Challenges and prospects of plasmonic metasurfaces for photothermal catalysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39634672
PubMed Central
PMC11501173
DOI
10.1515/nanoph-2022-0073
PII: nanoph-2022-0073
Knihovny.cz E-zdroje
- Klíčová slova
- gas phase, photocatalysis, photothermal catalysis, plasmonic metasurfaces, solar fuels,
- Publikační typ
- časopisecké články MeSH
Solar-thermal technologies for converting chemicals using thermochemistry require extreme light concentration. Exploiting plasmonic nanostructures can dramatically increase the reaction rates by providing more efficient solar-to-heat conversion by broadband light absorption. Moreover, hot-carrier and local field enhancement effects can alter the reaction pathways. Such discoveries have boosted the field of photothermal catalysis, which aims at driving industrially-relevant chemical reactions using solar illumination rather than conventional heat sources. Nevertheless, only large arrays of plasmonic nano-units on a substrate, i.e., plasmonic metasurfaces, allow a quasi-unitary and broadband solar light absorption within a limited thickness (hundreds of nanometers) for practical applications. Through moderate light concentration (∼10 Suns), metasurfaces reach the same temperatures as conventional thermochemical reactors, or plasmonic nanoparticle bed reactors reach under ∼100 Suns. Plasmonic metasurfaces, however, have been mostly neglected so far for applications in the field of photothermal catalysis. In this Perspective, we discuss the potentialities of plasmonic metasurfaces in this emerging area of research. We present numerical simulations and experimental case studies illustrating how broadband absorption can be achieved within a limited thickness of these nanostructured materials. The approach highlights the synergy among different enhancement effects related to the ordered array of plasmonic units and the efficient heat transfer promoting faster dynamics than thicker structures (such as powdered catalysts). We foresee that plasmonic metasurfaces can play an important role in developing modular-like structures for the conversion of chemical feedstock into fuels without requiring extreme light concentrations. Customized metasurface-based systems could lead to small-scale and low-cost decentralized reactors instead of large-scale, infrastructure-intensive power plants.
Zobrazit více v PubMed
Authors UNFCCC. Glasgow Climate Pact . 2021;26:2021. https://unfccc.int/documents/310475 [accessed: Available at: Dec.
Chorkendorff I., Niemantsverdriet J. W. Concepts of Modern Catalysis and Kinetics . 3rd ed. Weinheim: Wiley-VCH; 2017.
Lewis N. S., Crabtree G. Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005 . Washington, DC: US Department of Energy, Office of Basic Energy Science; 2005.
IEA . Key World Energy Statistics 2021 . Paris: IEA; 2021. https://www.iea.org/reports/key-world-energy-statistics-2021
Serpone N., Emeline A. V., Horikoshi S., Kuznetsov V. N., Ryabchuk V. K. On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s. Photochem. Photobiol. Sci. . 2012;11(7):1121–1150. doi: 10.1039/C2PP25026H. PubMed DOI
Wang Q., Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. . 2020;120(2):919–985. doi: 10.1021/acs.chemrev.9b00201. PubMed DOI
Spasiano D., Marotta R., Malato S., Fernandez-Ibañez P., Di Somma I. Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Catal. B Environ. . 2015;170–171:90–123. doi: 10.1016/j.apcatb.2014.12.050. DOI
Weinstein L. A., Loomis J., Bhatia B., Bierman D. M., Wang E. N., Chen G. Concentrating solar power. Chem. Rev. . 2015;115(23):12797–12838. doi: 10.1021/acs.chemrev.5b00397. PubMed DOI
Romero M., Steinfeld A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. . 2012;5(11):9234–9245. doi: 10.1039/C2EE21275G. DOI
Carrillo A. J., González-Aguilar J., Romero M., Coronado J. M. Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials. Chem. Rev. . 2019;119(7):4777–4816. doi: 10.1021/acs.chemrev.8b00315. PubMed DOI
Schäppi R., Rutz D., Dähler F., et al. Drop-in fuels from sunlight and air. Nature . 2022;601(7891):63–68. doi: 10.1038/s41586-021-04174-y. PubMed DOI
