Cerebral Malaria Model Applying Human Brain Organoids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37048057
PubMed Central
PMC10093648
DOI
10.3390/cells12070984
PII: cells12070984
Knihovny.cz E-zdroje
- Klíčová slova
- HBMEC activation, brain organoids, cerebral malaria, human iPSCs, secretome, transcriptome,
- MeSH
- endoteliální buňky metabolismus MeSH
- lidé MeSH
- mozek patologie MeSH
- mozková malárie * metabolismus parazitologie patologie MeSH
- organoidy metabolismus MeSH
- Plasmodium falciparum MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.
CEB Centre of Biological Engineering Universidade do Minho Campus de Gualtar 4710 057 Braga Portugal
ICVS 3B's PT Government Associate Laboratory 4710 057 Braga Portugal
Zobrazit více v PubMed
World Malaria Report 2022. [(accessed on 16 January 2023)]. Available online: https://www.who.int/publications/i/item/9789240064898.
Schiess N., Villabona-Rueda A., Cottier K.E., Huether K., Chipeta J., Stins M.F. Pathophysiology and neurologic sequelae of cerebral malaria. Malar. J. 2020;19:266. doi: 10.1186/s12936-020-03336-z. PubMed DOI PMC
Sturtzel C. Endothelial Cells. Adv. Exp. Med. Biol. 2017;1003:71–91. PubMed
Nagyőszi P., Wilhelm I., Farkas A.E., Fazakas C., Dung N.T.K., Haskó J., Krizbai I.A. Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem. Int. 2010;57:556–564. doi: 10.1016/j.neuint.2010.07.002. PubMed DOI
Nagyőszi P., Nyúl-Tóth Á., Fazakas C., Wilhelm I., Kozma M., Molnár J., Haskó J., Krizbai I.A. Regulation of NOD-like receptors and inflammasome activation in cerebral endothelial cells. J. Neurochem. 2015;135:551–564. doi: 10.1111/jnc.13197. PubMed DOI
O’Neill L.A.J., Golenbock D., Bowie A.G. The history of Toll-like receptors—Redefining innate immunity. Nat. Rev. Immunol. 2013;13:453–460. doi: 10.1038/nri3446. PubMed DOI
Ouma B.J., Ssenkusu J.M., Shabani E., Datta D., Opoka R.O., Idro R., Bangirana P., Park G., Joloba M.L., Kain K.C., et al. Endothelial Activation, Acute Kidney Injury, and Cognitive Impairment in Pediatric Severe Malaria. Crit. Care Med. 2020;48:e734–e743. doi: 10.1097/ccm.0000000000004469. PubMed DOI PMC
Cunningham D.A., Lin J.-W., Brugat T., Jarra W., Tumwine I., Kushinga G., Ramesar J., Franke-Fayard B., Langhorne J. ICAM-1 is a key receptor mediating cytoadherence and pathology in the Plasmodium chabaudi malaria model. Malar. J. 2017;16:185. doi: 10.1186/s12936-017-1834-8. PubMed DOI PMC
Storm J., Jespersen J.S., Seydel K.B., Szestak T., Mbewe M., Chisala N.V., Phula P., Wang C.W., Taylor T.E., Moxon C., et al. Cerebral malaria is associated with differential cytoadherence to brain endothelial cells. EMBO Mol. Med. 2019;11:e9164. doi: 10.15252/emmm.201809164. PubMed DOI PMC
Ndam N.T., Moussiliou A., Lavstsen T., Kamaliddin C., Jensen A.T.R., Mama A., Tahar R., Wang C., Jespersen J.S., Alao J.M., et al. Parasites Causing Cerebral Falciparum Malaria Bind Multiple Endothelial Receptors and Express EPCR and ICAM-1-Binding PfEMP1. J. Infect. Dis. 2017;215:1918–1925. doi: 10.1093/infdis/jix230. PubMed DOI
Fleckenstein H., Portugal S. Binding brain better—Matching var genes and endothelial receptors. EMBO Mol. Med. 2019;11:e10137. doi: 10.15252/emmm.201810137. PubMed DOI PMC
Kumar S., Trivedi V. Extracellular methemoglobin promotes cyto-adherence of uninfected RBC to endothelial cells: Insight into cerebral malaria pathology. J. Cell. Biochem. 2019;120:11140–11149. doi: 10.1002/jcb.28390. PubMed DOI
