Challenges and prospects of plasmonic metasurfaces for photothermal catalysis

. 2022 Jun ; 11 (13) : 3035-3056. [epub] 20220523

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39634672

Solar-thermal technologies for converting chemicals using thermochemistry require extreme light concentration. Exploiting plasmonic nanostructures can dramatically increase the reaction rates by providing more efficient solar-to-heat conversion by broadband light absorption. Moreover, hot-carrier and local field enhancement effects can alter the reaction pathways. Such discoveries have boosted the field of photothermal catalysis, which aims at driving industrially-relevant chemical reactions using solar illumination rather than conventional heat sources. Nevertheless, only large arrays of plasmonic nano-units on a substrate, i.e., plasmonic metasurfaces, allow a quasi-unitary and broadband solar light absorption within a limited thickness (hundreds of nanometers) for practical applications. Through moderate light concentration (∼10 Suns), metasurfaces reach the same temperatures as conventional thermochemical reactors, or plasmonic nanoparticle bed reactors reach under ∼100 Suns. Plasmonic metasurfaces, however, have been mostly neglected so far for applications in the field of photothermal catalysis. In this Perspective, we discuss the potentialities of plasmonic metasurfaces in this emerging area of research. We present numerical simulations and experimental case studies illustrating how broadband absorption can be achieved within a limited thickness of these nanostructured materials. The approach highlights the synergy among different enhancement effects related to the ordered array of plasmonic units and the efficient heat transfer promoting faster dynamics than thicker structures (such as powdered catalysts). We foresee that plasmonic metasurfaces can play an important role in developing modular-like structures for the conversion of chemical feedstock into fuels without requiring extreme light concentrations. Customized metasurface-based systems could lead to small-scale and low-cost decentralized reactors instead of large-scale, infrastructure-intensive power plants.

Zobrazit více v PubMed

Authors UNFCCC. Glasgow Climate Pact . 2021;26:2021. https://unfccc.int/documents/310475 [accessed: Available at: Dec.

Chorkendorff I., Niemantsverdriet J. W. Concepts of Modern Catalysis and Kinetics . 3rd ed. Weinheim: Wiley-VCH; 2017.

Lewis N. S., Crabtree G. Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005 . Washington, DC: US Department of Energy, Office of Basic Energy Science; 2005.

IEA . Key World Energy Statistics 2021 . Paris: IEA; 2021. https://www.iea.org/reports/key-world-energy-statistics-2021

Serpone N., Emeline A. V., Horikoshi S., Kuznetsov V. N., Ryabchuk V. K. On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s. Photochem. Photobiol. Sci. . 2012;11(7):1121–1150. doi: 10.1039/C2PP25026H. PubMed DOI

Wang Q., Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. . 2020;120(2):919–985. doi: 10.1021/acs.chemrev.9b00201. PubMed DOI

Spasiano D., Marotta R., Malato S., Fernandez-Ibañez P., Di Somma I. Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Catal. B Environ. . 2015;170–171:90–123. doi: 10.1016/j.apcatb.2014.12.050. DOI

Weinstein L. A., Loomis J., Bhatia B., Bierman D. M., Wang E. N., Chen G. Concentrating solar power. Chem. Rev. . 2015;115(23):12797–12838. doi: 10.1021/acs.chemrev.5b00397. PubMed DOI

Romero M., Steinfeld A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. . 2012;5(11):9234–9245. doi: 10.1039/C2EE21275G. DOI

Carrillo A. J., González-Aguilar J., Romero M., Coronado J. M. Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials. Chem. Rev. . 2019;119(7):4777–4816. doi: 10.1021/acs.chemrev.8b00315. PubMed DOI

Schäppi R., Rutz D., Dähler F., et al. Drop-in fuels from sunlight and air. Nature . 2022;601(7891):63–68. doi: 10.1038/s41586-021-04174-y. PubMed DOI

Ghoussoub M., Xia M., Duchesne P. N., Segal D., Ozin G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. . 2019;12(4):1122–1142. doi: 10.1039/C8EE02790K. DOI

Song C., Wang Z., Yin Z., Xiao D., Ma D. Principles and applications of photothermal catalysis. Chem. Catal. . 2022;2(1):52–83. doi: 10.1016/j.checat.2021.10.005. DOI

O’Brien P. G., Sandhel A., Wood T. E., et al. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci. . 2014;1(1):1400001. doi: 10.1002/advs.201400001. PubMed DOI PMC

