Cerebral Malaria Model Applying Human Brain Organoids

. 2023 Mar 23 ; 12 (7) : . [epub] 20230323

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37048057

Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.

Zobrazit více v PubMed

World Malaria Report 2022. [(accessed on 16 January 2023)]. Available online: https://www.who.int/publications/i/item/9789240064898.

Schiess N., Villabona-Rueda A., Cottier K.E., Huether K., Chipeta J., Stins M.F. Pathophysiology and neurologic sequelae of cerebral malaria. Malar. J. 2020;19:266. doi: 10.1186/s12936-020-03336-z. PubMed DOI PMC

Sturtzel C. Endothelial Cells. Adv. Exp. Med. Biol. 2017;1003:71–91. PubMed

Nagyőszi P., Wilhelm I., Farkas A.E., Fazakas C., Dung N.T.K., Haskó J., Krizbai I.A. Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem. Int. 2010;57:556–564. doi: 10.1016/j.neuint.2010.07.002. PubMed DOI

Nagyőszi P., Nyúl-Tóth Á., Fazakas C., Wilhelm I., Kozma M., Molnár J., Haskó J., Krizbai I.A. Regulation of NOD-like receptors and inflammasome activation in cerebral endothelial cells. J. Neurochem. 2015;135:551–564. doi: 10.1111/jnc.13197. PubMed DOI

O’Neill L.A.J., Golenbock D., Bowie A.G. The history of Toll-like receptors—Redefining innate immunity. Nat. Rev. Immunol. 2013;13:453–460. doi: 10.1038/nri3446. PubMed DOI

Ouma B.J., Ssenkusu J.M., Shabani E., Datta D., Opoka R.O., Idro R., Bangirana P., Park G., Joloba M.L., Kain K.C., et al. Endothelial Activation, Acute Kidney Injury, and Cognitive Impairment in Pediatric Severe Malaria. Crit. Care Med. 2020;48:e734–e743. doi: 10.1097/ccm.0000000000004469. PubMed DOI PMC

Cunningham D.A., Lin J.-W., Brugat T., Jarra W., Tumwine I., Kushinga G., Ramesar J., Franke-Fayard B., Langhorne J. ICAM-1 is a key receptor mediating cytoadherence and pathology in the Plasmodium chabaudi malaria model. Malar. J. 2017;16:185. doi: 10.1186/s12936-017-1834-8. PubMed DOI PMC

Storm J., Jespersen J.S., Seydel K.B., Szestak T., Mbewe M., Chisala N.V., Phula P., Wang C.W., Taylor T.E., Moxon C., et al. Cerebral malaria is associated with differential cytoadherence to brain endothelial cells. EMBO Mol. Med. 2019;11:e9164. doi: 10.15252/emmm.201809164. PubMed DOI PMC

Ndam N.T., Moussiliou A., Lavstsen T., Kamaliddin C., Jensen A.T.R., Mama A., Tahar R., Wang C., Jespersen J.S., Alao J.M., et al. Parasites Causing Cerebral Falciparum Malaria Bind Multiple Endothelial Receptors and Express EPCR and ICAM-1-Binding PfEMP1. J. Infect. Dis. 2017;215:1918–1925. doi: 10.1093/infdis/jix230. PubMed DOI

Fleckenstein H., Portugal S. Binding brain better—Matching var genes and endothelial receptors. EMBO Mol. Med. 2019;11:e10137. doi: 10.15252/emmm.201810137. PubMed DOI PMC

Kumar S., Trivedi V. Extracellular methemoglobin promotes cyto-adherence of uninfected RBC to endothelial cells: Insight into cerebral malaria pathology. J. Cell. Biochem. 2019;120:11140–11149. doi: 10.1002/jcb.28390. PubMed DOI

Viebig N.K., Wulbrand U., Förster R., Andrews K.T., Lanzer M., Knolle P.A. Direct Activation of Human Endothelial Cells by Plasmodium falciparum-Infected Erythrocytes. Infect. Immun. 2005;73:3271–3277. doi: 10.1128/iai.73.6.3271-3277.2005. PubMed DOI PMC

Utter C., Serrano A.E., Glod J.W., Leibowitz M.J. Focus: Infectious Diseases: Association of Plasmodium falciparum with Human Endothelial Cells in vitro. Yale J. Biol. Med. 2017;90:183. PubMed PMC

Avril M., Bernabeu M., Benjamin M., Brazier A.J., Smith J.D. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells. mBio. 2016;7:e00615. doi: 10.1128/mbio.00615-16. PubMed DOI PMC

Turner L., Lavstsen T., Berger S.S., Wang C.W., Petersen J.E.V., Avril M., Brazier A.J., Freeth J., Jespersen J.S., Nielsen M.A., et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature. 2013;498:502–505. doi: 10.1038/nature12216. PubMed DOI PMC

