Serum but not cerebrospinal fluid levels of allantoin are increased in de novo Parkinson's disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-04-0053
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
MH CZ-DRO-VFN64165
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
023728
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
PubMed
37045835
PubMed Central
PMC10097817
DOI
10.1038/s41531-023-00505-0
PII: 10.1038/s41531-023-00505-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Oxidative stress supposedly plays a role in the pathogenesis of Parkinson's disease (PD). Uric acid (UA), a powerful antioxidant, is lowered in PD while allantoin, the oxidation product of UA and known biomarker of oxidative stress, was not systematically studied in PD. We aim to compare serum and cerebrospinal fluid (CSF) levels of UA, allantoin, and allantoin/UA ratio in de novo PD patients and controls, and evaluate their associations with clinical severity and the degree of substantia nigra degeneration in PD. We measured serum and CSF levels of UA, allantoin, and allantoin/UA ratio in 86 PD patients (33 females, mean age 57.9 (SD 12.6) years; CSF levels were assessed in 51 patients) and in 40 controls (19 females, 56.7 (14.1) years). PD patients were examined using Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Montreal Cognitive Assessment (MoCA), Scales for Outcomes in Parkinson Disease-Autonomic (SCOPA-AUT), the University of Pennsylvania Smell Identification Test (UPSIT), one-night video-polysomnography, and dopamine transporter single-photon emission computed tomography (DAT-SPECT). Serum allantoin and allantoin/UA ratio were significantly increased in the PD group compared to controls (p < 0.001 and p = 0.002, respectively). Allantoin/UA ratios in serum and CSF were positively associated with the SCOPA-AUT score (p = 0.005 and 0.031, respectively) and RBD presence (p = 0.044 and 0.028, respectively). In conclusion, serum allantoin and allantoin/UA ratio are elevated in patients with de novo PD. Allantoin/UA ratio in serum and CSF is associated with autonomic dysfunction and RBD presence, indicating that higher systemic oxidative stress occurs in PD patients with more diffuse neurodegenerative changes.
Zobrazit více v PubMed
Spillantini MG, et al. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–840. doi: 10.1038/42166. PubMed DOI
Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain. 2017;140:1959–1976. doi: 10.1093/brain/awx118. PubMed DOI
Riboldi GM, Russo MJ, Pan L, Watkins K, Kang UJ. Dysautonomia and REM sleep behavior disorder contributions to progression of Parkinson’s disease phenotypes. NPJ Parkinsons Dis. 2022;8:110. doi: 10.1038/s41531-022-00373-0. PubMed DOI PMC
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019;18:e13031. doi: 10.1111/acel.13031. PubMed DOI PMC
Yu Z, et al. The significance of uric acid in the diagnosis and treatment of Parkinson disease: An updated systemic review. Med. (Baltim.) 2017;96:e8502. doi: 10.1097/MD.0000000000008502. PubMed DOI PMC
Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002. PubMed DOI PMC
Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl Acad. Sci. 1981;78:6858–6862. doi: 10.1073/pnas.78.11.6858. PubMed DOI PMC
Wen M, et al. Serum uric acid levels in patients with Parkinson’s disease: A meta-analysis. PLoS One. 2017;12:e0173731. doi: 10.1371/journal.pone.0173731. PubMed DOI PMC
Ascherio A, et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch. Neurol. 2009;66:1460–1468. doi: 10.1001/archneurol.2009.247. PubMed DOI PMC
Schwarzschild MA, et al. Serum Urate as a Predictor of Clinical and Radiographic Progression in Parkinson Disease. Arch. Neurol. 2008;65:716–723. doi: 10.1001/archneur.2008.65.6.nct70003. PubMed DOI PMC