Viebig N.K., Wulbrand U., Förster R., Andrews K.T., Lanzer M., Knolle P.A. Direct Activation of Human Endothelial Cells by Plasmodium falciparum-Infected Erythrocytes. Infect. Immun. 2005;73:3271–3277. doi: 10.1128/iai.73.6.3271-3277.2005. PubMed DOI PMC
Utter C., Serrano A.E., Glod J.W., Leibowitz M.J. Focus: Infectious Diseases: Association of Plasmodium falciparum with Human Endothelial Cells in vitro. Yale J. Biol. Med. 2017;90:183. PubMed PMC
Avril M., Bernabeu M., Benjamin M., Brazier A.J., Smith J.D. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells. mBio. 2016;7:e00615. doi: 10.1128/mbio.00615-16. PubMed DOI PMC
Turner L., Lavstsen T., Berger S.S., Wang C.W., Petersen J.E.V., Avril M., Brazier A.J., Freeth J., Jespersen J.S., Nielsen M.A., et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature. 2013;498:502–505. doi: 10.1038/nature12216. PubMed DOI PMC
Bernabeu M., Smith J.D. EPCR and Malaria Severity: The Center of a Perfect Storm. Trends Parasitol. 2017;33:295–308. doi: 10.1016/j.pt.2016.11.004. PubMed DOI PMC
Wassmer S.C., Taylor T., MacLennan C.A., Kanjala M., Mukaka M., Molyneux M.E., Grau G.E. Platelet-Induced Clumping of Plasmodium falciparum—Infected Erythrocytes from Malawian Patients with Cerebral Malaria—Possible Modulation In Vivo by Thrombocytopenia. J. Infect. Dis. 2008;197:72–78. doi: 10.1086/523761. PubMed DOI PMC
White N.J., Turner G.D.H., Day N.P.J., Dondorp A.M. Lethal Malaria: Marchiafava and Bignami Were Right. J. Infect. Dis. 2013;208:192–198. doi: 10.1093/infdis/jit116. PubMed DOI PMC
Storm J., Craig A.G. Pathogenesis of cerebral malaria—Inflammation and cytoadherence. Front. Cell. Infect. Microbiol. 2014;4:100. PubMed PMC
Riedl J., Mordmüller B., Koder S., Pabinger I., Kremsner P.G., Hoffman S.L., Ramharter M., Ay C. Alterations of blood coagulation in controlled human malaria infection. Malar. J. 2016;15:15. doi: 10.1186/s12936-015-1079-3. PubMed DOI PMC
Angchaisuksiri P. Coagulopathy in malaria. Thromb. Res. 2014;133:5–9. doi: 10.1016/j.thromres.2013.09.030. PubMed DOI
Francischetti I.M.B. Does activation of the blood coagulation cascade have a role in malaria pathogenesis? Trends Parasitol. 2008;24:258–263. PubMed PMC
Moussa E.M., Huang H., Thézénas M.L., Fischer R., Ramaprasad A., Sisay-Joof F., Jallow M., Pain A., Kwiatkowski D., Kessler B.M., et al. Proteomic profiling of the plasma of Gambian children with cerebral malaria. Malar. J. 2018;17:337. doi: 10.1186/s12936-018-2487-y. PubMed DOI PMC
O’Sullivan J.M., Preston R.J.S., O’Regan N., O’Donnell J.S. Emerging roles for hemostatic dysfunction in malaria pathogenesis. Blood. 2016;127:2281–2288. doi: 10.1182/blood-2015-11-636464. PubMed DOI
Idro R., Kakooza-Mwesige A., Asea B., Ssebyala K., Bangirana P., Opoka R.O., Lubowa S.K., Semrud-Clikeman M., John C.C., Nalugya J. Cerebral malaria is associated with long-term mental health disorders: A cross sectional survey of a long-term cohort. Malar. J. 2016;15:184. doi: 10.1186/s12936-016-1233-6. PubMed DOI PMC
Nassor F., Jarray R., Biard D.S.F., Maïza A., Papy-Garcia D., Pavoni S., Deslys J.-P., Yates F. Long Term Gene Expression in Human Induced Pluripotent Stem Cells and Cerebral Organoids to Model a Neurodegenerative Disease. Front. Cell. Neurosci. 2020;14:14. doi: 10.3389/fncel.2020.00014. PubMed DOI PMC
Muzio L., Consalez G.G. Modeling human brain development with cerebral organoids. Stem Cell Res. Ther. 2013;4:154. doi: 10.1186/scrt384. PubMed DOI PMC