Bernabeu M., Smith J.D. EPCR and Malaria Severity: The Center of a Perfect Storm. Trends Parasitol. 2017;33:295–308. doi: 10.1016/j.pt.2016.11.004. PubMed DOI PMC

Wassmer S.C., Taylor T., MacLennan C.A., Kanjala M., Mukaka M., Molyneux M.E., Grau G.E. Platelet-Induced Clumping of Plasmodium falciparum—Infected Erythrocytes from Malawian Patients with Cerebral Malaria—Possible Modulation In Vivo by Thrombocytopenia. J. Infect. Dis. 2008;197:72–78. doi: 10.1086/523761. PubMed DOI PMC

White N.J., Turner G.D.H., Day N.P.J., Dondorp A.M. Lethal Malaria: Marchiafava and Bignami Were Right. J. Infect. Dis. 2013;208:192–198. doi: 10.1093/infdis/jit116. PubMed DOI PMC

Storm J., Craig A.G. Pathogenesis of cerebral malaria—Inflammation and cytoadherence. Front. Cell. Infect. Microbiol. 2014;4:100. PubMed PMC

Riedl J., Mordmüller B., Koder S., Pabinger I., Kremsner P.G., Hoffman S.L., Ramharter M., Ay C. Alterations of blood coagulation in controlled human malaria infection. Malar. J. 2016;15:15. doi: 10.1186/s12936-015-1079-3. PubMed DOI PMC

Angchaisuksiri P. Coagulopathy in malaria. Thromb. Res. 2014;133:5–9. doi: 10.1016/j.thromres.2013.09.030. PubMed DOI

Francischetti I.M.B. Does activation of the blood coagulation cascade have a role in malaria pathogenesis? Trends Parasitol. 2008;24:258–263. PubMed PMC

Moussa E.M., Huang H., Thézénas M.L., Fischer R., Ramaprasad A., Sisay-Joof F., Jallow M., Pain A., Kwiatkowski D., Kessler B.M., et al. Proteomic profiling of the plasma of Gambian children with cerebral malaria. Malar. J. 2018;17:337. doi: 10.1186/s12936-018-2487-y. PubMed DOI PMC

O’Sullivan J.M., Preston R.J.S., O’Regan N., O’Donnell J.S. Emerging roles for hemostatic dysfunction in malaria pathogenesis. Blood. 2016;127:2281–2288. doi: 10.1182/blood-2015-11-636464. PubMed DOI

Idro R., Kakooza-Mwesige A., Asea B., Ssebyala K., Bangirana P., Opoka R.O., Lubowa S.K., Semrud-Clikeman M., John C.C., Nalugya J. Cerebral malaria is associated with long-term mental health disorders: A cross sectional survey of a long-term cohort. Malar. J. 2016;15:184. doi: 10.1186/s12936-016-1233-6. PubMed DOI PMC

Nassor F., Jarray R., Biard D.S.F., Maïza A., Papy-Garcia D., Pavoni S., Deslys J.-P., Yates F. Long Term Gene Expression in Human Induced Pluripotent Stem Cells and Cerebral Organoids to Model a Neurodegenerative Disease. Front. Cell. Neurosci. 2020;14:14. doi: 10.3389/fncel.2020.00014. PubMed DOI PMC

Muzio L., Consalez G.G. Modeling human brain development with cerebral organoids. Stem Cell Res. Ther. 2013;4:154. doi: 10.1186/scrt384. PubMed DOI PMC

Lee C.-T., Bendriem R.M., Wu W.W., Shen R.-F. 3D brain Organoids derived from pluripotent stem cells: Promising experimental models for brain development and neurodegenerative disorders. J. Biomed. Sci. 2017;24:59. doi: 10.1186/s12929-017-0362-8. PubMed DOI PMC

Lancaster M.A., Knoblich J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014;9:2329–2340. doi: 10.1038/nprot.2014.158. PubMed DOI PMC

Lancaster M.A., Knoblich J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 2014;345:1247125. doi: 10.1126/science.1247125. PubMed DOI

Lancaster M.A., Renner M., Martin C.-A., Wenzel D., Bicknell L.S., Hurles M.E., Homfray T., Penninger J.M., Jackson A.P., Knoblich J.A. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–379. doi: 10.1038/nature12517. PubMed DOI PMC

Paşca A.M., Sloan S.A., Clarke L.E., Tian Y., Makinson C.D., Huber N., Kim C.H., Park J.-Y., O’Rourke N.A., Nguyen K.D., et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods. 2015;12:671–678. doi: 10.1038/nmeth.3415. PubMed DOI PMC

Alia C., Terrigno M., Busti I., Cremisi F., Caleo M. Pluripotent Stem Cells for Brain Repair: Protocols and Preclinical Applications in Cortical and Hippocampal Pathologies. Front. Neurosci. 2019;13:684. doi: 10.3389/fnins.2019.00684. PubMed DOI PMC