Ghoussoub M., Xia M., Duchesne P. N., Segal D., Ozin G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. . 2019;12(4):1122–1142. doi: 10.1039/C8EE02790K. DOI
Song C., Wang Z., Yin Z., Xiao D., Ma D. Principles and applications of photothermal catalysis. Chem. Catal. . 2022;2(1):52–83. doi: 10.1016/j.checat.2021.10.005. DOI
O’Brien P. G., Sandhel A., Wood T. E., et al. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci. . 2014;1(1):1400001. doi: 10.1002/advs.201400001. PubMed DOI PMC
O’Donnell K. P., Chen X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. . 1991;58(25):2924–2926. doi: 10.1063/1.104723. DOI
Gargiulo J., Berté R., Li Y., Maier S. A., Cortés E. From optical to chemical hot spots in plasmonics. Acc. Chem. Res. . 2019;52(9):2525–2535. doi: 10.1021/acs.accounts.9b00234. PubMed DOI
Cortés E., Besteiro L. V., Alabastri A., et al. Challenges in plasmonic catalysis. ACS Nano . 2020;14(14):16202–16219. doi: 10.1021/acsnano.0c08773. PubMed DOI
Kildishev A. V., Boltasseva A., Shalaev V. M. Planar photonics with metasurfaces. Science . 2013;339(6125):1232009. doi: 10.1126/science.1232009. PubMed DOI
Yu N., Capasso F. Flat optics with designer metasurfaces. Nat. Mater. . 2014;13(2):139–150. doi: 10.1038/nmat3839. PubMed DOI
Ra’di Y., Simovski C. R., Tretyakov S. A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. . 2015;3(3):037001. doi: 10.1103/PhysRevApplied.3.037001. DOI
Tagliabue G., Eghlidi H., Poulikakos D. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber. Sci. Rep. . 2014;4:7181. doi: 10.1038/srep07181. PubMed DOI PMC
Yang K., Wang J., Yao X., et al. Large-area plasmonic metamaterial with thickness-dependent absorption. Adv. Opt. Mater. . 2021;9(1):2001375. doi: 10.1002/adom.202001375. DOI
Neshev D., Aharonovich I. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl. . 2018;7(1):58. doi: 10.1038/s41377-018-0058-1. PubMed DOI PMC
Chen W. T., Zhu A. Y., Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. . 2020;5(8):604–620. doi: 10.1038/s41578-020-0203-3. DOI
Chirumamilla M., Chirumamilla A., Yang Y., et al. Large-area ultrabroadband Absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv. Opt. Mater. . 2017;5(22):1700552. doi: 10.1002/adom.201700552. DOI
Zhou L., Tan Y., Ji D., et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. . 2016;2(4):e1501227. doi: 10.1126/sciadv.1501227. PubMed DOI PMC
Mascaretti L., Schirato A., Zbořil R., et al. Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy . 2021;83:105828. doi: 10.1016/j.nanoen.2021.105828. DOI
Zhang C., Zhao H., Zhou L., et al. Al–Pd nanodisk heterodimers as antenna–reactor photocatalysts. Nano Lett. . 2016;16(10):6677–6682. doi: 10.1021/acs.nanolett.6b03582. PubMed DOI
Liu S., Arce A. S., Nilsson S., et al. In situ plasmonic nanospectroscopy of the CO oxidation reaction over single Pt nanoparticles. ACS Nano . 2019;13(5):6090–6100. doi: 10.1021/acsnano.9b02876. PubMed DOI PMC
Naldoni A., Kudyshev Z. A., Mascaretti L., et al. Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis. Nano Lett. . 2020;20(5):3663–3672. doi: 10.1021/acs.nanolett.0c00594. PubMed DOI
Meng X., Wang T., Liu L., et al. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. . 2014;53(43):11478–11482. doi: 10.1002/anie.201404953. PubMed DOI
Chen G., Gao R., Zhao Y., et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. . 2018;30(3):1704663. doi: 10.1002/adma.201704663. PubMed DOI
Cai M.-J., Li C.-R., He L. Enhancing photothermal CO2 catalysis by thermal insulating substrates. Rare Met. . 2020;39(8):881–886. doi: 10.1007/s12598-020-01431-3. DOI
Zhao J., Yang Q., Shi R., et al. FeO–CeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Mater. . 2020;12(1):1–9. doi: 10.1038/s41427-019-0171-5. DOI
Mateo D., Morlanes N., Maity P., Shterk G., Mohammed O. F., Gascon J. Efficient visible-light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on barium titanate. Adv. Funct. Mater. . 2021;31(8):2008244. doi: 10.1002/adfm.202008244. DOI
Zhang F., Li Y.-H., Qi M.-Y., et al. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal . 2021;1(2):272–297. doi: 10.1016/j.checat.2021.01.003. DOI
Maier S. A. Plasmonics: Fundamentals and Applications . New York, NY: Springer Science & Business Media; 2007.