Lee C.-T., Bendriem R.M., Wu W.W., Shen R.-F. 3D brain Organoids derived from pluripotent stem cells: Promising experimental models for brain development and neurodegenerative disorders. J. Biomed. Sci. 2017;24:59. doi: 10.1186/s12929-017-0362-8. PubMed DOI PMC
Lancaster M.A., Knoblich J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014;9:2329–2340. doi: 10.1038/nprot.2014.158. PubMed DOI PMC
Lancaster M.A., Knoblich J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 2014;345:1247125. doi: 10.1126/science.1247125. PubMed DOI
Lancaster M.A., Renner M., Martin C.-A., Wenzel D., Bicknell L.S., Hurles M.E., Homfray T., Penninger J.M., Jackson A.P., Knoblich J.A. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–379. doi: 10.1038/nature12517. PubMed DOI PMC
Paşca A.M., Sloan S.A., Clarke L.E., Tian Y., Makinson C.D., Huber N., Kim C.H., Park J.-Y., O’Rourke N.A., Nguyen K.D., et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods. 2015;12:671–678. doi: 10.1038/nmeth.3415. PubMed DOI PMC
Alia C., Terrigno M., Busti I., Cremisi F., Caleo M. Pluripotent Stem Cells for Brain Repair: Protocols and Preclinical Applications in Cortical and Hippocampal Pathologies. Front. Neurosci. 2019;13:684. doi: 10.3389/fnins.2019.00684. PubMed DOI PMC
Costamagna G., Andreoli L., Corti S., Faravelli I. iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery. Cells. 2019;8:1438. PubMed PMC
Brown J., Quadrato G., Arlotta P. Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. Curr. Top. Dev. Biol. 2018;129:99–122. doi: 10.1016/bs.ctdb.2018.03.002. PubMed DOI
Wang H. Modeling Neurological Diseases with Human Brain Organoids. Front. Synaptic Neurosci. 2018;10:15. doi: 10.3389/fnsyn.2018.00015. PubMed DOI PMC
Kaindl J., Winner B. Disease Modeling of Neuropsychiatric Brain Disorders Using Human Stem Cell-Based Neural Models. Behav. Neurogenomics. 2019;42:159–183. doi: 10.1007/7854_2019_111. PubMed DOI
Harbuzariu A., Pitts S., Cespedes J.C., Harp K.O., Nti A., Shaw A.P., Liu M., Stiles J.K. Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids. Sci. Rep. 2019;9:19162. PubMed PMC
Klotz C., Aebischer T., Seeber F. Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host–parasite interaction. Int. J. Med. Microbiol. 2012;302:203–209. doi: 10.1016/j.ijmm.2012.07.010. PubMed DOI
Eigenmann D.E., Xue G., Kim K.S., Moses A.V., Hamburger M., Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10:33. doi: 10.1186/2045-8118-10-33. PubMed DOI PMC
Marote A., Santos D., Mendes-Pinheiro B., Serre-Miranda C., Anjo S.I., Vieira J., Ferreira-Antunes F., Correia J.S., Borges-Pereira C., Pinho A.G., et al. Cellular Aging Secretes: A Comparison of Bone-Marrow-Derived and Induced Mesenchymal Stem Cells and Their Secretome Over Long-Term Culture. Stem Cell Rev. Rep. 2023;19:248–263. doi: 10.1007/s12015-022-10453-6. PubMed DOI
Garmire L.X., Subramaniam S. Evaluation of normalization methods in mammalian microRNA-Seq data. RNA. 2012;18:1279. doi: 10.1261/rna.030916.111. PubMed DOI PMC
Liu X., Li N., Liu S., Wang J., Zhang N., Zheng X., Leung K.-S., Cheng L. Normalization Methods for the Analysis of Unbalanced Transcriptome Data: A Review. Front. Bioeng. Biotechnol. 2019;7:358. doi: 10.3389/fbioe.2019.00358. PubMed DOI PMC
Gordon R., Anantharam V., Kanthasamy A.G., Kanthasamy A. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation. J. Neuroinflamm. 2012;9:82. doi: 10.1186/1742-2094-9-82. PubMed DOI PMC
