Flubendazole exhibits anti-glioblastoma effect by inhibiting STAT3 and promoting cell cycle arrest
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37045903
PubMed Central
PMC10097688
DOI
10.1038/s41598-023-33047-9
PII: 10.1038/s41598-023-33047-9
Knihovny.cz E-zdroje
- MeSH
- apoptóza MeSH
- buněčný cyklus MeSH
- dospělí MeSH
- glioblastom * patologie MeSH
- kontrolní body buněčného cyklu MeSH
- lidé MeSH
- mebendazol farmakologie terapeutické užití MeSH
- nádorové buněčné linie MeSH
- nádory mozku * patologie MeSH
- proliferace buněk MeSH
- transkripční faktor STAT3 metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flubendazole MeSH Prohlížeč
- mebendazol MeSH
- STAT3 protein, human MeSH Prohlížeč
- transkripční faktor STAT3 MeSH
Glioblastoma multiforme (GBM) belongs to most aggressive and invasive primary brain tumor in adults whose prognosis and survival remains poor. Potential new treatment modalities include targeting the cytoskeleton. In our study, we demonstrated that repurposed drug flubendazole (FLU) significantly inhibits proliferation and survival of GBM cells. FLU exerted its effect by affecting microtubule structure and our results also suggest that FLU influences tubulins expression to a certain degree. Moreover, FLU effects decreased activation of STAT3 and also partially inhibited its expression, leading to upregulation of p53 signaling pathway and subsequent cell cycle arrest at G2/M phase as well as caspase-dependent cell death in GBM cells. These results suggest FLU as a promising agent to be used in GBM treatment and prompting further testing of its effects on GBM.
Zobrazit více v PubMed
Ramos AD, Magge RS, Ramakrishna R. Molecular pathogenesis and emerging treatment for glioblastoma. World Neurosurg. 2018;116:495–504. doi: 10.1016/j.wneu.2018.04.021. PubMed DOI
de Gooijer MC, et al. An experimenter's guide to glioblastoma invasion pathways. Trends Mol. Med. 2018;24(9):763–780. doi: 10.1016/j.molmed.2018.07.003. PubMed DOI
Strobel H, et al. Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines. 2019;7(3):1. doi: 10.3390/biomedicines7030069. PubMed DOI PMC
Miranda, A., et al. Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int. J. Pharm.531(1), 372–388 (2017). PubMed
Schreck, K.C., & Grossman, S.A. Role of temozolomide in the treatment of cancers involving the central nervous system. Oncology (Williston Park)32(11), 555–60, 569 (2018). PubMed
Balca-Silva J, et al. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin. Cancer Biol. 2019;58:130–141. doi: 10.1016/j.semcancer.2018.09.007. PubMed DOI
Szopa W, et al. Diagnostic and therapeutic biomarkers in glioblastoma: Current status and future perspectives. Biomed. Res. Int. 2017;2017:8013575. doi: 10.1155/2017/8013575. PubMed DOI PMC
Katsetos CD, et al. Emerging microtubule targets in glioma therapy. Semin. Pediatr. Neurol. 2015;22(1):49–72. doi: 10.1016/j.spen.2015.03.009. PubMed DOI
Skalli O, et al. Astrocytoma grade IV (glioblastoma multiforme) displays 3 subtypes with unique expression profiles of intermediate filament proteins. Hum. Pathol. 2013;44(10):2081–2088. doi: 10.1016/j.humpath.2013.03.013. PubMed DOI
Zottel A, et al. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit. Rev. Oncol. Hematol. 2021;160:103283. doi: 10.1016/j.critrevonc.2021.103283. PubMed DOI
Katsetos CD, Draber P, Kavallaris M. Targeting betaIII-tubulin in glioblastoma multiforme: From cell biology and histopathology to cancer therapeutics. Anticancer Agents Med. Chem. 2011;11(8):719–728. doi: 10.2174/187152011797378760. PubMed DOI
Katsetos CD, et al. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme II. gamma-Tubulin. J. Cell Physiol. 2009;221(3):514–520. doi: 10.1002/jcp.21884. PubMed DOI