Brongersma M. L., Halas N. J., Nordlander P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. . 2015;10(1):25–34. doi: 10.1038/nnano.2014.311. PubMed DOI
Besteiro L. V., Yu P., Wang Z., et al. The fast and the furious: ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today . 2019;27:120–145. doi: 10.1016/j.nantod.2019.05.006. DOI
Khurgin J. B. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics . 2020;9(2):453–471. doi: 10.1515/nanoph-2019-0396. DOI
Bonn M., Funk S., Hess C., et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) Science . 1999;285(5430):1042–1045. doi: 10.1126/science.285.5430.1042. PubMed DOI
Denzler D. N., Frischkorn C., Hess C., Wolf M., Ertl G. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. . 2003;91(22):226102. doi: 10.1103/PhysRevLett.91.226102. PubMed DOI
Tagliabue G., DuChene J. S., Abdellah M., et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. . 2020;19:1312–1318. doi: 10.1038/s41563-020-0737-1. PubMed DOI
Wang Y., Shi H., Shen L., Wang Y., Cronin S. B., Dawlaty J. M. Ultrafast dynamics of hot electrons in nanostructures: distinguishing the influence on interband and plasmon resonances. ACS Photonics . 2019;6(9):2295–2302. doi: 10.1021/acsphotonics.9b00793. DOI
Camargo F. V. A., Ben-Shahar Y., Nagahara T., et al. Visualizing ultrafast electron transfer processes in semiconductor–metal hybrid nanoparticles: toward excitonic–plasmonic light harvesting. Nano Lett. . 2021;21(3):1461–1468. doi: 10.1021/acs.nanolett.0c04614. PubMed DOI PMC
Wang Y., Wang Y., Aravind I., et al. In situ investigation of ultrafast dynamics of hot electron-driven photocatalysis in plasmon-resonant grating structures. J. Am. Chem. Soc. . 2022;144(8):3517–3526. doi: 10.1021/jacs.1c12069. PubMed DOI
Manjavacas A., Liu J. G., Kulkarni V., Nordlander P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano . 2014;8(8):7630–7638. doi: 10.1021/nn502445f. PubMed DOI
Sundararaman R., Narang P., Jermyn A. S., Iii W. A. G., Atwater H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. . 2014;5:5788. doi: 10.1038/ncomms6788. PubMed DOI PMC
Govorov A. O., Zhang H., Gun’ko Y. K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C . 2013;117(32):16616–16631. doi: 10.1021/jp405430m. DOI
Jermyn A. S., Tagliabue G., Atwater H. A., Goddard W. A., Narang P., Sundararaman R. Transport of hot carriers in plasmonic nanostructures. Phys. Rev. Mater. . 2019;3(7):075201. doi: 10.1103/PhysRevMaterials.3.075201. DOI
Christopher P., Xin H., Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. . 2011;3(6):467–472. doi: 10.1038/nchem.1032. PubMed DOI
Christopher P., Xin H., Marimuthu A., Linic S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. . 2012;11(12):1044–1050. doi: 10.1038/nmat3454. PubMed DOI
Marimuthu A., Zhang J., Linic S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science . 2013;339(6127):1590–1593. doi: 10.1126/science.1231631. PubMed DOI
Swearer D. F., Zhao H., Zhou L., et al. Heterometallic antenna−reactor complexes for photocatalysis. Proc. Natl. Acad. Sci. U.S.A. . 2016;113(32):8916–8920. doi: 10.1073/pnas.1609769113. PubMed DOI PMC
Swearer D. F., Knowles N. R., Everitt H. O., Halas N. J. Light-driven chemical looping for ammonia synthesis. ACS Energy Lett. . 2019;4:1505–1512. doi: 10.1021/acsenergylett.9b00860. DOI
Li X., Zhang X., Everitt H. O., Liu J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. . 2019;19(3):1706–1711. doi: 10.1021/acs.nanolett.8b04706. PubMed DOI
Zhou L., Swearer D. F., Zhang C., et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science . 2018;362(6410):69–72. doi: 10.1126/science.aat6967. PubMed DOI
