The Evaluation of Glioblastoma Cell Dissociation and Its Influence on Its Behavior

. 2019 Sep 18 ; 20 (18) : . [epub] 20190918

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31540507

Grantová podpora
PROGRES Q40/01 Univerzita Karlova, Lékařská fakulta v Hradci Králové
PROGRES Q40/11 Univerzita Karlova, Lékařská fakulta v Hradci Králové
GAUK No. 460217 Grantová Agentura, Univerzita Karlova
VT2019 Univerzita Hradec Kralove, Fakulta přírodních věd

PURPOSE: Primary cell lines are a valuable tool for evaluation of tumor behavior or sensitivity to anticancer treatment and appropriate dissociation of cells could preserve genomic profile of the original tissue. The main aim of our study was to compare the influence of two methods of glioblastoma multiforme (GBM) cell derivation (mechanic-MD; enzymatic-ED) on basic biological properties of thus derived cells and correlate them to the ones obtained from stabilized GBM cell line A-172. METHODS: Cell proliferation and migration (xCELLigence Real-Time Cell Analysis), expression of microRNAs and protein markers (RT-PCR and Western blotting), morphology (phase contrast and fluorescent microscopy), and accumulation of temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide (AIC) inside the cells (LC-MS analysis) were carried out in five different samples of GBM (GBM1, GBM2, GBM32, GBM33, GBM34), with each of them processed by MD and ED types of isolations. The same analyses were done in the A-172 cell line too. RESULTS: Primary GBM cells obtained by ED or MD approaches significantly differ in biological behavior and properties of these cells. Unlike in primary MD GBM cells, higher proliferation, as well as migration, was observed in primary ED GBM cells, which were also associated with the acquired mesenchymal phenotype and higher sensitivity to TMZ. Finally, the same analyses of stabilized GBM cell line A-172 revealed several important differences in measured parameters. CONCLUSIONS: GBM cells obtained by MD and ED dissociation show considerable heterogeneity, but based on our results, MD approach should be the preferred method of primary GBM cell isolation.

Zobrazit více v PubMed

Singh S.K., Hawkins C., Clarke I.D., Squire J.A., Bayani J., Hide T., Henkelman R.M., Cusimano M.D., Dirks P.B. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401. doi: 10.1038/nature03128. PubMed DOI

Wen P.Y., Kesari S. Malignant gliomas in adults. N. Engl. J. Med. 2008;359:492–507. doi: 10.1056/NEJMra0708126. PubMed DOI

Paolillo M., Boselli C., Schinelli S. Glioblastoma under Siege: An Overview of Current Therapeutic Strategies. Brain. Sci. 2018;8 PubMed PMC

Ostermann S., Csajka C., Buclin T., Leyvraz S., Lejeune F., Decosterd L.A., Stupp R. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin. Cancer Res. 2004;10:3728–3736. doi: 10.1158/1078-0432.CCR-03-0807. PubMed DOI

Portnow J., Badie B., Chen M., Liu A., Blanchard S., Synold T.W. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: Potential implications for the current approach to chemoradiation. Clin. Cancer Res. 2009;15:7092–7098. doi: 10.1158/1078-0432.CCR-09-1349. PubMed DOI PMC

Sengupta S., Marrinan J., Frishman C., Sampath P. Impact of temozolomide on immune response during malignant glioma chemotherapy. Clin. Dev. Immunol. 2012;2012 doi: 10.1155/2012/831090. PubMed DOI PMC

Iorio A.L., da Ros M., Genitori L., Lucchesi M., Colelli F., Signorino G., Cardile F., Laffi G., de Martino M., Pisano C., et al. Tumor response of temozolomide in combination with morphine in a xenograft model of human glioblastoma. Oncotarget. 2017;8:89595–89606. doi: 10.18632/oncotarget.19875. PubMed DOI PMC

De Gooijer M.C., Guillen Navarro M., Bernards R., Wurdinger T., van Tellingen O. An Experimenter’s Guide to Glioblastoma Invasion Pathways. Trends Mol. Med. 2018;24:763–780. doi: 10.1016/j.molmed.2018.07.003. PubMed DOI