O’Donnell K. P., Chen X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. . 1991;58(25):2924–2926. doi: 10.1063/1.104723. DOI

Gargiulo J., Berté R., Li Y., Maier S. A., Cortés E. From optical to chemical hot spots in plasmonics. Acc. Chem. Res. . 2019;52(9):2525–2535. doi: 10.1021/acs.accounts.9b00234. PubMed DOI

Cortés E., Besteiro L. V., Alabastri A., et al. Challenges in plasmonic catalysis. ACS Nano . 2020;14(14):16202–16219. doi: 10.1021/acsnano.0c08773. PubMed DOI

Kildishev A. V., Boltasseva A., Shalaev V. M. Planar photonics with metasurfaces. Science . 2013;339(6125):1232009. doi: 10.1126/science.1232009. PubMed DOI

Yu N., Capasso F. Flat optics with designer metasurfaces. Nat. Mater. . 2014;13(2):139–150. doi: 10.1038/nmat3839. PubMed DOI

Ra’di Y., Simovski C. R., Tretyakov S. A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. . 2015;3(3):037001. doi: 10.1103/PhysRevApplied.3.037001. DOI

Tagliabue G., Eghlidi H., Poulikakos D. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber. Sci. Rep. . 2014;4:7181. doi: 10.1038/srep07181. PubMed DOI PMC

Yang K., Wang J., Yao X., et al. Large-area plasmonic metamaterial with thickness-dependent absorption. Adv. Opt. Mater. . 2021;9(1):2001375. doi: 10.1002/adom.202001375. DOI

Neshev D., Aharonovich I. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl. . 2018;7(1):58. doi: 10.1038/s41377-018-0058-1. PubMed DOI PMC

Chen W. T., Zhu A. Y., Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. . 2020;5(8):604–620. doi: 10.1038/s41578-020-0203-3. DOI

Chirumamilla M., Chirumamilla A., Yang Y., et al. Large-area ultrabroadband Absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv. Opt. Mater. . 2017;5(22):1700552. doi: 10.1002/adom.201700552. DOI

Zhou L., Tan Y., Ji D., et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. . 2016;2(4):e1501227. doi: 10.1126/sciadv.1501227. PubMed DOI PMC

Mascaretti L., Schirato A., Zbořil R., et al. Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy . 2021;83:105828. doi: 10.1016/j.nanoen.2021.105828. DOI

Zhang C., Zhao H., Zhou L., et al. Al–Pd nanodisk heterodimers as antenna–reactor photocatalysts. Nano Lett. . 2016;16(10):6677–6682. doi: 10.1021/acs.nanolett.6b03582. PubMed DOI

Liu S., Arce A. S., Nilsson S., et al. In situ plasmonic nanospectroscopy of the CO oxidation reaction over single Pt nanoparticles. ACS Nano . 2019;13(5):6090–6100. doi: 10.1021/acsnano.9b02876. PubMed DOI PMC

Naldoni A., Kudyshev Z. A., Mascaretti L., et al. Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis. Nano Lett. . 2020;20(5):3663–3672. doi: 10.1021/acs.nanolett.0c00594. PubMed DOI

Meng X., Wang T., Liu L., et al. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. . 2014;53(43):11478–11482. doi: 10.1002/anie.201404953. PubMed DOI

Chen G., Gao R., Zhao Y., et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. . 2018;30(3):1704663. doi: 10.1002/adma.201704663. PubMed DOI

Cai M.-J., Li C.-R., He L. Enhancing photothermal CO2 catalysis by thermal insulating substrates. Rare Met. . 2020;39(8):881–886. doi: 10.1007/s12598-020-01431-3. DOI

Zhao J., Yang Q., Shi R., et al. FeO–CeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Mater. . 2020;12(1):1–9. doi: 10.1038/s41427-019-0171-5. DOI

Mateo D., Morlanes N., Maity P., Shterk G., Mohammed O. F., Gascon J. Efficient visible-light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on barium titanate. Adv. Funct. Mater. . 2021;31(8):2008244. doi: 10.1002/adfm.202008244. DOI

Zhang F., Li Y.-H., Qi M.-Y., et al. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal . 2021;1(2):272–297. doi: 10.1016/j.checat.2021.01.003. DOI

Maier S. A. Plasmonics: Fundamentals and Applications . New York, NY: Springer Science & Business Media; 2007.