Costamagna G., Andreoli L., Corti S., Faravelli I. iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery. Cells. 2019;8:1438. PubMed PMC

Brown J., Quadrato G., Arlotta P. Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. Curr. Top. Dev. Biol. 2018;129:99–122. doi: 10.1016/bs.ctdb.2018.03.002. PubMed DOI

Wang H. Modeling Neurological Diseases with Human Brain Organoids. Front. Synaptic Neurosci. 2018;10:15. doi: 10.3389/fnsyn.2018.00015. PubMed DOI PMC

Kaindl J., Winner B. Disease Modeling of Neuropsychiatric Brain Disorders Using Human Stem Cell-Based Neural Models. Behav. Neurogenomics. 2019;42:159–183. doi: 10.1007/7854_2019_111. PubMed DOI

Harbuzariu A., Pitts S., Cespedes J.C., Harp K.O., Nti A., Shaw A.P., Liu M., Stiles J.K. Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids. Sci. Rep. 2019;9:19162. PubMed PMC

Klotz C., Aebischer T., Seeber F. Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host–parasite interaction. Int. J. Med. Microbiol. 2012;302:203–209. doi: 10.1016/j.ijmm.2012.07.010. PubMed DOI

Eigenmann D.E., Xue G., Kim K.S., Moses A.V., Hamburger M., Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10:33. doi: 10.1186/2045-8118-10-33. PubMed DOI PMC

Marote A., Santos D., Mendes-Pinheiro B., Serre-Miranda C., Anjo S.I., Vieira J., Ferreira-Antunes F., Correia J.S., Borges-Pereira C., Pinho A.G., et al. Cellular Aging Secretes: A Comparison of Bone-Marrow-Derived and Induced Mesenchymal Stem Cells and Their Secretome Over Long-Term Culture. Stem Cell Rev. Rep. 2023;19:248–263. doi: 10.1007/s12015-022-10453-6. PubMed DOI

Garmire L.X., Subramaniam S. Evaluation of normalization methods in mammalian microRNA-Seq data. RNA. 2012;18:1279. doi: 10.1261/rna.030916.111. PubMed DOI PMC

Liu X., Li N., Liu S., Wang J., Zhang N., Zheng X., Leung K.-S., Cheng L. Normalization Methods for the Analysis of Unbalanced Transcriptome Data: A Review. Front. Bioeng. Biotechnol. 2019;7:358. doi: 10.3389/fbioe.2019.00358. PubMed DOI PMC

Gordon R., Anantharam V., Kanthasamy A.G., Kanthasamy A. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation. J. Neuroinflamm. 2012;9:82. doi: 10.1186/1742-2094-9-82. PubMed DOI PMC

McGuire S.O., Ling Z.D., Lipton J.W., Sortwell C.E., Collier T.J., Carvey P.M. Tumor Necrosis Factor α Is Toxic to Embryonic Mesencephalic Dopamine Neurons. Exp. Neurol. 2001;169:219–230. doi: 10.1006/exnr.2001.7688. PubMed DOI

McCoy M.K., Martinez T.N., Ruhn K.A., Szymkowski D.E., Smith C.G., Botterman B.R., Tansey K.E., Tansey M.G. Blocking Soluble Tumor Necrosis Factor Signaling with Dominant-Negative Tumor Necrosis Factor Inhibitor Attenuates Loss of Dopaminergic Neurons in Models of Parkinson’s Disease. J. Neurosci. 2006;26:9365–9375. doi: 10.1523/JNEUROSCI.1504-06.2006. PubMed DOI PMC

Tarrant J.M. Blood Cytokines as Biomarkers of In Vivo Toxicity in Preclinical Safety Assessment: Considerations for Their Use. Toxicol. Sci. 2010;117:4–16. doi: 10.1093/toxsci/kfq134. PubMed DOI PMC

Avril M., Benjamin M., Dols M.-M., Smith J.D. Interplay of Plasmodium falciparum and thrombin in brain endothelial barrier disruption. Sci. Rep. 2019;9:13142. doi: 10.1038/s41598-019-49530-1. PubMed DOI PMC

Pais T.F., Penha-Gonçalves C. Brain endothelium: The ‘innate immunity response hypothesis’ in cerebral malaria path-ogenesis. Front. Immunol. 2019;10:3100. doi: 10.3389/fimmu.2018.03100. PubMed DOI PMC

Sun A.X., Yuan Q., Tan S., Xiao Y., Wang D., Khoo A.T.T., Sani L., Tran H.-D., Kim P., Chiew Y.S., et al. Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells. Cell Rep. 2016;16:1942–1953. doi: 10.1016/j.celrep.2016.07.035. PubMed DOI