Sivan Y., Baraban J., Un I. W., Dubi Y. Comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”. Science . 2019;364(6439):eaaw9367. doi: 10.1126/science.aaw9367. PubMed DOI
Zhou L., Swearer D. F., Robatjazi H., et al. Response to comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”. Science . 2019;364(6439):eaaw9545. doi: 10.1126/science.aaw9545. PubMed DOI
Jain P. K. Taking the heat off of plasmonic Chemistry. J. Phys. Chem. C . 2019;123(40):24347–24351. doi: 10.1021/acs.jpcc.9b08143. DOI
Dubi Y., Un I. W., Sivan Y. Thermal effects – an alternative mechanism for plasmon-assisted photocatalysis. Chem. Sci. . 2020;11(19):5017–5027. doi: 10.1039/C9SC06480J. PubMed DOI PMC
Jain P. K. Comment on “thermal effects – an alternative mechanism for plasmon-assisted photocatalysis” by Y. Dubi, I. W. Un and Y. Sivan, Chem. Sci., 2020, 11, 5017. Chem. Sci. . 2020;11:9022–9023. doi: 10.1039/D0SC02914A. PubMed DOI PMC
Dubi Y., Un I. W., Sivan Y. Reply to the ‘comment on “thermal effects – an alternative mechanism for plasmon-assisted photocatalysis”’ by P. Jain, Chem. Sci., 2020, 11, doi: 10.1039/D0SC02914A. Chem. Sci. . 2020;11(33):9024–9025. doi: 10.1039/D0SC02914A. doi: 10.1039/D0SC03335A. PubMed DOI PMC
Robatjazi H., Bao J. L., Zhang M., et al. Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nat. Catal. . 2020;3(7):564–573. doi: 10.1038/s41929-020-0466-5. DOI
Dubi Y., Un I. W., Baraban J. H., Sivan Y. Distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination. Nat. Catal. . 2022;5:244–246. doi: 10.1038/s41929-022-00767-6. DOI
Robatjazi H., Schirato A., Alabastri A., et al. Reply to: distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination. Nat. Catal. . 2022;5:247–250. doi: 10.1038/s41929-022-00768-5. DOI
Mascaretti L., Naldoni A. Hot electron and thermal effects in plasmonic photocatalysis. J. Appl. Phys. . 2020;128(4):041101. doi: 10.1063/5.0013945. DOI
Baffou G., Bordacchini I., Baldi A., Quidant R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. . 2020;9(1):108. doi: 10.1038/s41377-020-00345-0. PubMed DOI PMC
Kamarudheen R., Aalbers G. J. W., Hamans R. F., Kamp L. P. J., Baldi A. Distinguishing among all possible activation mechanisms of a plasmon-driven chemical reaction. ACS Energy Lett. . 2020;5(8):2605–2613. doi: 10.1021/acsenergylett.0c00989. DOI
Zhou L., Martirez J. M. P., Finzel J., et al. Light-driven methane dry reforming with single atomic site antenna−reactor plasmonic photocatalysts. Nat. Energy . 2020;5:61–70. doi: 10.1038/s41560-019-0517-9. DOI
Luo S., Lin H., Wang Q., et al. Triggering water and methanol activation for solar-driven H2 production: interplay of dual active sites over plasmonic ZnCu alloy. J. Am. Chem. Soc. . 2021;143(31):12145–12153. doi: 10.1021/jacs.1c04315. PubMed DOI
Rej S., Bisetto M., Naldoni A., Fornasiero P. Well-defined Cu2O photocatalysts for solar fuels and chemicals. J. Mater. Chem. . 2021;9:5915–5951. doi: 10.1039/D0TA10181H. DOI
Zhan C., Wang Q.-X., Yi J., et al. Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Sci. Adv. . 2021;7(10):eabf0962. doi: 10.1126/sciadv.abf0962. PubMed DOI PMC
Cushing S. K., Li J., Bright J., et al. Controlling plasmon-induced resonance energy transfer and hot electron injection processes in metal@TiO2 core–shell nanoparticles. J. Phys. Chem. C . 2015;119(28):16239–16244. doi: 10.1021/acs.jpcc.5b03955. DOI
Li X., Everitt H. O., Liu J. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Res. . 2019;12(8):1906–1911. doi: 10.1007/s12274-019-2457-x. DOI
Cai W., Shalaev V. Optical Metamaterials: Fundamentals and Applications . New York, NY: Springer Science & Business Media; 2010.