Brongersma M. L., Halas N. J., Nordlander P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. . 2015;10(1):25–34. doi: 10.1038/nnano.2014.311. PubMed DOI

Besteiro L. V., Yu P., Wang Z., et al. The fast and the furious: ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today . 2019;27:120–145. doi: 10.1016/j.nantod.2019.05.006. DOI

Khurgin J. B. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics . 2020;9(2):453–471. doi: 10.1515/nanoph-2019-0396. DOI

Bonn M., Funk S., Hess C., et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) Science . 1999;285(5430):1042–1045. doi: 10.1126/science.285.5430.1042. PubMed DOI

Denzler D. N., Frischkorn C., Hess C., Wolf M., Ertl G. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. . 2003;91(22):226102. doi: 10.1103/PhysRevLett.91.226102. PubMed DOI

Tagliabue G., DuChene J. S., Abdellah M., et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. . 2020;19:1312–1318. doi: 10.1038/s41563-020-0737-1. PubMed DOI

Wang Y., Shi H., Shen L., Wang Y., Cronin S. B., Dawlaty J. M. Ultrafast dynamics of hot electrons in nanostructures: distinguishing the influence on interband and plasmon resonances. ACS Photonics . 2019;6(9):2295–2302. doi: 10.1021/acsphotonics.9b00793. DOI

Camargo F. V. A., Ben-Shahar Y., Nagahara T., et al. Visualizing ultrafast electron transfer processes in semiconductor–metal hybrid nanoparticles: toward excitonic–plasmonic light harvesting. Nano Lett. . 2021;21(3):1461–1468. doi: 10.1021/acs.nanolett.0c04614. PubMed DOI PMC

Wang Y., Wang Y., Aravind I., et al. In situ investigation of ultrafast dynamics of hot electron-driven photocatalysis in plasmon-resonant grating structures. J. Am. Chem. Soc. . 2022;144(8):3517–3526. doi: 10.1021/jacs.1c12069. PubMed DOI

Manjavacas A., Liu J. G., Kulkarni V., Nordlander P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano . 2014;8(8):7630–7638. doi: 10.1021/nn502445f. PubMed DOI

Sundararaman R., Narang P., Jermyn A. S., Iii W. A. G., Atwater H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. . 2014;5:5788. doi: 10.1038/ncomms6788. PubMed DOI PMC

Govorov A. O., Zhang H., Gun’ko Y. K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C . 2013;117(32):16616–16631. doi: 10.1021/jp405430m. DOI

Jermyn A. S., Tagliabue G., Atwater H. A., Goddard W. A., Narang P., Sundararaman R. Transport of hot carriers in plasmonic nanostructures. Phys. Rev. Mater. . 2019;3(7):075201. doi: 10.1103/PhysRevMaterials.3.075201. DOI

Christopher P., Xin H., Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. . 2011;3(6):467–472. doi: 10.1038/nchem.1032. PubMed DOI

Christopher P., Xin H., Marimuthu A., Linic S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. . 2012;11(12):1044–1050. doi: 10.1038/nmat3454. PubMed DOI

Marimuthu A., Zhang J., Linic S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science . 2013;339(6127):1590–1593. doi: 10.1126/science.1231631. PubMed DOI

Swearer D. F., Zhao H., Zhou L., et al. Heterometallic antenna−reactor complexes for photocatalysis. Proc. Natl. Acad. Sci. U.S.A. . 2016;113(32):8916–8920. doi: 10.1073/pnas.1609769113. PubMed DOI PMC

Swearer D. F., Knowles N. R., Everitt H. O., Halas N. J. Light-driven chemical looping for ammonia synthesis. ACS Energy Lett. . 2019;4:1505–1512. doi: 10.1021/acsenergylett.9b00860. DOI

Li X., Zhang X., Everitt H. O., Liu J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. . 2019;19(3):1706–1711. doi: 10.1021/acs.nanolett.8b04706. PubMed DOI

Zhou L., Swearer D. F., Zhang C., et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science . 2018;362(6410):69–72. doi: 10.1126/science.aat6967. PubMed DOI

Sivan Y., Baraban J., Un I. W., Dubi Y. Comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”. Science . 2019;364(6439):eaaw9367. doi: 10.1126/science.aaw9367. PubMed DOI