Deininger M.H., Kremsner P.G., Meyermann R., Schluesener H.J. Focal accumulation of cyclooxygenase-1 (COX-1) and COX-2 expressing cells in cerebral malaria. J. Neuroimmunol. 2000;106:198–205. doi: 10.1016/S0165-5728(00)00187-9. PubMed DOI

Ball H.J., MacDougall H., McGregor I.S., Hunt N.H. Cyclooxygenase-2 in the Pathogenesis of Murine Cerebral Malaria. J. Infect. Dis. 2004;189:751–758. doi: 10.1086/381503. PubMed DOI

Mohammadi E., Sadoughi F., Younesi S., Karimian A., Asemi Z., Farsad-Akhtar N., Jahanbakhshi F., Jamilian H., Yousefi B. The molecular mechanism of nuclear signaling for degradation of cytoplasmic DNA: Importance in DNA damage response and cancer. DNA Repair. 2021;103:103115. doi: 10.1016/j.dnarep.2021.103115. PubMed DOI

Ye Z., Xue A., Huang Y., Wu Q. Children with cyclic vomiting syndrome: Phenotypes, disease burden and mitochondrial DNA analysis. BMC Gastroenterol. 2018;18:104. doi: 10.1186/s12876-018-0836-5. PubMed DOI PMC

Tiihonen J., Koskuvi M., Lähteenvuo M., Virtanen P.L.J., Ojansuu I., Vaurio O., Gao Y., Hyötyläinen I., Puttonen K.A., Repo-Tiihonen E., et al. Neurobiological roots of psychopathy. Mol. Psychiatry. 2020;25:3432–3441. doi: 10.1038/s41380-019-0488-z. PubMed DOI PMC

Osmanagic-Myers S., Rus S., Wolfram M., Brunner D., Goldmann W.H., Bonakdar N., Fischer I., Reipert S., Zuzuarregui A., Walko G., et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. Development. 2015;142:e1.1. doi: 10.1242/dev.132993. PubMed DOI PMC

Suttitheptumrong A., Rawarak N., Reamtong O., Boonnak K., Pattanakitsakul S.-N. Plectin is Required for Trans-Endothelial Permeability: A Model of Plectin Dysfunction in Human Endothelial Cells After TNF-α Treatment and Dengue Virus Infection. Proteomics. 2018;18:e1800215. doi: 10.1002/pmic.201800215. PubMed DOI

Potokar M., Morita M., Wiche G., Jorgačevski J. The Diversity of Intermediate Filaments in Astrocytes. Cells. 2020;9:1604. doi: 10.3390/cells9071604. PubMed DOI PMC

Thierry A., Falilatou A., Covalic B., Elodie D., Mendinatou A., Didier A., Alphonse N., Joseph A. Epilepsy and Malaria in Children Aged 1 to 15 Years in Parakou in 2018: Case-Control Study. Child Neurol. Open. 2020;7:2329048X20954111. doi: 10.1177/2329048X20954111. PubMed DOI PMC

del Valle-Pérez B., Martínez V.G., Lacasa-Salavert C., Figueras A., Shapiro S.S., Takafuta T., Casanovas O., Capellà G., Ventura F., Viñals F. Filamin B Plays a Key Role in Vascular Endothelial Growth Factor-induced Endothelial Cell Motility through Its Interaction with Rac-1 and Vav-2. J. Biol. Chem. 2010;285:10748–10760. doi: 10.1074/jbc.M109.062984. PubMed DOI PMC

Kanters E., van Rijssel J., Hensbergen P.J., Hondius D., Mul F.P., Deelder A.M., Sonnenberg A., van Buul J.D., Hordijk P.L. Filamin B Mediates ICAM-1-driven Leukocyte Transendothelial Migration. J. Biol. Chem. 2008;283:31830–31839. doi: 10.1074/jbc.M804888200. PubMed DOI

Bandaru S., Zhou A.-X., Rouhi P., Zhang Y., Bergo M.O., Cao Y., Akyürek L.M. Targeting filamin B induces tumor growth and metastasis via enhanced activity of matrix metalloproteinase-9 and secretion of VEGF-A. Oncogenesis. 2014;3:e119. doi: 10.1038/oncsis.2014.33. PubMed DOI PMC

Schaefer A., Riet J.T., Ritz K., Hoogenboezem M., Anthony E.C., Mul F.P.J., de Vries C.J., Daemen M., Figdor C., Van Buul J., et al. Actin-binding proteins differentially regulate endothelial cell stiffness, ICAM-1 function and neutrophil transmigration. J. Cell Sci. 2014;127:4470–4482. doi: 10.1242/jcs.164814. PubMed DOI