McGuire S.O., Ling Z.D., Lipton J.W., Sortwell C.E., Collier T.J., Carvey P.M. Tumor Necrosis Factor α Is Toxic to Embryonic Mesencephalic Dopamine Neurons. Exp. Neurol. 2001;169:219–230. doi: 10.1006/exnr.2001.7688. PubMed DOI
McCoy M.K., Martinez T.N., Ruhn K.A., Szymkowski D.E., Smith C.G., Botterman B.R., Tansey K.E., Tansey M.G. Blocking Soluble Tumor Necrosis Factor Signaling with Dominant-Negative Tumor Necrosis Factor Inhibitor Attenuates Loss of Dopaminergic Neurons in Models of Parkinson’s Disease. J. Neurosci. 2006;26:9365–9375. doi: 10.1523/JNEUROSCI.1504-06.2006. PubMed DOI PMC
Tarrant J.M. Blood Cytokines as Biomarkers of In Vivo Toxicity in Preclinical Safety Assessment: Considerations for Their Use. Toxicol. Sci. 2010;117:4–16. doi: 10.1093/toxsci/kfq134. PubMed DOI PMC
Avril M., Benjamin M., Dols M.-M., Smith J.D. Interplay of Plasmodium falciparum and thrombin in brain endothelial barrier disruption. Sci. Rep. 2019;9:13142. doi: 10.1038/s41598-019-49530-1. PubMed DOI PMC
Pais T.F., Penha-Gonçalves C. Brain endothelium: The ‘innate immunity response hypothesis’ in cerebral malaria path-ogenesis. Front. Immunol. 2019;10:3100. doi: 10.3389/fimmu.2018.03100. PubMed DOI PMC
Sun A.X., Yuan Q., Tan S., Xiao Y., Wang D., Khoo A.T.T., Sani L., Tran H.-D., Kim P., Chiew Y.S., et al. Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells. Cell Rep. 2016;16:1942–1953. doi: 10.1016/j.celrep.2016.07.035. PubMed DOI
Deininger M.H., Kremsner P.G., Meyermann R., Schluesener H.J. Focal accumulation of cyclooxygenase-1 (COX-1) and COX-2 expressing cells in cerebral malaria. J. Neuroimmunol. 2000;106:198–205. doi: 10.1016/S0165-5728(00)00187-9. PubMed DOI
Ball H.J., MacDougall H., McGregor I.S., Hunt N.H. Cyclooxygenase-2 in the Pathogenesis of Murine Cerebral Malaria. J. Infect. Dis. 2004;189:751–758. doi: 10.1086/381503. PubMed DOI
Mohammadi E., Sadoughi F., Younesi S., Karimian A., Asemi Z., Farsad-Akhtar N., Jahanbakhshi F., Jamilian H., Yousefi B. The molecular mechanism of nuclear signaling for degradation of cytoplasmic DNA: Importance in DNA damage response and cancer. DNA Repair. 2021;103:103115. doi: 10.1016/j.dnarep.2021.103115. PubMed DOI
Ye Z., Xue A., Huang Y., Wu Q. Children with cyclic vomiting syndrome: Phenotypes, disease burden and mitochondrial DNA analysis. BMC Gastroenterol. 2018;18:104. doi: 10.1186/s12876-018-0836-5. PubMed DOI PMC
Tiihonen J., Koskuvi M., Lähteenvuo M., Virtanen P.L.J., Ojansuu I., Vaurio O., Gao Y., Hyötyläinen I., Puttonen K.A., Repo-Tiihonen E., et al. Neurobiological roots of psychopathy. Mol. Psychiatry. 2020;25:3432–3441. doi: 10.1038/s41380-019-0488-z. PubMed DOI PMC
Osmanagic-Myers S., Rus S., Wolfram M., Brunner D., Goldmann W.H., Bonakdar N., Fischer I., Reipert S., Zuzuarregui A., Walko G., et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. Development. 2015;142:e1.1. doi: 10.1242/dev.132993. PubMed DOI PMC
Suttitheptumrong A., Rawarak N., Reamtong O., Boonnak K., Pattanakitsakul S.-N. Plectin is Required for Trans-Endothelial Permeability: A Model of Plectin Dysfunction in Human Endothelial Cells After TNF-α Treatment and Dengue Virus Infection. Proteomics. 2018;18:e1800215. doi: 10.1002/pmic.201800215. PubMed DOI
Potokar M., Morita M., Wiche G., Jorgačevski J. The Diversity of Intermediate Filaments in Astrocytes. Cells. 2020;9:1604. doi: 10.3390/cells9071604. PubMed DOI PMC