Zhou L., Swearer D. F., Robatjazi H., et al. Response to comment on “quantifying hot carrier and thermal contributions in plasmonic photocatalysis”. Science . 2019;364(6439):eaaw9545. doi: 10.1126/science.aaw9545. PubMed DOI

Jain P. K. Taking the heat off of plasmonic Chemistry. J. Phys. Chem. C . 2019;123(40):24347–24351. doi: 10.1021/acs.jpcc.9b08143. DOI

Dubi Y., Un I. W., Sivan Y. Thermal effects – an alternative mechanism for plasmon-assisted photocatalysis. Chem. Sci. . 2020;11(19):5017–5027. doi: 10.1039/C9SC06480J. PubMed DOI PMC

Jain P. K. Comment on “thermal effects – an alternative mechanism for plasmon-assisted photocatalysis” by Y. Dubi, I. W. Un and Y. Sivan, Chem. Sci., 2020, 11, 5017. Chem. Sci. . 2020;11:9022–9023. doi: 10.1039/D0SC02914A. PubMed DOI PMC

Dubi Y., Un I. W., Sivan Y. Reply to the ‘comment on “thermal effects – an alternative mechanism for plasmon-assisted photocatalysis”’ by P. Jain, Chem. Sci., 2020, 11, doi: 10.1039/D0SC02914A. Chem. Sci. . 2020;11(33):9024–9025. doi: 10.1039/D0SC02914A. doi: 10.1039/D0SC03335A. PubMed DOI PMC

Robatjazi H., Bao J. L., Zhang M., et al. Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nat. Catal. . 2020;3(7):564–573. doi: 10.1038/s41929-020-0466-5. DOI

Dubi Y., Un I. W., Baraban J. H., Sivan Y. Distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination. Nat. Catal. . 2022;5:244–246. doi: 10.1038/s41929-022-00767-6. DOI

Robatjazi H., Schirato A., Alabastri A., et al. Reply to: distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination. Nat. Catal. . 2022;5:247–250. doi: 10.1038/s41929-022-00768-5. DOI

Mascaretti L., Naldoni A. Hot electron and thermal effects in plasmonic photocatalysis. J. Appl. Phys. . 2020;128(4):041101. doi: 10.1063/5.0013945. DOI

Baffou G., Bordacchini I., Baldi A., Quidant R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. . 2020;9(1):108. doi: 10.1038/s41377-020-00345-0. PubMed DOI PMC

Kamarudheen R., Aalbers G. J. W., Hamans R. F., Kamp L. P. J., Baldi A. Distinguishing among all possible activation mechanisms of a plasmon-driven chemical reaction. ACS Energy Lett. . 2020;5(8):2605–2613. doi: 10.1021/acsenergylett.0c00989. DOI

Zhou L., Martirez J. M. P., Finzel J., et al. Light-driven methane dry reforming with single atomic site antenna−reactor plasmonic photocatalysts. Nat. Energy . 2020;5:61–70. doi: 10.1038/s41560-019-0517-9. DOI

Luo S., Lin H., Wang Q., et al. Triggering water and methanol activation for solar-driven H2 production: interplay of dual active sites over plasmonic ZnCu alloy. J. Am. Chem. Soc. . 2021;143(31):12145–12153. doi: 10.1021/jacs.1c04315. PubMed DOI

Rej S., Bisetto M., Naldoni A., Fornasiero P. Well-defined Cu2O photocatalysts for solar fuels and chemicals. J. Mater. Chem. . 2021;9:5915–5951. doi: 10.1039/D0TA10181H. DOI

Zhan C., Wang Q.-X., Yi J., et al. Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Sci. Adv. . 2021;7(10):eabf0962. doi: 10.1126/sciadv.abf0962. PubMed DOI PMC

Cushing S. K., Li J., Bright J., et al. Controlling plasmon-induced resonance energy transfer and hot electron injection processes in metal@TiO2 core–shell nanoparticles. J. Phys. Chem. C . 2015;119(28):16239–16244. doi: 10.1021/acs.jpcc.5b03955. DOI

Li X., Everitt H. O., Liu J. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Res. . 2019;12(8):1906–1911. doi: 10.1007/s12274-019-2457-x. DOI

Cai W., Shalaev V. Optical Metamaterials: Fundamentals and Applications . New York, NY: Springer Science & Business Media; 2010.

