disorder. Curr Med Res Opin. (2006) 22:1703–13. doi: 10.1185/030079906X121039, PMID: PubMed DOI
Cunningham LA, Borison RL, Carman JS, Chouinard G, Crowder JE, Diamond BI, et al. . A comparison of venlafaxine, trazodone, and placebo in major depression. J Clin Psychopharmacol. (1994) 14:99–106. PubMed
Fagiolini A, Albert U, Ferrando L, Herman E, Muntean C, Pálová E, et al. . A randomized, double-blind study comparing the efficacy and safety of trazodone once-a-day and venlafaxine extended-release for the treatment of patients with major depressive disorder. Int Clin Psychopharmacol. (2020) 35:137–46. doi: 10.1097/YIC.0000000000000304, PMID: PubMed DOI PMC
Montgomery SA, Åsberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. (1979) 134:382–9. doi: 10.1192/bjp.134.4.382 PubMed DOI
Quilty LC, Robinson JJ, Rolland JP, Fruyt FD, Rouillon F, Bagby RM. The structure of the Montgomery-Åsberg depression rating scale over the course of treatment for depression. Int J Methods Psychiatr Res. (2013) 22:175–84. doi: 10.1002/mpr.1388, PMID: PubMed DOI PMC
Greiwe J. Telemedicine lessons learned during the COVID-19 pandemic. Curr Allergy Asthma Rep. (2022) 22:1–5. doi: 10.1007/s11882-022-01026-1, PMID: PubMed DOI PMC
Seivert S, Badowski ME. The rise of telemedicine: lessons from a global pandemic. EMJ Innov. (2020) 5:64–9. doi: 10.33590/emjinnov/20-00239 DOI
Rogers A, De Paoli G, Subbarayan S, Copland R, Harwood K, Coyle J, et al. . A systematic review of methods used to conduct decentralised clinical trials. Br J Clin Pharmacol. (2022) 88:2843–62. doi: 10.1111/bcp.15205, PMID: PubMed DOI PMC
Rosenbaum L. The untold toll—the pandemic’s effects on patients without Covid-19. N Engl J Med. (2020) 382:2368–71. doi: 10.1056/NEJMms2009984, PMID: PubMed DOI
Pew Research Center . Mobile fact sheet (2021). Available at: https://www.pewresearch.org/internet/fact-sheet/mobile/ (Accessed August 31, 2022)
Bessenyei K, Suruliraj B, Bagnell A, McGrath P, Wozney L, Huguet A, et al. . Comfortability with the passive collection of smartphone data for monitoring of mental health: an online survey. Comput Hum Behav. (2021) 4:100134. doi: 10.1016/j.chbr.2021.100134 DOI
Sheikh M, Qassem M, Kyriacou PA. Wearable, environmental, and smartphone-based passive sensing for mental health monitoring. Front Digit Health. (2021) 3:662811. doi: 10.3389/fdgth.2021.662811, PMID: PubMed DOI PMC
Roberts LW, Chan S, Torous J. New tests, new tools: mobile and connected technologies in advancing psychiatric diagnosis. NPJ Digit Med. (2018) 1:20176. doi: 10.1038/s41746-017-0006-0, PMID: PubMed DOI PMC
Coyle J, Rogers A, Copland R, De Paoli G, MacDonald TM, Mackenzie IS, et al. . Learning from remote decentralised clinical trial experiences: a qualitative analysis of interviews with trial personnel, patient representatives and other stakeholders. Br J Clin Pharmacol. (2022) 88:1031–42. doi: 10.1111/bcp.15003, PMID: PubMed DOI PMC