Seidel S., Garvalov B.K., Acker T. Isolation and culture of primary glioblastoma cells from human tumor specimens. Methods Mol. Biol. 2015;1235:263–275. PubMed

Gujar A.D., Mao D.D., Finlay J.B., Kim A.H. Establishing Primary Human Glioblastoma Adherent Cultures from Operative Specimens. Methods Mol. Biol. 2018;1741:53–62. PubMed

Baskaran S., Mayrhofer M., Kultima H.G., Bergstrom T., Elfineh L., Cavelier L., Isaksson A., Nelander S. Primary glioblastoma cells for precision medicine: A quantitative portrait of genomic (in)stability during the first 30 passages. Neuro. Oncol. 2018;20:1080–1091. doi: 10.1093/neuonc/noy024. PubMed DOI PMC

Ledur P.F., Onzi G.R., Zong H., Lenz G. Culture conditions defining glioblastoma cells behavior: What is the impact for novel discoveries? Oncotarget. 2017;8:69185–69197. doi: 10.18632/oncotarget.20193. PubMed DOI PMC

Stavrovskaya A.A., Shushanov S.S., Rybalkina E.Y. Problems of Glioblastoma Multiforme Drug Resistance. Biochemistry (Mosc) 2016;81:91–100. doi: 10.1134/S0006297916020036. PubMed DOI

Haar C.P., Hebbar P., Wallace G.C., Das A., Vandergrift W.A., Smith J.A., Giglio P., Patel S.J., Ray S.K., Banik N.L. Drug resistance in glioblastoma: A mini review. Neurochem. Res. 2012;37:1192–1200. doi: 10.1007/s11064-011-0701-1. PubMed DOI PMC

Huang J., Li H., Ren G. Epithelial-mesenchymal transition and drug resistance in breast cancer (Review) Int. J. Oncol. 2015;47:840–848. doi: 10.3892/ijo.2015.3084. PubMed DOI

Nurwidya F., Takahashi F., Murakami A., Takahashi K. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res. Treat. 2012;44:151–156. doi: 10.4143/crt.2012.44.3.151. PubMed DOI PMC

Arumugam T., Ramachandran V., Fournier K.F., Wang H., Marquis L., Abbruzzese J.L., Gallick G.E., Logsdon C.D., McConkey D.J., Choi W. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009;69:5820–5828. doi: 10.1158/0008-5472.CAN-08-2819. PubMed DOI PMC

Alonso M.M., Gomez-Manzano C., Bekele B.N., Yung W.K., Fueyo J. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res. 2007;67:11499–11504. doi: 10.1158/0008-5472.CAN-07-5312. PubMed DOI

Baker S.D., Wirth M., Statkevich P., Reidenberg P., Alton K., Sartorius S.E., Dugan M., Cutler D., Batra V., Grochow L.B., et al. Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin. Cancer Res. 1999;5:309–317. PubMed

Shea A., Harish V., Afzal Z., Chijioke J., Kedir H., Dusmatova S., Roy A., Ramalinga M., Harris B., Blancato J., et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 2016;5:1917–1946. doi: 10.1002/cam4.775. PubMed DOI PMC

Wong S.T., Zhang X.Q., Zhuang J.T., Chan H.L., Li C.H., Leung G.K. MicroRNA-21 inhibition enhances in vitro chemosensitivity of temozolomide-resistant glioblastoma cells. Anticancer Res. 2012;32:2835–2841. PubMed

Banelli B., Forlani A., Allemanni G., Morabito A., Pistillo M.P., Romani M. MicroRNA in Glioblastoma: An Overview. Int. J. Genomics. 2017;2017 doi: 10.1155/2017/7639084. PubMed DOI PMC

Skarkova V., Kralova V., Krbal L., Matouskova P., Soukup J., Rudolf E. Oxaliplatin and irinotecan induce heterogenous changes in the EMT markers of metastasizing colorectal carcinoma cells. Exp. Cell Res. 2018;369:295–303. doi: 10.1016/j.yexcr.2018.05.032. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...