Choudhury S. M., Wang D., Chaudhuri K., et al. Material platforms for optical metasurfaces. Nanophotonics . 2018;7(6):959–987. doi: 10.1515/nanoph-2017-0130. DOI

Koshelev K., Kruk S., Melik-Gaykazyan E., et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science . 2020;367(6475):288–292. doi: 10.1126/science.aaz3985. PubMed DOI

Lee H. Y., Kim S. Nanowires for 2D material-based photonic and optoelectronic devices. Nanophotonics . 2022;11(11):2571–2582. doi: 10.1515/nanoph-2021-0800. DOI

Wang P., Nasir M. E., Krasavin A. V., Dickson W., Jiang Y., Zayats A. V. Plasmonic metamaterials for nanochemistry and sensing. Acc. Chem. Res. . 2019;52(11):3018–3028. doi: 10.1021/acs.accounts.9b00325. PubMed DOI

Giordano M. C., Longhi S., Barelli M., Mazzanti A., Buatier de Mongeot F., Della Valle G. Plasmon hybridization engineering in self-organized anisotropic metasurfaces. Nano Res. . 2018;11(7):3943–3956. doi: 10.1007/s12274-018-1974-3. DOI

Miyata M., Holsteen A., Nagasaki Y., Brongersma M. L., Takahara J. Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate. Nano Lett. . 2015;15(8):5609–5616. doi: 10.1021/acs.nanolett.5b02307. PubMed DOI

Yu N., Genevet P., Kats M. A., et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science . 2011;334(6054):333–337. doi: 10.1126/science.1210713. PubMed DOI

Li W., Guler U., Kinsey N., et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. . 2014;26(47):7959–7965. doi: 10.1002/adma.201401874. PubMed DOI

Baffou G., Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. . 2013;7(2):171–187. doi: 10.1002/lpor.201200003. DOI

Baffou G., Cichos F., Quidant R. Applications and challenges of thermoplasmonics. Nat. Mater. . 2020;19(9):1–13. doi: 10.1038/s41563-020-0740-6. PubMed DOI

Ferraro A., Lio G. E., Hmina A., et al. Tailoring of plasmonic functionalized metastructures to enhance local heating release. Nanophotonics . 2021;10(15):3907–3916. doi: 10.1515/nanoph-2021-0406. DOI

Govorov A. O., Zhang W., Skeini T., Richardson H., Lee J., Kotov N. A. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. . 2006;1(1):84. doi: 10.1007/s11671-006-9015-7. DOI

Baffou G., Quidant R., Girard C. Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. . 2009;94(15):153109. doi: 10.1063/1.3116645. DOI

Baffou G., Berto P., Bermúdez Ureña E., et al. Photoinduced heating of nanoparticle arrays. ACS Nano . 2013;7(8):6478–6488. doi: 10.1021/nn401924n. PubMed DOI

Richardson H. H., Carlson M. T., Tandler P. J., Hernandez P., Govorov A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. . 2009;9(3):1139–1146. doi: 10.1021/nl8036905. PubMed DOI PMC

Moretti L., Mazzanti A., Rossetti A., et al. Plasmonic control of drug release efficiency in agarose gel loaded with gold nanoparticle assemblies. Nanophotonics . 2021;10(1):247–257. doi: 10.1515/nanoph-2020-0418. DOI

Ding F., Yang Y., Deshpande R. A., Bozhevolnyi S. I. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics . 2018;7(6):1129–1156. doi: 10.1515/nanoph-2017-0125. DOI

Dongare P. D., Zhao Y., Renard D., et al. A 3D plasmonic antenna−reactor for nanoscale thermal hotspots and gradients. ACS Nano . 2021;15(5):8761–8769. doi: 10.1021/acsnano.1c01046. PubMed DOI

Cunha J., Guo T.-L., Koya A. N., et al. Photoinduced temperature gradients in sub-wavelength plasmonic structures: the thermoplasmonics of nanocones. Adv. Opt. Mater. . 2020;8(18):2000568. doi: 10.1002/adom.202000568. DOI

Askes S. H. C., Garnett E. C. Ultrafast thermal imprinting of plasmonic hotspots. Adv. Mater. . 2021;33(49):2105192. doi: 10.1002/adma.202105192. PubMed DOI PMC