Chang H, Wang B, Shi Y, Zhu R. Dose-response meta-analysis on urate, gout, and the risk for Parkinson’s disease. npj Parkinson’s Dis. 2022;8:160. doi: 10.1038/s41531-022-00433-5. PubMed DOI PMC
Cipriani S, et al. Urate and its transgenic depletion modulate neuronal vulnerability in a cellular model of Parkinson’s disease. PLoS One. 2012;7:e37331. doi: 10.1371/journal.pone.0037331. PubMed DOI PMC
Chen X, et al. Disrupted and transgenic urate oxidase alter urate and dopaminergic neurodegeneration. Proc. Natl Acad. Sci. 2013;110:300–305. doi: 10.1073/pnas.1217296110. PubMed DOI PMC
Kaur H, Halliwell B. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chem.-Biol. Interact. 1990;73:235–247. doi: 10.1016/0009-2797(90)90006-9. PubMed DOI
Grootveld M, Halliwell B. Measurement of allantoin and uric acid in human body fluids. A potential index of free-radical reactions in vivo? Biochem. J. 1987;243:803–808. doi: 10.1042/bj2430803. PubMed DOI PMC
Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet. 2021;397:1843–1855. doi: 10.1016/S0140-6736(21)00569-9. PubMed DOI
Sampat R, et al. Potential mechanisms for low uric acid in Parkinson disease. J. Neural Transm. 2016;123:365–370. doi: 10.1007/s00702-015-1503-4. PubMed DOI PMC
Hasíková L, et al. Patients with REM sleep behavior disorder have higher serum levels of allantoin. Parkinsonism Relat. Disord. 2021;90:38–43. doi: 10.1016/j.parkreldis.2021.07.031. PubMed DOI
Simuni T, et al. Baseline prevalence and longitudinal evolution of non-motor symptoms in early Parkinson’s disease: the PPMI cohort. J. Neurol. Neurosurg. Psychiatry. 2018;89:78–88. doi: 10.1136/jnnp-2017-316213. PubMed DOI PMC
Mollenhauer B, et al. Nonmotor and diagnostic findings in subjects with de novo Parkinson disease of the DeNoPa cohort. Neurology. 2013;81:1226–1234. doi: 10.1212/WNL.0b013e3182a6cbd5. PubMed DOI
Kopecek M, et al. Montreal cognitive assessment (MoCA): Normative data for old and very old Czech adults. Appl Neuropsychol. Adult. 2017;24:23–29. doi: 10.1080/23279095.2015.1065261. PubMed DOI
Kanďár R. The ratio of oxidized and reduced forms of selected antioxidants as a possible marker of oxidative stress in humans. Biomed. Chromatogr. 2016;30:13–28. doi: 10.1002/bmc.3529. PubMed DOI
Kozlik P, Hasikova L, Stiburkova B, Zavada J, Kalikova K. Rapid and reliable HILIC-MS/MS method for monitoring allantoin as a biomarker of oxidative stress. Anal. Biochem. 2020;589:113509. doi: 10.1016/j.ab.2019.113509. PubMed DOI
Kastenbauer S, Koedel U, Becker BF, Pfister HW. Oxidative stress in bacterial meningitis in humans. Neurology. 2002;58:186–191. doi: 10.1212/WNL.58.2.186. PubMed DOI
Yardim‐Akaydin S, Sepici A, Özkan Y, Şimşek B, Sepici V. Evaluation of allantoin levels as a new marker of oxidative stress in Behçet’s disease. Scand. J. Rheumatol. 2006;35:61–64. doi: 10.1080/03009740510026878. PubMed DOI
Kand'ár R, Žáková P, Mužáková V. Monitoring of antioxidant properties of uric acid in humans for a consideration measuring of levels of allantoin in plasma by liquid chromatography. Clin. Chim. Acta. 2006;365:249–256. doi: 10.1016/j.cca.2005.09.002. PubMed DOI
Wei Z, Li X, Li X, Liu Q, Cheng Y. Oxidative Stress in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front Mol. Neurosci. 2018;11:236. doi: 10.3389/fnmol.2018.00236. PubMed DOI PMC
Shen L, Ji HF. Low uric acid levels in patients with Parkinson’s disease: evidence from meta-analysis. BMJ Open. 2013;3:e003620. doi: 10.1136/bmjopen-2013-003620. PubMed DOI PMC