Chen F., Liu H., Wu J., Zhao Y. miR-125a Suppresses TrxR1 Expression and Is Involved in H2O2-Induced Oxidative Stress in Endothelial Cells. J. Immunol. Res. 2018;2018:6140320. doi: 10.1155/2018/6140320. PubMed DOI PMC

Sakurai A., Yuasa K., Shoji Y., Himeno S., Tsujimoto M., Kunimoto M., Imura N., Hara S. Overexpression of thioredoxin reductase 1 regulates NF-kappa B activation. J. Cell. Physiol. 2004;198:22–30. doi: 10.1002/jcp.10377. PubMed DOI

Kudin A.P., Baron G., Zsurka G., Hampel K.G., Elger C.E., Grote A., Weber Y., Lerche H., Thiele H., Nürnberg P., et al. Homozygous mutation in TXNRD1 is associated with genetic generalized epilepsy. Free Radic. Biol. Med. 2017;106:270–277. doi: 10.1016/j.freeradbiomed.2017.02.040. PubMed DOI

Yu J.-T., Liu Y., Dong P., Cheng R.-E., Ke S.-X., Chen K.-Q., Wang J.-J., Shen Z.-S., Tang Q.-Y., Zhang Z. Up-regulation of antioxidative proteins TRX1, TXNL1 and TXNRD1 in the cortex of PTZ kindling seizure model mice. PLoS ONE. 2019;14:e0210670. doi: 10.1371/journal.pone.0210670. PubMed DOI PMC

Lennartz F., Smith C., Craig A.G., Higgins M.K. Structural insights into diverse modes of ICAM-1 binding by Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA. 2019;116:20124–20134. doi: 10.1073/pnas.1911900116. PubMed DOI PMC

Bhalla K., Chugh M., Mehrotra S., Rathore S., Tousif S., Dwivedi V.P., Prakash P., Samuchiwal S., Kumar S., Singh D., et al. Host ICAMs play a role in cell invasion by Mycobacterium tuberculosis and Plasmodium falciparum. Nat. Commun. 2015;6:6049. doi: 10.1038/ncomms7049. PubMed DOI

Gu P., Theiss A., Han J., Feagins L.A. Increased Cell Adhesion Molecules, PECAM-1, ICAM-3, or VCAM-1, Predict Increased Risk for Flare in Patients with Quiescent Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2017;51:522–527. doi: 10.1097/MCG.0000000000000618. PubMed DOI PMC

Mahamar A., Attaher O., Swihart B., Barry A., Diarra B.S., Kanoute M.B., Cisse K.B., Dembele A.B., Keita S., Gamain B., et al. Host factors that modify Plasmodium falciparum adhesion to endothelial receptors. Sci. Rep. 2017;7:13872. doi: 10.1038/s41598-017-14351-7. PubMed DOI PMC

Che J.N., Nmorsi O.P.G., Nkot B.P., Isaac C., Okonkwo B.C. Chemokines responses to Plasmodium falciparum malaria and co-infections among rural Cameroonians. Parasitol. Int. 2015;64:139–144. doi: 10.1016/j.parint.2014.11.003. PubMed DOI

Feng X., Ma B.-F., Liu B., Ding P., Wei J.-H., Cheng P., Li S.-Y., Chen D.-X., Sun Z.-J., Li Z. The Involvement of the Chemokine RANTES in Regulating Luminal Acidification in Rat Epididymis. Front. Immunol. 2020;11:583274. doi: 10.3389/fimmu.2020.583274. PubMed DOI PMC

Albuquerque S.S., Carret C., Grosso A.R., Tarun A.S., Peng X., Kappe S.H., Prudêncio M., Mota M.M. Host cell transcriptional profiling during malaria liver stage infection reveals a coordinated and sequential set of biological events. BMC Genom. 2009;10:270. doi: 10.1186/1471-2164-10-270. PubMed DOI PMC

Bando H., Pradipta A., Iwanaga S., Okamoto T., Okuzaki D., Tanaka S., Vega-Rodríguez J., Lee Y., Ma J.S., Sakaguchi N., et al. CXCR4 regulates Plasmodium development in mouse and human hepatocytes. J. Exp. Med. 2019;216:1733–1748. doi: 10.1084/jem.20182227. PubMed DOI PMC

Ioannidis L.J., Nie C.Q., Hansen D.S. The role of chemokines in severe malaria: More than meets the eye. Parasitology. 2014;141:602–613. doi: 10.1017/S0031182013001984. PubMed DOI PMC

Sercundes M.K., Ortolan L.S., Debone D., Soeiro-Pereira P.V., Gomes E., Aitken E.H., Neto A.C., Russo M., Lima M.R.D.I., Alvarez J.M., et al. Targeting Neutrophils to Prevent Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome in Mice. PLoS Pathog. 2016;12:e1006054. doi: 10.1371/journal.ppat.1006054. PubMed DOI PMC