Schirato A., Crotti G., Proietti-Zaccaria R., Alabastri A., Della Valle G. Hot carrier spatio-temporal inhomogeneities in ultrafast nanophotonics. New J. Phys. . 2022;24:045001. doi: 10.1088/1367-2630/ac6009. DOI

Wang J., Chen Y., Chen X., Hao J., Yan M., Qiu M. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt. Express . 2011;19(15):14726–14734. doi: 10.1364/OE.19.014726. PubMed DOI

Chen X., Chen Y., Yan M., Qiu M. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano . 2012;6(3):2550–2557. doi: 10.1021/nn2050032. PubMed DOI

Naik G. V., Shalaev V. M., Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. . 2013;25(24):3264–3294. doi: 10.1002/adma.201205076. PubMed DOI

Bagheri S., Strohfeldt N., Ubl M., et al. Niobium as alternative material for refractory and active plasmonics. ACS Photonics . 2018;5:3298–3304. doi: 10.1021/acsphotonics.8b00530. DOI

Albrecht G., Kaiser S., Giessen H., Hentschel M. Refractory plasmonics without refractory materials. Nano Lett. . 2017;17(10):6402–6408. doi: 10.1021/acs.nanolett.7b03303. PubMed DOI

Coventry J., Burge P. Optical properties of Pyromark 2500 coatings of variable thicknesses on a range of materials for concentrating solar thermal applications. AIP Conf. Proc. . 2017;1850(1):030012. doi: 10.1063/1.4984355. DOI

Dongare P. D., Alabastri A., Pedersen S., et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl. Acad. Sci. U.S.A. . 2017;114(27):6936–6941. doi: 10.1073/pnas.1701835114. PubMed DOI PMC

Zhang F., Tang F., Xu X., Adam P.-M., Martin J., Plain J. Influence of order-to-disorder transitions on the optical properties of the aluminum plasmonic metasurface. Nanoscale . 2020;12(45):23173–23182. doi: 10.1039/D0NR06334G. PubMed DOI

Ung T. P. L., Quélin X., Laverdant J., Fulcrand R., Hermier J.-P., Buil S. Localization of plasmon modes in a 2D photonic nanostructure with a controlled disorder. Opt. Express . 2021;29(13):20776–20785. doi: 10.1364/OE.424970. PubMed DOI

Li Y., Li D., Zhou D., Chi C., Yang S., Huang B. Efficient, scalable, and high-temperature selective solar absorbers based on hybrid-strategy plasmonic metamaterials. Sol. RRL . 2018;2(8):1800057. doi: 10.1002/solr.201800057. DOI

Bae K., Kang G., Cho S. K., Park W., Kim K., Padilla W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. . 2015;6:10103. doi: 10.1038/ncomms10103. PubMed DOI PMC

Chang C.-C., Chang C.-C., Kuo S.-C., et al. Broadband titanium nitride disordered metasurface absorbers. Opt. Express . 2021;29(26):42813–42826. doi: 10.1364/OE.445247. DOI

Lei L., Li S., Huang H., Tao K., Xu P. Ultra-broadband Absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express . 2018;26(5):5686–5693. doi: 10.1364/OE.26.005686. PubMed DOI

Shi Q., Connell T. U., Xiao Q., et al. Plasmene metasurface absorbers: electromagnetic hot spots and hot carriers. ACS Photonics . 2019;6(2):314–321. doi: 10.1021/acsphotonics.8b01539. DOI

Zhou F., Qin F., Yi Z., et al. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys. . 2021;23(31):17041–17048. doi: 10.1039/D1CP03036A. PubMed DOI

Ding F., Dai J., Chen Y., Zhu J., Jin Y., Bozhevolnyi S. I. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep. . 2016;6(1):39445. doi: 10.1038/srep39445. PubMed DOI PMC

Hedayati M. K., Javaherirahim M., Mozooni B., et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater. . 2011;23(45):5410–5414. doi: 10.1002/adma.201102646. PubMed DOI

Liu Z., Liu X., Huang S., et al. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl. Mater. Interfaces . 2015;7(8):4962–4968. doi: 10.1021/acsami.5b00056. PubMed DOI

Xiao Q., Connell T. U., Cadusch J. J., Roberts A., Chesman A. S. R., Gómez D. E. Hot-carrier organic synthesis via the near-perfect absorption of light. ACS Catal. . 2018;8(11):10331–10339. doi: 10.1021/acscatal.8b03486. DOI