Koros C, et al. Serum uric acid level as a putative biomarker in Parkinson’s disease patients carrying GBA1 mutations: 2-Year data from the PPMI study. Parkinsonism Relat. Disord. 2021;84:1–4. doi: 10.1016/j.parkreldis.2020.12.020. PubMed DOI
Schwarzschild MA, et al. Effect of Urate-Elevating Inosine on Early Parkinson Disease Progression: The SURE-PD3 Randomized Clinical Trial. Jama. 2021;326:926–939. doi: 10.1001/jama.2021.10207. PubMed DOI PMC
Coneys R, Storm CS, Kia DA, Almramhi M, Wood NW. Mendelian Randomisation Finds No Causal Association between Urate and Parkinson’s Disease Progression. Mov. Disord. 2021;36:2182–2187. doi: 10.1002/mds.28662. PubMed DOI
Grażyńska, A. et al. The Influence of Serum Uric Acid Level on Non-Motor Symptoms Occurrence and Severity in Patients with Idiopathic Parkinson’s Disease and Atypical Parkinsonisms-A Systematic Review. Medicina (Kaunas)57, (2021). PubMed PMC
De Pablo-Fernandez E, et al. Association of Autonomic Dysfunction With Disease Progression and Survival in Parkinson Disease. JAMA Neurol. 2017;74:970–976. doi: 10.1001/jamaneurol.2017.1125. PubMed DOI PMC
Chen Z, Li G, Liu J. Autonomic dysfunction in Parkinson’s disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiol. Dis. 2020;134:104700. doi: 10.1016/j.nbd.2019.104700. PubMed DOI
Moccia M, et al. Is serum uric acid related to non-motor symptoms in de-novo Parkinson’s disease patients? Parkinsonism Relat. Disord. 2014;20:772–775. doi: 10.1016/j.parkreldis.2014.03.016. PubMed DOI
Bowman GL, Shannon J, Frei B, Kaye JA, Quinn JF. Uric acid as a CNS antioxidant. J. Alzheimers Dis. 2010;19:1331–1336. doi: 10.3233/JAD-2010-1330. PubMed DOI PMC
Becker BF, Kastenbauer S, Ködel U, Kiesl D, Pfister HW. Urate oxidation in CSF and blood of patients with inflammatory disorders of the nervous system. Nucleosides Nucleotides Nucleic Acids. 2004;23:1201–1204. doi: 10.1081/NCN-200027469. PubMed DOI
Dušek P, et al. Clinical characteristics of newly diagnosed Parkinson’s disease patients included in the longitudinal BIO-PD study. Česká a slovenská neurologie a neurochirurgie. 2020;83:633–639. doi: 10.48095/cccsnn2020633. DOI
Postuma RB, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015;30:1591–1601. doi: 10.1002/mds.26424. PubMed DOI
Teunissen CE, et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology. 2009;73:1914–1922. doi: 10.1212/WNL.0b013e3181c47cc2. PubMed DOI PMC
Goetz CG, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 2008;23:2129–2170. doi: 10.1002/mds.22340. PubMed DOI
Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov. Disord. 2004;19:1306–1312. doi: 10.1002/mds.20153. PubMed DOI
Doty RL, Shaman P, Dann M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiol. Behav. 1984;32:489–502. doi: 10.1016/0031-9384(84)90269-5. PubMed DOI
Darcourt J, et al. EANM procedure guidelines for brain neurotransmission SPECT using (123)I-labelled dopamine transporter ligands, version 2. Eur. J. Nucl. Med Mol. Imaging. 2010;37:443–450. doi: 10.1007/s00259-009-1267-x. PubMed DOI
Dušek P, et al. Relations of non-motor symptoms and dopamine transporter binding in REM sleep behavior disorder. Sci. Rep. 2019;9:15463. doi: 10.1038/s41598-019-51710-y. PubMed DOI PMC
Calvini P, et al. The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation. Eur. J. Nucl. Med Mol. Imaging. 2007;34:1240–1253. doi: 10.1007/s00259-006-0357-2. PubMed DOI
American Academy of Sleep, M. International classification of sleep disorders, (American Academy of Sleep Medicine, Darien, IL, 2014).
Enroth S, Hallmans G, Grankvist K, Gyllensten U. Effects of Long-Term Storage Time and Original Sampling Month on Biobank Plasma Protein Concentrations. EBioMedicine. 2016;12:309–314. doi: 10.1016/j.ebiom.2016.08.038. PubMed DOI PMC