Katsetos CD, et al. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. Class III beta-tubulin. J. Cell Physiol. 2009;221(3):505–513. doi: 10.1002/jcp.21870. PubMed DOI
Hanusova V, et al. Potential anti-cancer drugs commonly used for other indications. Curr. Cancer Drug Targets. 2015;15(1):35–52. doi: 10.2174/1568009615666141229152812. PubMed DOI
Michaelis M, et al. Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen. Sci. Rep. 2015;5:8202. doi: 10.1038/srep08202. PubMed DOI PMC
Canova K, Rozkydalova L, Rudolf E. Anthelmintic Flubendazole and its potential use in anticancer therapy. Acta Med. (Hradec Kralove) 2017;60(1):5–11. doi: 10.14712/18059694.2017.44. PubMed DOI
Zhou X, et al. Flubendazole inhibits glioma proliferation by G2/M cell cycle arrest and pro-apoptosis. Cell Death Discov. 2018;4:18. doi: 10.1038/s41420-017-0017-2. PubMed DOI PMC
Ren LW, et al. Benzimidazoles induce concurrent apoptosis and pyroptosis of human glioblastoma cells via arresting cell cycle. Acta Pharmacol. Sin. 2022;43(1):194–208. doi: 10.1038/s41401-021-00752-y. PubMed DOI PMC
Chen C, et al. Flubendazole plays an important anti-tumor role in different types of cancers. Int. J. Mol. Sci. 2022;23(1):1. doi: 10.3390/ijms23010519. PubMed DOI PMC
Lin S, et al. Flubendazole demonstrates valid antitumor effects by inhibiting STAT3 and activating autophagy. J. Exp. Clin. Cancer Res. 2019;38(1):293. doi: 10.1186/s13046-019-1303-z. PubMed DOI PMC
Oh E, et al. Flubendazole elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Int. J. Cancer. 2018;143(8):1978–1993. doi: 10.1002/ijc.31585. PubMed DOI
Hong S, Song MR. STAT3 but not STAT1 is required for astrocyte differentiation. PLoS ONE. 2014;9(1):e86851. doi: 10.1371/journal.pone.0086851. PubMed DOI PMC
Gray GK, et al. NF-κB and STAT3 in glioblastoma: Therapeutic targets coming of age. Expert Rev. Neurother. 2014;14(11):1293–1306. doi: 10.1586/14737175.2014.964211. PubMed DOI PMC
Luwor RB, Stylli SS, Kaye AH. The role of Stat3 in glioblastoma multiforme. J. Clin. Neurosci. 2013;20(7):907–911. doi: 10.1016/j.jocn.2013.03.006. PubMed DOI
Niu G, et al. Role of Stat3 in regulating p53 expression and function. Mol. Cell Biol. 2005;25(17):7432–7440. doi: 10.1128/MCB.25.17.7432-7440.2005. PubMed DOI PMC
Skarkova V, et al. The Evaluation of Glioblastoma Cell Dissociation and Its Influence on Its Behavior. Int. J. Mol. Sci. 2019;20(18):1. doi: 10.3390/ijms20184630. PubMed DOI PMC
Bai RY, et al. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol. 2011;13(9):974–982. doi: 10.1093/neuonc/nor077. PubMed DOI PMC
Khachigian LM. Emerging insights on functions of the anthelmintic flubendazole as a repurposed anticancer agent. Cancer Lett. 2021;522:57–62. doi: 10.1016/j.canlet.2021.09.013. PubMed DOI
Abbassi RH, et al. Lower tubulin expression in glioblastoma stem cells attenuates efficacy of microtubule-targeting agents. ACS Pharmacol. Transl. Sci. 2019;2(6):402–413. doi: 10.1021/acsptsci.9b00045. PubMed DOI PMC
Spagnuolo PA, et al. The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood. 2010;115(23):4824–4833. doi: 10.1182/blood-2009-09-243055. PubMed DOI
Mc Gee MM. Targeting the mitotic catastrophe signaling pathway in cancer. Mediat. Inflamm. 2015;2015:146282. doi: 10.1155/2015/146282. PubMed DOI PMC
Carro MS, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010;463(7279):318–325. doi: 10.1038/nature08712. PubMed DOI PMC
Ndubuisi MI, et al. Cellular physiology of STAT3: Where's the cytoplasmic monomer? J. Biol. Chem. 1999;274(36):25499–25509. doi: 10.1074/jbc.274.36.25499. PubMed DOI
Yan B, et al. STAT3 association with microtubules and its activation are independent of HDAC6 activity. DNA Cell Biol. 2015;34(4):290–295. doi: 10.1089/dna.2014.2713. PubMed DOI PMC