Rodrigues D.S.A., Rodrigues D., Prestes E.B., de Souza Silva L., Pinheiro A.A.S., Ribeiro J.M.C., Dicko A., Duffy P.E., Fried M., Francischetti I.M.B., et al. CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes. bioRxiv. 2019;16:852574. doi: 10.1101/852574. PubMed DOI PMC

Dunst J., Kamena F., Matuschewski K. Cytokines and Chemokines in Cerebral Malaria Pathogenesis. Front. Cell. Infect. Microbiol. 2017;7:324. doi: 10.3389/fcimb.2017.00324. PubMed DOI PMC

Wangala B., Vovor A., Gantin R., Agbeko Y., Lechner C., Huang X., Soboslay P., Köhler C. Chemokine levels and parasite- and allergen-specific antibodyresponses in children and adults with severe or uncomplicated Plasmodium falciparum malaria. Eur. J. Microbiol. Immunol. 2015;5:131. doi: 10.1556/EuJMI-D-14-00041. PubMed DOI PMC

Abrams E.T., Brown H., Chensue S.W., Turner G.D.H., Tadesse E., Lema V.M., Molyneux M.E., Rochford R., Meshnick S.R., Rogerson S.J. Host Response to Malaria During Pregnancy: Placental Monocyte Recruitment Is Associated with Elevated β Chemokine Expression. J. Immunol. 2003;170:2759–2764. doi: 10.4049/jimmunol.170.5.2759. PubMed DOI

Hojo-Souza N.S., Pereira D.B., de Souza F.S.H., Mendes T.A.D.O., Cardoso M.S., Tada M.S., Zanini G.M., Bartholomeu D.C., Fujiwara R.T., Bueno L.L. On the cytokine/chemokine network during Plasmodium vivax malaria: New insights to understand the disease. Malar. J. 2017;16:42. doi: 10.1186/s12936-017-1683-5. PubMed DOI PMC

Raacke M., Kerr A., Dörpinghaus M., Brehmer J., Wu Y., Lorenzen S., Fink C., Jacobs T., Roeder T., Sellau J., et al. Altered Cytokine Response of Human Brain Endothelial Cells after Stimulation with Malaria Patient Plasma. Cells. 2021;10:1656. doi: 10.3390/cells10071656. PubMed DOI PMC

Chen Z., Haus J.M., Chen L., Wu S.C., Urao N., Koh T.J., Minshall R.D. CCL28-induced CCR10/eNOS Interaction in Angiogenesis and Skin Wound Healing. FASEB J. 2020;34:5838. doi: 10.1096/fj.201902060R. PubMed DOI PMC

Machado F.S., Desruisseaux M.S., Kennan R.P., Hetherington H.P., Wittner M., Weiss L.M., Lee S.C., Scherer P.E., Tsuji M., Tanowitz H.B., et al. Endothelin in a murine model of cerebral malaria. Exp. Biol. Med. 2017;231:1176–1181. PubMed

Freeman B.D., Martins Y.C., Akide-Ndunge O.B., Bruno F.P., Wang H., Tanowitz H.B., Spray D.C., Desruisseaux M.S. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria. PLoS Pathog. 2016;12:e1005477. doi: 10.1371/journal.ppat.1005477. PubMed DOI PMC

Martins Y.C., Freeman B.D., Ndunge O.B.A., Weiss L.M., Tanowitz H.B., Desruisseaux M.S. Endothelin-1 Treatment Induces an Experimental Cerebral Malaria-Like Syndrome in C57BL/6 Mice Infected with Plasmodium berghei NK65. Am. J. Pathol. 2016;186:2957–2969. doi: 10.1016/j.ajpath.2016.07.020. PubMed DOI PMC

Wenisch C., Wenisch H., Wilairatana P., Looareesuwan S., Vannaphan S., Wagner O., Graninger W., Schönthal E., Rumpold H. Big Endothelin in Patients with Complicated Plasmodium falciparum Malaria. J. Infect. Dis. 1996;173:1281–1284. doi: 10.1093/infdis/173.5.1281. PubMed DOI

Dietmann A., Lackner P., Helbok R., Spora K., Issifou S., Lell B., Reindl M., Kremsner P., Schmutzhard E. Opposed circulating plasma levels of endothelin-1 and C-type natriuretic peptide in children with Plasmodium falciparum malaria. Malar. J. 2008;7:253. doi: 10.1186/1475-2875-7-253. PubMed DOI PMC

Colborn J.M., Ylöstalo J.H., Koita O.A., Cissé O.H., Krogstad D.J. Human Gene Expression in Uncomplicated Plasmodium falciparum Malaria. J. Immunol. Res. 2015;2015:162639. doi: 10.1155/2015/162639. PubMed DOI PMC