Kim J., Oh H., Kang B., Hong J., Rha J.-J., Lee M. Broadband visible and near-infrared absorbers implemented with planar nanolayered stacks. ACS Appl. Nano Mater. . 2020;3(3):2978–2986. doi: 10.1021/acsanm.0c00265. DOI

Zhang H., Govorov A. O. Optical generation of hot plasmonic carriers in metal nanocrystals: the effects of shape and field enhancement. J. Phys. Chem. C . 2014;118(14):7606–7614. doi: 10.1021/jp500009k. DOI

Kong X.-T., Wang Z., Govorov A. O. Plasmonic nanostars with hot spots for efficient generation of hot electrons under solar illumination. Adv. Opt. Mater. . 2017;5(15):1600594. doi: 10.1002/adom.201600594. DOI

Besteiro L. V., Kong X.-T., Wang Z., Hartland G., Govorov A. O. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photonics . 2017;4(11):2759–2781. doi: 10.1021/acsphotonics.7b00751. DOI

Ingram D. B., Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. . 2011;133(14):5202–5205. doi: 10.1021/ja200086g. PubMed DOI

Aslam U., Chavez S., Linic S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. . 2017;12(10):1000–1005. doi: 10.1038/nnano.2017.131. PubMed DOI

Schirato A., Maiuri M., Toma A., et al. Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces. Nat. Photonics . 2020;14(12):723–727. doi: 10.1038/s41566-020-00702-w. DOI

Olmon R. L., Slovick B., Johnson T. W., et al. Optical dielectric function of gold. Phys. Rev. B . 2012;86(23):235147. doi: 10.1103/PhysRevB.86.235147. DOI

Diest K., Liberman V., Lennon D. M., Welander P. B., Rothschild M. Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry. Opt. Express . 2013;21(23):28638–28650. doi: 10.1364/OE.21.028638. PubMed DOI

Johnson P. B., Christy R. W. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B . 1974;9(12):5056–5070. doi: 10.1103/PhysRevB.9.5056. DOI

Patsalas P., Kalfagiannis N., Kassavetis S. Optical properties and plasmonic performance of titanium nitride. Materials . 2015;8(6):3128–3154. doi: 10.3390/ma8063128. DOI

Rinnerbauer V., Lenert A., Bierman D. M., et al. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater. . 2014;4(12):1400334. doi: 10.1002/aenm.201400334. DOI

Rogez B., Marmri Z., Thibaudau F., Baffou G. Thermoplasmonics of metal layers and nanoholes. APL Photon . 2021;6(10):101101. doi: 10.1063/5.0057185. DOI

Johnson P. B., Christy R. W. Optical constants of the noble metals. Phys. Rev. B . 1972;6(12):4370–4379. doi: 10.1103/PhysRevB.6.4370. DOI

Reddy H., Guler U., Kudyshev Z., Kildishev A. V., Shalaev V. M., Boltasseva A. Temperature-dependent optical properties of plasmonic titanium nitride thin films. ACS Photonics . 2017;4(6):1413–1420. doi: 10.1021/acsphotonics.7b00127. DOI

Zhan C., Liu B.-W., Huang Y.-F., et al. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. . 2019;10(1):1–8. doi: 10.1038/s41467-019-10771-3. PubMed DOI PMC

Yalavarthi R., Mascaretti L., Kudyshev Z. A., et al. Enhancing photoelectrochemical energy storage by large-area CdS-coated nickel nanoantenna arrays. ACS Appl. Energy Mater. . 2021;4(10):11367–11376. doi: 10.1021/acsaem.1c02183. DOI

Hüttenhofer L., Golibrzuch M., Bienek O., et al. Metasurface photoelectrodes for enhanced solar fuel generation. Adv. Energy Mater. . 2021;11(46):2102877. doi: 10.1002/aenm.202102877. DOI

Yoo J. E., Schmuki P. Critical factors in the anodic formation of extremely ordered titania nanocavities. J. Electrochem. Soc. . 2019;166(11):C3389–C3398. doi: 10.1149/2.0381911jes. DOI

Boltasseva A., Shalaev V. M. Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials . 2008;2(1):1–17. doi: 10.1016/j.metmat.2008.03.004. DOI

Oh D. K., Lee T., Ko B., Badloe T., Ok J. G., Rho J. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front. Optoelectron. . 2021;14(2):229–251. doi: 10.1007/s12200-021-1121-8. PubMed DOI PMC