Choudhury S. M., Wang D., Chaudhuri K., et al. Material platforms for optical metasurfaces. Nanophotonics . 2018;7(6):959–987. doi: 10.1515/nanoph-2017-0130. DOI
Koshelev K., Kruk S., Melik-Gaykazyan E., et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science . 2020;367(6475):288–292. doi: 10.1126/science.aaz3985. PubMed DOI
Lee H. Y., Kim S. Nanowires for 2D material-based photonic and optoelectronic devices. Nanophotonics . 2022;11(11):2571–2582. doi: 10.1515/nanoph-2021-0800. DOI
Wang P., Nasir M. E., Krasavin A. V., Dickson W., Jiang Y., Zayats A. V. Plasmonic metamaterials for nanochemistry and sensing. Acc. Chem. Res. . 2019;52(11):3018–3028. doi: 10.1021/acs.accounts.9b00325. PubMed DOI
Giordano M. C., Longhi S., Barelli M., Mazzanti A., Buatier de Mongeot F., Della Valle G. Plasmon hybridization engineering in self-organized anisotropic metasurfaces. Nano Res. . 2018;11(7):3943–3956. doi: 10.1007/s12274-018-1974-3. DOI
Miyata M., Holsteen A., Nagasaki Y., Brongersma M. L., Takahara J. Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate. Nano Lett. . 2015;15(8):5609–5616. doi: 10.1021/acs.nanolett.5b02307. PubMed DOI
Yu N., Genevet P., Kats M. A., et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science . 2011;334(6054):333–337. doi: 10.1126/science.1210713. PubMed DOI
Li W., Guler U., Kinsey N., et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. . 2014;26(47):7959–7965. doi: 10.1002/adma.201401874. PubMed DOI
Baffou G., Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. . 2013;7(2):171–187. doi: 10.1002/lpor.201200003. DOI
Baffou G., Cichos F., Quidant R. Applications and challenges of thermoplasmonics. Nat. Mater. . 2020;19(9):1–13. doi: 10.1038/s41563-020-0740-6. PubMed DOI
Ferraro A., Lio G. E., Hmina A., et al. Tailoring of plasmonic functionalized metastructures to enhance local heating release. Nanophotonics . 2021;10(15):3907–3916. doi: 10.1515/nanoph-2021-0406. DOI
Govorov A. O., Zhang W., Skeini T., Richardson H., Lee J., Kotov N. A. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. . 2006;1(1):84. doi: 10.1007/s11671-006-9015-7. DOI
Baffou G., Quidant R., Girard C. Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. . 2009;94(15):153109. doi: 10.1063/1.3116645. DOI
Baffou G., Berto P., Bermúdez Ureña E., et al. Photoinduced heating of nanoparticle arrays. ACS Nano . 2013;7(8):6478–6488. doi: 10.1021/nn401924n. PubMed DOI
Richardson H. H., Carlson M. T., Tandler P. J., Hernandez P., Govorov A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. . 2009;9(3):1139–1146. doi: 10.1021/nl8036905. PubMed DOI PMC
Moretti L., Mazzanti A., Rossetti A., et al. Plasmonic control of drug release efficiency in agarose gel loaded with gold nanoparticle assemblies. Nanophotonics . 2021;10(1):247–257. doi: 10.1515/nanoph-2020-0418. DOI
Ding F., Yang Y., Deshpande R. A., Bozhevolnyi S. I. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics . 2018;7(6):1129–1156. doi: 10.1515/nanoph-2017-0125. DOI
Dongare P. D., Zhao Y., Renard D., et al. A 3D plasmonic antenna−reactor for nanoscale thermal hotspots and gradients. ACS Nano . 2021;15(5):8761–8769. doi: 10.1021/acsnano.1c01046. PubMed DOI
Cunha J., Guo T.-L., Koya A. N., et al. Photoinduced temperature gradients in sub-wavelength plasmonic structures: the thermoplasmonics of nanocones. Adv. Opt. Mater. . 2020;8(18):2000568. doi: 10.1002/adom.202000568. DOI
Askes S. H. C., Garnett E. C. Ultrafast thermal imprinting of plasmonic hotspots. Adv. Mater. . 2021;33(49):2105192. doi: 10.1002/adma.202105192. PubMed DOI PMC
Schirato A., Crotti G., Proietti-Zaccaria R., Alabastri A., Della Valle G. Hot carrier spatio-temporal inhomogeneities in ultrafast nanophotonics. New J. Phys. . 2022;24:045001. doi: 10.1088/1367-2630/ac6009. DOI
Wang J., Chen Y., Chen X., Hao J., Yan M., Qiu M. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt. Express . 2011;19(15):14726–14734. doi: 10.1364/OE.19.014726. PubMed DOI
Chen X., Chen Y., Yan M., Qiu M. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano . 2012;6(3):2550–2557. doi: 10.1021/nn2050032. PubMed DOI
