Effect of Previous Disease-Modifying Therapy on Treatment Effectiveness for Patients Treated With Ocrelizumab
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články
PubMed
37041077
PubMed Central
PMC10091366
DOI
10.1212/nxi.0000000000200104
PII: 10/3/e200104
Knihovny.cz E-zdroje
- MeSH
- antilymfocytární sérum MeSH
- dospělí MeSH
- lidé MeSH
- prospektivní studie MeSH
- recidiva MeSH
- relabující-remitující roztroušená skleróza * farmakoterapie MeSH
- roztroušená skleróza * farmakoterapie MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Spojené státy americké MeSH
- Názvy látek
- antilymfocytární sérum MeSH
- ocrelizumab MeSH Prohlížeč
BACKGROUND AND OBJECTIVES: B cell-depleting antibodies were proven as effective strategy for the treatment of relapsing multiple sclerosis (RMS). The monoclonal antibody ocrelizumab was approved in 2017 in the United States and in 2018 in the European Union, but despite proven efficacy in randomized, controlled clinical trials, its effectiveness in the real-world setting remains to be fully elucidated. In particular, most study patients were treatment naive or switched from injectable therapies, whereas oral substances or monoclonal antibodies made up >1% of previous treatments. METHODS: We evaluated ocrelizumab-treated patients with RMS enrolled in the prospective cohorts at the University Hospitals Duesseldorf and Essen, Germany. Epidemiologic data at baseline were compared, and Cox proportional hazard models were applied to evaluate outcomes. RESULTS: Two hundred eighty patients were included (median age: 37 years, 35% male patients). Compared with using ocrelizumab as a first-line treatment, its use as a third-line therapy increased hazard ratios (HRs) for relapse and disability progression, whereas differences between first- vs second-line and second- vs third-line remained smaller. We stratified patients according to their last previous disease-modifying treatment and here identified fingolimod (FTY) (45 patients, median age 40 years, 33% male patients) as a relevant risk factor for ongoing relapse activity despite 2nd-line (HR: 3.417 [1.007-11.600]) or 3rd-line (HR: 5.903 [2.489-13.999]) ocrelizumab treatment, disability worsening (2nd line: HR: 3.571 [1.013-12.589]; 3rd line: HR: 4.502 [1.728-11.729]), and occurrence of new/enlarging MRI lesions (2nd line: HR: 1.939 [0.604-6.228]; 3rd line: HR: 4.627 [1.982-10.802]). Effects were persistent throughout the whole follow-up. Neither peripheral B-cell repopulation nor immunoglobulin G levels were associated with rekindling disease activity. DISCUSSION: Our prospectively collected observational data suggest suboptimal effectiveness of ocrelizumab in patients switching from FTY compared with those switching from other substances or having been treatment naive. These findings support previous studies indicating abated effectiveness of immune cell-depleting therapies following FTY treatment in patients with RMS. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that for patients with RMS, previous treatment with FTY compared with previous treatment with other immunomodulating therapies decreases the effectiveness of ocrelizumab.
Zobrazit více v PubMed
McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. JAMA. 2021;325(8):765-779. doi. 10.1001/jama.2020.26858 PubMed DOI
Hauser SL, Waubant E, Arnold DL, et al. . B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676-688. doi. 10.1056/NEJMoa0706383 PubMed DOI
Greenfield AL, Hauser SL. B-Cell therapy for multiple sclerosis: entering an era. Ann Neurol. 2018;83(1):13-26. doi. 10.1002/ana.25119 PubMed DOI PMC
Ziemssen T, Hillert J, Butzkueven H. The importance of collecting structured clinical information on multiple sclerosis. BMC Med. 2016;14(1):81. doi. 10.1186/s12916-016-0627-1 PubMed DOI PMC
Hauser SL, Bar-Or A, Comi G, et al. . Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221-234. doi. 10.1056/NEJMoa1601277 PubMed DOI
Alping P, Frisell T, Novakova L, et al. . Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol. 2016;79(6):950-958. doi. 10.1002/ana.24651 PubMed DOI
Alcala C, Gascon F, Perez-Miralles F, Dominguez JA, Gil-Perotin S, Casanova B. Treatment with alemtuzumab or rituximab after fingolimod withdrawal in relapsing-remitting multiple sclerosis is effective and safe. J Neurol. 2019;266(3):726-734. doi. 10.1007/s00415-019-09195-2 PubMed DOI
Pfeuffer S, Ruck T, Pul R, et al. . Impact of previous disease-modifying treatment on effectiveness and safety outcomes, among patients with multiple sclerosis treated with alemtuzumab. J Neurol Neurosurg Psychiatry. 2021;92(9):1007–1013. doi: 10.1136/jnnp-2020-325304 PubMed DOI PMC
Thompson AJ, Banwell BL, Barkhof F, et al. . Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-173. doi. 10.1016/S1474-4422(17)30470-2 PubMed DOI
Lorscheider J, Buzzard K, Jokubaitis V, et al. . Defining secondary progressive multiple sclerosis. Brain. 2016;139(9):2395-2405. doi. 10.1093/brain/aww173 PubMed DOI
Ellwardt E, Ellwardt L, Bittner S, Zipp F. Monitoring B-cell repopulation after depletion therapy in neurologic patients. Neurol Neuroimmunol Neuroinflamm. 2018;5(4):e463. doi. 10.1212/NXI.0000000000000463 PubMed DOI PMC