Li N., Xu Z., Dong Y., et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics . 2020;9(10):3071–3087. doi: 10.1515/nanoph-2020-0063. DOI

Roy T., Zhang S., Jung I. W., Troccoli M., Capasso F., Lopez D. Dynamic metasurface lens based on MEMS technology. APL Photon . 2018;3(2):021302. doi: 10.1063/1.5018865. DOI

Ok J. G., Seok Youn H., Kyu Kwak M., et al. Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Appl. Phys. Lett. . 2012;101(22):223102. doi: 10.1063/1.4767995. DOI

Wi J.-S., Lee S., Lee S. H., et al. Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors. Nanoscale . 2017;9(4):1398–1402. doi: 10.1039/C6NR08387K. PubMed DOI

Gupta V., Sarkar S., Aftenieva O., et al. Nanoimprint lithography facilitated plasmonic-photonic coupling for enhanced photoconductivity and photocatalysis. Adv. Funct. Mater. . 2021;31(36):2105054. doi: 10.1002/adfm.202105054. DOI

European Commission Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability. 2020;13:2022. https://ec.europa.eu/docsroom/documents/42849 Available at: [accessed. Jan.

Patsalas P., Kalfagiannis N., Kassavetis S., et al. Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mater. Sci. Eng. R Rep. . 2018;123:1–55. doi: 10.1016/j.mser.2017.11.001. DOI

Kaur M., Ishii S., Shinde S. L., Nagao T. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride. Adv. Sust. Syst. . 2019;3(2):1800112. doi: 10.1002/adsu.201800112. DOI

Monai M., Melchionna M., Fornasiero P. In: Advances in Catalysis . Song C., editor. Vol. 63. Academic Press; 2018. Chapter one – From metal to metal-free catalysts: routes to sustainable chemistry; pp. 1–73.

Singh B., Sharma V., Gaikwad R. P., Fornasiero P., Zbořil R., Gawande M. B. Single-atom catalysts: a sustainable pathway for the advanced catalytic applications. Small . 2021;17(16):2006473. doi: 10.1002/smll.202006473. PubMed DOI

Diroll B. T., Saha S., Shalaev V. M., Boltasseva A., Schaller R. D. Broadband ultrafast dynamics of refractory metals: TiN and ZrN. Adv. Opt. Mater. . 2020;8:2000652. doi: 10.1002/adom.202000652. DOI

Hohlfeld J., Wellershoff S.-S., Güdde J., Conrad U., Jähnke V., Matthias E. Electron and lattice dynamics following optical excitation of metals. Chem. Phys. . 2000;251(1):237–258. doi: 10.1016/S0301-0104(99)00330-4. DOI

Shackelford J. F., Han Y.-H., Kim S., Kwon S.-H. CRC Materials Science and Engineering Handbook . Boca Raton, FL: CRC Press; 2016.

Kang B., Zhang T., Yan L., et al. Local controllability of hot electron and thermal effects enabled by chiral plasmonic nanostructures. Nanophotonics . 2022;11(6):1195–1202. doi: 10.1515/nanoph-2021-0780. DOI

Liu T., Besteiro L. V., Liedl T., Correa-Duarte M. A., Wang Z., Govorov A. O. Chiral plasmonic nanocrystals for generation of hot electrons: toward polarization-sensitive photochemistry. Nano Lett. . 2019;19(2):1395–1407. doi: 10.1021/acs.nanolett.8b05179. PubMed DOI

Shan S., Chen C., Loutzenhiser P. G., Ranjan D., Zhou Z., Zhang Z. M. Spectral emittance measurements of micro/nanostructures in energy conversion: a review. Front. Energy . 2020;14(3):482–509. doi: 10.1007/s11708-020-0693-0. DOI

Hong J., Xu C., Deng B., et al. Photothermal Chemistry based on solar energy: from synergistic effects to practical applications. Adv. Sci. . 2022;9(3):2103926. doi: 10.1002/advs.202103926. PubMed DOI PMC

Wang Z., Hisatomi T., Li R., et al. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Joule . 2021;5(2):344–359. doi: 10.1016/j.joule.2021.01.001. DOI

NREL Best Research-Cell Efficiency Chart. 2022;19:2022. https://www.nrel.gov/pv/cell-efficiency.html Available at: [accessed. Apr.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...