Naik G. V., Shalaev V. M., Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. . 2013;25(24):3264–3294. doi: 10.1002/adma.201205076. PubMed DOI
Bagheri S., Strohfeldt N., Ubl M., et al. Niobium as alternative material for refractory and active plasmonics. ACS Photonics . 2018;5:3298–3304. doi: 10.1021/acsphotonics.8b00530. DOI
Albrecht G., Kaiser S., Giessen H., Hentschel M. Refractory plasmonics without refractory materials. Nano Lett. . 2017;17(10):6402–6408. doi: 10.1021/acs.nanolett.7b03303. PubMed DOI
Coventry J., Burge P. Optical properties of Pyromark 2500 coatings of variable thicknesses on a range of materials for concentrating solar thermal applications. AIP Conf. Proc. . 2017;1850(1):030012. doi: 10.1063/1.4984355. DOI
Dongare P. D., Alabastri A., Pedersen S., et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl. Acad. Sci. U.S.A. . 2017;114(27):6936–6941. doi: 10.1073/pnas.1701835114. PubMed DOI PMC
Zhang F., Tang F., Xu X., Adam P.-M., Martin J., Plain J. Influence of order-to-disorder transitions on the optical properties of the aluminum plasmonic metasurface. Nanoscale . 2020;12(45):23173–23182. doi: 10.1039/D0NR06334G. PubMed DOI
Ung T. P. L., Quélin X., Laverdant J., Fulcrand R., Hermier J.-P., Buil S. Localization of plasmon modes in a 2D photonic nanostructure with a controlled disorder. Opt. Express . 2021;29(13):20776–20785. doi: 10.1364/OE.424970. PubMed DOI
Li Y., Li D., Zhou D., Chi C., Yang S., Huang B. Efficient, scalable, and high-temperature selective solar absorbers based on hybrid-strategy plasmonic metamaterials. Sol. RRL . 2018;2(8):1800057. doi: 10.1002/solr.201800057. DOI
Bae K., Kang G., Cho S. K., Park W., Kim K., Padilla W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. . 2015;6:10103. doi: 10.1038/ncomms10103. PubMed DOI PMC
Chang C.-C., Chang C.-C., Kuo S.-C., et al. Broadband titanium nitride disordered metasurface absorbers. Opt. Express . 2021;29(26):42813–42826. doi: 10.1364/OE.445247. DOI
Lei L., Li S., Huang H., Tao K., Xu P. Ultra-broadband Absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express . 2018;26(5):5686–5693. doi: 10.1364/OE.26.005686. PubMed DOI
Shi Q., Connell T. U., Xiao Q., et al. Plasmene metasurface absorbers: electromagnetic hot spots and hot carriers. ACS Photonics . 2019;6(2):314–321. doi: 10.1021/acsphotonics.8b01539. DOI
Zhou F., Qin F., Yi Z., et al. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys. . 2021;23(31):17041–17048. doi: 10.1039/D1CP03036A. PubMed DOI
Ding F., Dai J., Chen Y., Zhu J., Jin Y., Bozhevolnyi S. I. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep. . 2016;6(1):39445. doi: 10.1038/srep39445. PubMed DOI PMC
Hedayati M. K., Javaherirahim M., Mozooni B., et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater. . 2011;23(45):5410–5414. doi: 10.1002/adma.201102646. PubMed DOI
Liu Z., Liu X., Huang S., et al. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl. Mater. Interfaces . 2015;7(8):4962–4968. doi: 10.1021/acsami.5b00056. PubMed DOI
Xiao Q., Connell T. U., Cadusch J. J., Roberts A., Chesman A. S. R., Gómez D. E. Hot-carrier organic synthesis via the near-perfect absorption of light. ACS Catal. . 2018;8(11):10331–10339. doi: 10.1021/acscatal.8b03486. DOI
Kim J., Oh H., Kang B., Hong J., Rha J.-J., Lee M. Broadband visible and near-infrared absorbers implemented with planar nanolayered stacks. ACS Appl. Nano Mater. . 2020;3(3):2978–2986. doi: 10.1021/acsanm.0c00265. DOI
Zhang H., Govorov A. O. Optical generation of hot plasmonic carriers in metal nanocrystals: the effects of shape and field enhancement. J. Phys. Chem. C . 2014;118(14):7606–7614. doi: 10.1021/jp500009k. DOI
Kong X.-T., Wang Z., Govorov A. O. Plasmonic nanostars with hot spots for efficient generation of hot electrons under solar illumination. Adv. Opt. Mater. . 2017;5(15):1600594. doi: 10.1002/adom.201600594. DOI
Besteiro L. V., Kong X.-T., Wang Z., Hartland G., Govorov A. O. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photonics . 2017;4(11):2759–2781. doi: 10.1021/acsphotonics.7b00751. DOI