Graham S.M., Chen J., Chung D.W., Barker K.R., Conroy A.L., Hawkes M.T., Namasopo S., Kain K.C., López J.A., Liles W.C. Endothelial activation, haemostasis and thrombosis biomarkers in Ugandan children with severe malaria participating in a clinical trial. Malar. J. 2016;15:56. doi: 10.1186/s12936-016-1106-z. PubMed DOI PMC

O’Donnell A.S., Fazavana J., O’Donnell J.S. The von Willebrand factor—ADAMTS-13 axis in malaria. Res. Pract. Thromb. Haemost. 2022;6:e12641. doi: 10.1002/rth2.12641. PubMed DOI PMC

Mbagwu S.I., Filgueira L. Differential Expression of CD31 and Von Willebrand Factor on Endothelial Cells in Different Regions of the Human Brain: Potential Implications for Cerebral Malaria Pathogenesis. Brain Sci. 2020;10:31. doi: 10.3390/brainsci10010031. PubMed DOI PMC

O’Regan N., Gegenbauer K., O’Sullivan J.M., Maleki S., Brophy T.M., Dalton N., Chion A., Fallon P.G., Grau G., Budde U., et al. A novel role for von Willebrand factor in the pathogenesis of experimental cerebral malaria. Blood. 2016;127:1192–1201. doi: 10.1182/blood-2015-07-654921. PubMed DOI PMC

Kraisin S., Martinod K., Desender L., Pareyn I., Verhenne S., Deckmyn H., Vanhoorelbeke K., Van den Steen P.E., De Meyer S.F. von Willebrand factor increases in experimental cerebral malaria but is not essential for late-stage patho-genesis in mice. J. Thromb. Haemost. 2020;18:2377–2390. doi: 10.1111/jth.14932. PubMed DOI

Hollestelle M.J., Donkor C., Mantey E.A., Chakravorty S.J., Craig A., Akoto A.O., O’Donnell J., van Mourik J.A., Bunn J. von Willebrand factor propeptide in malaria: Evidence of acute endothelial cell activation. Br. J. Haematol. 2006;133:562–569. doi: 10.1111/j.1365-2141.2006.06067.x. PubMed DOI

Cox P.R., Fowler V., Xu B., Sweatt J., Paylor R., Zoghbi H.Y. Mice lacking tropomodulin-2 show enhanced long-term potentiation, hyperactivity, and deficits in learning and memory. Mol. Cell. Neurosci. 2003;23:1–12. doi: 10.1016/S1044-7431(03)00025-3. PubMed DOI

Armah H.B., Wilson N.O., Sarfo B.Y., Powell M.D., Bond V.C., Anderson W., Adjei A.A., Gyasi R.K., Tettey Y., Wiredu E.K., et al. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar. J. 2007;6:147. doi: 10.1186/1475-2875-6-147. PubMed DOI PMC

Polimeni M., Prato M. Host matrix metalloproteinases in cerebral malaria: New kids on the block against blood–brain barrier integrity? Fluids Barriers CNS. 2014;11:1. doi: 10.1186/2045-8118-11-1. PubMed DOI PMC

Prato M., Giribaldi G. Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria. J. Trop. Med. 2011;2011:628435. doi: 10.1155/2011/628435. PubMed DOI PMC

Polimeni M., Valente E., Ulliers D., Opdenakker G., Van den Steen P.E., Giribaldi G., Prato M. Natural haemozoin induces expression and release of human monocyte tissue inhibitor of metallopro-teinase-1. PLoS ONE. 2013;8:e71468. doi: 10.1371/journal.pone.0071468. PubMed DOI PMC

Prato M., D’Alessandro S., Van den Steen P.E., Opdenakker G., Arese P., Taramelli D., Basilico N. Natural haemozoin modulates matrix metalloproteinases and induces morphological changes in human microvascular endothelium. Cell. Microbiol. 2011;13:1275–1285. doi: 10.1111/j.1462-5822.2011.01620.x. PubMed DOI

Mandala W.L., Msefula C.L., Gondwe E.N., Drayson M.T., Molyneux M.E., MacLennan C.A. Cytokine Profiles in Malawian Children Presenting with Uncomplicated Malaria, Severe Malarial Anemia, and Cerebral Malaria. Clin. Vaccine Immunol. 2017;24:e00533-16. doi: 10.1128/CVI.00533-16. PubMed DOI PMC

Bujarbaruah D., Kalita M.P., Baruah V., Basumatary T.K., Hazarika S., Begum R.H., Medhi S., Bose S. RANTES levels as a determinant of falciparum malaria severity or recovery. Parasite Immunol. 2017;39:e12452. doi: 10.1111/pim.12452. PubMed DOI