Tallantyre EC, Whittam DH, Jolles S, et al. . Secondary antibody deficiency: a complication of anti-CD20 therapy for neuroinflammation. J Neurol. 2018;265(5):1115-1122. doi. 10.1007/s00415-018-8812-0 PubMed DOI PMC
Salzer J, Svenningsson R, Alping P, et al. . Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurol. 2016;87(20):2074-2081. doi. 10.1212/WNL.0000000000003331 PubMed DOI PMC
Ellwardt E, Rolfes L, Klein J, et al. . Ocrelizumab initiation in patients with MS: a multicenter observational study. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e719. doi. 10.1212/NXI.0000000000000719 PubMed DOI PMC
Holmoy T, Torkildsen O, Zarnovicky S. Extensive multiple sclerosis reactivation after switching from fingolimod to rituximab. Case Rep Neurol Med. 2018;2018:1-3. doi. 10.1155/2018/5190794 PubMed DOI PMC
Barry B, Erwin AA, Stevens J, Tornatore C. Fingolimod rebound: a review of the clinical experience and management considerations. Neurol Ther. 2019;8(2):241-250. doi. 10.1007/s40120-019-00160-9 PubMed DOI PMC
Signoriello E, Lus G, Bonavita S, et al. . Switch from sequestering to anti-CD20 depleting treatment: disease activity outcomes during wash-out and in the first 6 months of ocrelizumab therapy. Mult Scler. 2021;28(1):93-101. doi. 10.1177/13524585211005657 PubMed DOI
Zhong M, van der Walt A, Stankovich J, et al. . Prediction of multiple sclerosis outcomes when switching to ocrelizumab. Mult Scler. 2021;28(6):958-969. doi. 10.1177/13524585211049986 PubMed DOI
Ferraro D, Iaffaldano P, Guerra T, et al. . Risk of multiple sclerosis relapses when switching from fingolimod to cell-depleting agents: the role of washout duration. J Neurol. 2021;269(3):1463-1469. doi. 10.1007/s00415-021-10708-1 PubMed DOI
Ruck T, Bittner S, Wiendl H, Meuth SG. Alemtuzumab in multiple sclerosis: mechanism of action and beyond. Int J Mol Sci. 2015;16(7):16414-16439. doi. 10.3390/ijms160716414 PubMed DOI PMC
Torres JB, Roodselaar J, Sealey M, et al. . Distribution and efficacy of ofatumumab and ocrelizumab in humanized CD20 mice following subcutaneous or intravenous administration. Front Immunol. 2022;13:814064. PubMed PMC
Korsen M, Pfeuffer S, Rolfes L, Meuth SG, Hartung HP. Neurological update: treatment escalation in multiple sclerosis patients refractory to fingolimod-potentials and risks of subsequent highly active agents. J Neurol. 2022;269(5):2806-2818. PubMed PMC
Grutzke B, Hucke S, Gross CC, et al. . Fingolimod treatment promotes regulatory phenotype and function of B cells. Ann Clin Transl Neurol. 2015;2(2):119-130. doi. 10.1002/acn3.155 PubMed DOI PMC
Kemmerer CL, Pernpeintner V, Ruschil C, et al. . Differential effects of disease modifying drugs on peripheral blood B cell subsets: a cross sectional study in multiple sclerosis patients treated with interferon-beta, glatiramer acetate, dimethyl fumarate, fingolimod or natalizumab. PLoS One. 2020;15(7):e0235449. doi. 10.1371/journal.pone.0235449 PubMed DOI PMC
Blumenfeld S, Staun-Ram E, Miller A. Fingolimod therapy modulates circulating B cell composition, increases B regulatory subsets and production of IL-10 and TGFβ in patients with Multiple Sclerosis. J Autoimmun. 2016;70:40-51. doi. 10.1016/j.jaut.2016.03.012 PubMed DOI
Kappos L, Hartung HP, Freedman MS, et al. . Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 2014;13(4):353-363. doi. 10.1016/S1474-4422(14)70028-6 PubMed DOI
Traub JW, Pellkofer HL, Grondey K, et al. . Natalizumab promotes activation and pro-inflammatory differentiation of peripheral B cells in multiple sclerosis patients. J Neuroinflammation. 2019;16(1):228. doi:10.1186/s12974-019-1593-2 PubMed DOI PMC
Schneider-Hohendorf T, Rossaint J, Mohan H, et al. . VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J Exp Med. 2014;211(9):1833-1846. PubMed PMC
von Essen MR, Ammitzboll C, Hansen RH, et al. . Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain. 2019;142(1):120-132. doi. 10.1093/brain/awy301 PubMed DOI
Sabatino JJ Jr, Wilson MR, Calabresi PA, Hauser SL, Schneck JP, Zamvil SS. Anti-CD20 therapy depletes activated myelin-specific CD8(+) T cells in multiple sclerosis. Proc Natl Acad Sci U S A. 2019;116(51):25800-25807. doi. 10.1073/pnas.1915309116 PubMed DOI PMC
Rolfes L, Pawlitzki M, Pfeuffer S, et al. . Ocrelizumab extended interval dosing in multiple sclerosis in times of COVID-19. Neurol Neuroimmunol Neuroinflamm. 2021;8(5):e1035. doi. 10.1212/NXI.0000000000001035 PubMed DOI PMC
Bashford-Rogers RJM, Bergamaschi L, McKinney EF, et al. . Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature. 2019;574(7776):122-126. doi. 10.1038/s41586-019-1595-3 PubMed DOI PMC
Lovett-Racke AE, Gormley M, Liu Y, et al. . B cell depletion with ublituximab reshapes the T cell profile in multiple sclerosis patients. J Neuroimmunol. 2019;332:187–197. doi:10.1016/j.jneuroim.2019.04.017 PubMed DOI
Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Rev Nat Immunol. 2018;19(7):696-707. doi. 10.1038/s41590-018-0135-x PubMed DOI
Sormani MP, Laroni A. Approved drugs for multiple sclerosis: the challenge of choice. Lancet Neurol. 2017;16(4):252-253. doi. 10.1016/S1474-4422(17)30021-2 PubMed DOI