Ingram D. B., Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. . 2011;133(14):5202–5205. doi: 10.1021/ja200086g. PubMed DOI
Aslam U., Chavez S., Linic S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. . 2017;12(10):1000–1005. doi: 10.1038/nnano.2017.131. PubMed DOI
Schirato A., Maiuri M., Toma A., et al. Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces. Nat. Photonics . 2020;14(12):723–727. doi: 10.1038/s41566-020-00702-w. DOI
Olmon R. L., Slovick B., Johnson T. W., et al. Optical dielectric function of gold. Phys. Rev. B . 2012;86(23):235147. doi: 10.1103/PhysRevB.86.235147. DOI
Diest K., Liberman V., Lennon D. M., Welander P. B., Rothschild M. Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry. Opt. Express . 2013;21(23):28638–28650. doi: 10.1364/OE.21.028638. PubMed DOI
Johnson P. B., Christy R. W. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B . 1974;9(12):5056–5070. doi: 10.1103/PhysRevB.9.5056. DOI
Patsalas P., Kalfagiannis N., Kassavetis S. Optical properties and plasmonic performance of titanium nitride. Materials . 2015;8(6):3128–3154. doi: 10.3390/ma8063128. DOI
Rinnerbauer V., Lenert A., Bierman D. M., et al. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater. . 2014;4(12):1400334. doi: 10.1002/aenm.201400334. DOI
Rogez B., Marmri Z., Thibaudau F., Baffou G. Thermoplasmonics of metal layers and nanoholes. APL Photon . 2021;6(10):101101. doi: 10.1063/5.0057185. DOI
Johnson P. B., Christy R. W. Optical constants of the noble metals. Phys. Rev. B . 1972;6(12):4370–4379. doi: 10.1103/PhysRevB.6.4370. DOI
Reddy H., Guler U., Kudyshev Z., Kildishev A. V., Shalaev V. M., Boltasseva A. Temperature-dependent optical properties of plasmonic titanium nitride thin films. ACS Photonics . 2017;4(6):1413–1420. doi: 10.1021/acsphotonics.7b00127. DOI
Zhan C., Liu B.-W., Huang Y.-F., et al. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. . 2019;10(1):1–8. doi: 10.1038/s41467-019-10771-3. PubMed DOI PMC
Yalavarthi R., Mascaretti L., Kudyshev Z. A., et al. Enhancing photoelectrochemical energy storage by large-area CdS-coated nickel nanoantenna arrays. ACS Appl. Energy Mater. . 2021;4(10):11367–11376. doi: 10.1021/acsaem.1c02183. DOI
Hüttenhofer L., Golibrzuch M., Bienek O., et al. Metasurface photoelectrodes for enhanced solar fuel generation. Adv. Energy Mater. . 2021;11(46):2102877. doi: 10.1002/aenm.202102877. DOI
Yoo J. E., Schmuki P. Critical factors in the anodic formation of extremely ordered titania nanocavities. J. Electrochem. Soc. . 2019;166(11):C3389–C3398. doi: 10.1149/2.0381911jes. DOI
Boltasseva A., Shalaev V. M. Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials . 2008;2(1):1–17. doi: 10.1016/j.metmat.2008.03.004. DOI
Oh D. K., Lee T., Ko B., Badloe T., Ok J. G., Rho J. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front. Optoelectron. . 2021;14(2):229–251. doi: 10.1007/s12200-021-1121-8. PubMed DOI PMC
Li N., Xu Z., Dong Y., et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics . 2020;9(10):3071–3087. doi: 10.1515/nanoph-2020-0063. DOI
Roy T., Zhang S., Jung I. W., Troccoli M., Capasso F., Lopez D. Dynamic metasurface lens based on MEMS technology. APL Photon . 2018;3(2):021302. doi: 10.1063/1.5018865. DOI
Ok J. G., Seok Youn H., Kyu Kwak M., et al. Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Appl. Phys. Lett. . 2012;101(22):223102. doi: 10.1063/1.4767995. DOI
Wi J.-S., Lee S., Lee S. H., et al. Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors. Nanoscale . 2017;9(4):1398–1402. doi: 10.1039/C6NR08387K. PubMed DOI
Gupta V., Sarkar S., Aftenieva O., et al. Nanoimprint lithography facilitated plasmonic-photonic coupling for enhanced photoconductivity and photocatalysis. Adv. Funct. Mater. . 2021;31(36):2105054. doi: 10.1002/adfm.202105054. DOI
European Commission Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability. 2020;13:2022. https://ec.europa.eu/docsroom/documents/42849 Available at: [accessed. Jan.