Ochiel D.O., Awandare G.A., Keller C.C., Hittner J.B., Kremsner P.G., Weinberg J.B., Perkins D.J. Differential Regulation of β-Chemokines in Children with Plasmodium falciparum Malaria. Infect. Immun. 2005;73:4190–4197. doi: 10.1128/IAI.73.7.4190-4197.2005. PubMed DOI PMC

Camp J.G., Badsha F., Florio M., Kanton S., Gerber T., Wilsch-Bräuninger M., Lewitus E., Sykes A., Hevers W., Lancaster M.A., et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl. Acad. Sci. USA. 2015;112:15672–15677. doi: 10.1073/pnas.1520760112. PubMed DOI PMC

Ciarpella F., Zamfir R.G., Campanelli A., Ren E., Pedrotti G., Bottani E., Borioli A., Caron D., Di Chio M., Dolci S., et al. Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity. iScience. 2021;24:103438. doi: 10.1016/j.isci.2021.103438. PubMed DOI PMC

Dezonne R.S., Sartore R.C., Nascimento J.M., Saia-Cereda V.M., Romão L.F., Alves-Leon S.V., de Souza J.M., Martins-De-Souza D., Rehen S.K., Gomes F.C.A. Derivation of Functional Human Astrocytes from Cerebral Organoids. Sci. Rep. 2017;7:srep45091. doi: 10.1038/srep45091. PubMed DOI PMC

Nascimento J.M., Saia-Cereda V.M., Sartore R.C., da Costa R.M., Schitine C.S., Freitas H.R., Murgu M., Reis R.A.D.M., Rehen S.K., Martins-De-Souza D. Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Front. Cell Dev. Biol. 2019;7:303. doi: 10.3389/fcell.2019.00303. PubMed DOI PMC

Park D., Xiang A.P., Mao F.F., Zhang L., Di C.-G., Liu X.-M., Shao Y., Ma B.-F., Lee J.-H., Ha K.-S., et al. Nestin Is Required for the Proper Self-Renewal of Neural Stem Cells. Stem Cells. 2010;28:2162–2171. doi: 10.1002/stem.541. PubMed DOI

Huang S., Zhang Z., Cao J., Yu Y., Pei G. Chimeric cerebral organoids reveal the essentials of neuronal and astrocytic APOE4 for Alzheimer’s tau pathology. Signal Transduct. Target. Ther. 2022;7:176. doi: 10.1038/s41392-022-01006-x. PubMed DOI PMC

Yakoub A.M. Cerebral organoids exhibit mature neurons and astrocytes and recapitulate electrophysiological activity of the human brain. Neural Regen. Res. 2019;14:757–761. doi: 10.4103/1673-5374.249283. PubMed DOI PMC

Renner M., Lancaster M.A., Bian S., Choi H., Ku T., Peer A., Chung K., Knoblich J.A. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 2017;36:1316–1329. doi: 10.15252/embj.201694700. PubMed DOI PMC

Glushakova O.Y., Glushakov A.A., Wijesinghe D.S., Valadka A.B., Hayes R.L., Glushakov A.V. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neuro-vascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ. 2017;3:87. doi: 10.4103/bc.bc_27_16. PubMed DOI PMC

Ramirez S., Mukherjee A., Sepulveda S., Becerra-Calixto A., Bravo-Vasquez N., Gherardelli C., Chavez M., Soto C. Modeling Traumatic Brain Injury in Human Cerebral Organoids. Cells. 2021;10:2683. doi: 10.3390/cells10102683. PubMed DOI PMC

An H.L., Kuo HCTang T.K. Modeling Human Primary Microcephaly With hiPSC-Derived Brain Organoids Carrying CPAP-E1235V Disease-Associated Mutant Protein. Front. Cell Dev. Biol. 2022;10:451. PubMed PMC

Hyland R.M., Brody S.L. Impact of Motile Ciliopathies on Human Development and Clinical Consequences in the Newborn. Cells. 2021;11:125. doi: 10.3390/cells11010125. PubMed DOI PMC

Ki S.M., Jeong H.S., Lee J.E. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front. Neurosci. 2021;15:736888. doi: 10.3389/fnins.2021.736888. PubMed DOI PMC

Lee J.E., Gleeson J.G. Cilia in the nervous system: Linking cilia function and neurodevelopmental disorders. Curr. Opin. Neurol. 2011;24:98–105. doi: 10.1097/WCO.0b013e3283444d05. PubMed DOI PMC

Ringers C., Olstad E.W., Jurisch-Yaksi N. The role of motile cilia in the development and physiology of the nervous system. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190156. doi: 10.1098/rstb.2019.0156. PubMed DOI PMC

Zhang W., Yang S.-L., Yang M., Herrlinger S., Shao Q., Collar J.L., Fierro E., Shi Y., Liu A., Lu H., et al. Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors. Nat. Commun. 2019;10:2612. doi: 10.1038/s41467-019-10497-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...