Patsalas P., Kalfagiannis N., Kassavetis S., et al. Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mater. Sci. Eng. R Rep. . 2018;123:1–55. doi: 10.1016/j.mser.2017.11.001. DOI
Kaur M., Ishii S., Shinde S. L., Nagao T. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride. Adv. Sust. Syst. . 2019;3(2):1800112. doi: 10.1002/adsu.201800112. DOI
Monai M., Melchionna M., Fornasiero P. In: Advances in Catalysis . Song C., editor. Vol. 63. Academic Press; 2018. Chapter one – From metal to metal-free catalysts: routes to sustainable chemistry; pp. 1–73.
Singh B., Sharma V., Gaikwad R. P., Fornasiero P., Zbořil R., Gawande M. B. Single-atom catalysts: a sustainable pathway for the advanced catalytic applications. Small . 2021;17(16):2006473. doi: 10.1002/smll.202006473. PubMed DOI
Diroll B. T., Saha S., Shalaev V. M., Boltasseva A., Schaller R. D. Broadband ultrafast dynamics of refractory metals: TiN and ZrN. Adv. Opt. Mater. . 2020;8:2000652. doi: 10.1002/adom.202000652. DOI
Hohlfeld J., Wellershoff S.-S., Güdde J., Conrad U., Jähnke V., Matthias E. Electron and lattice dynamics following optical excitation of metals. Chem. Phys. . 2000;251(1):237–258. doi: 10.1016/S0301-0104(99)00330-4. DOI
Shackelford J. F., Han Y.-H., Kim S., Kwon S.-H. CRC Materials Science and Engineering Handbook . Boca Raton, FL: CRC Press; 2016.
Kang B., Zhang T., Yan L., et al. Local controllability of hot electron and thermal effects enabled by chiral plasmonic nanostructures. Nanophotonics . 2022;11(6):1195–1202. doi: 10.1515/nanoph-2021-0780. DOI
Liu T., Besteiro L. V., Liedl T., Correa-Duarte M. A., Wang Z., Govorov A. O. Chiral plasmonic nanocrystals for generation of hot electrons: toward polarization-sensitive photochemistry. Nano Lett. . 2019;19(2):1395–1407. doi: 10.1021/acs.nanolett.8b05179. PubMed DOI
Shan S., Chen C., Loutzenhiser P. G., Ranjan D., Zhou Z., Zhang Z. M. Spectral emittance measurements of micro/nanostructures in energy conversion: a review. Front. Energy . 2020;14(3):482–509. doi: 10.1007/s11708-020-0693-0. DOI
Hong J., Xu C., Deng B., et al. Photothermal Chemistry based on solar energy: from synergistic effects to practical applications. Adv. Sci. . 2022;9(3):2103926. doi: 10.1002/advs.202103926. PubMed DOI PMC
Wang Z., Hisatomi T., Li R., et al. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Joule . 2021;5(2):344–359. doi: 10.1016/j.joule.2021.01.001. DOI
NREL Best Research-Cell Efficiency Chart. 2022;19:2022. https://www.nrel.gov/pv/cell-efficiency.html Available at: [accessed. Apr.