Thierry A., Falilatou A., Covalic B., Elodie D., Mendinatou A., Didier A., Alphonse N., Joseph A. Epilepsy and Malaria in Children Aged 1 to 15 Years in Parakou in 2018: Case-Control Study. Child Neurol. Open. 2020;7:2329048X20954111. doi: 10.1177/2329048X20954111. PubMed DOI PMC
del Valle-Pérez B., Martínez V.G., Lacasa-Salavert C., Figueras A., Shapiro S.S., Takafuta T., Casanovas O., Capellà G., Ventura F., Viñals F. Filamin B Plays a Key Role in Vascular Endothelial Growth Factor-induced Endothelial Cell Motility through Its Interaction with Rac-1 and Vav-2. J. Biol. Chem. 2010;285:10748–10760. doi: 10.1074/jbc.M109.062984. PubMed DOI PMC
Kanters E., van Rijssel J., Hensbergen P.J., Hondius D., Mul F.P., Deelder A.M., Sonnenberg A., van Buul J.D., Hordijk P.L. Filamin B Mediates ICAM-1-driven Leukocyte Transendothelial Migration. J. Biol. Chem. 2008;283:31830–31839. doi: 10.1074/jbc.M804888200. PubMed DOI
Bandaru S., Zhou A.-X., Rouhi P., Zhang Y., Bergo M.O., Cao Y., Akyürek L.M. Targeting filamin B induces tumor growth and metastasis via enhanced activity of matrix metalloproteinase-9 and secretion of VEGF-A. Oncogenesis. 2014;3:e119. doi: 10.1038/oncsis.2014.33. PubMed DOI PMC
Schaefer A., Riet J.T., Ritz K., Hoogenboezem M., Anthony E.C., Mul F.P.J., de Vries C.J., Daemen M., Figdor C., Van Buul J., et al. Actin-binding proteins differentially regulate endothelial cell stiffness, ICAM-1 function and neutrophil transmigration. J. Cell Sci. 2014;127:4470–4482. doi: 10.1242/jcs.164814. PubMed DOI
Chen F., Liu H., Wu J., Zhao Y. miR-125a Suppresses TrxR1 Expression and Is Involved in H2O2-Induced Oxidative Stress in Endothelial Cells. J. Immunol. Res. 2018;2018:6140320. doi: 10.1155/2018/6140320. PubMed DOI PMC
Sakurai A., Yuasa K., Shoji Y., Himeno S., Tsujimoto M., Kunimoto M., Imura N., Hara S. Overexpression of thioredoxin reductase 1 regulates NF-kappa B activation. J. Cell. Physiol. 2004;198:22–30. doi: 10.1002/jcp.10377. PubMed DOI
Kudin A.P., Baron G., Zsurka G., Hampel K.G., Elger C.E., Grote A., Weber Y., Lerche H., Thiele H., Nürnberg P., et al. Homozygous mutation in TXNRD1 is associated with genetic generalized epilepsy. Free Radic. Biol. Med. 2017;106:270–277. doi: 10.1016/j.freeradbiomed.2017.02.040. PubMed DOI
Yu J.-T., Liu Y., Dong P., Cheng R.-E., Ke S.-X., Chen K.-Q., Wang J.-J., Shen Z.-S., Tang Q.-Y., Zhang Z. Up-regulation of antioxidative proteins TRX1, TXNL1 and TXNRD1 in the cortex of PTZ kindling seizure model mice. PLoS ONE. 2019;14:e0210670. doi: 10.1371/journal.pone.0210670. PubMed DOI PMC
Lennartz F., Smith C., Craig A.G., Higgins M.K. Structural insights into diverse modes of ICAM-1 binding by Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA. 2019;116:20124–20134. doi: 10.1073/pnas.1911900116. PubMed DOI PMC
Bhalla K., Chugh M., Mehrotra S., Rathore S., Tousif S., Dwivedi V.P., Prakash P., Samuchiwal S., Kumar S., Singh D., et al. Host ICAMs play a role in cell invasion by Mycobacterium tuberculosis and Plasmodium falciparum. Nat. Commun. 2015;6:6049. doi: 10.1038/ncomms7049. PubMed DOI
Gu P., Theiss A., Han J., Feagins L.A. Increased Cell Adhesion Molecules, PECAM-1, ICAM-3, or VCAM-1, Predict Increased Risk for Flare in Patients with Quiescent Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2017;51:522–527. doi: 10.1097/MCG.0000000000000618. PubMed DOI PMC
Mahamar A., Attaher O., Swihart B., Barry A., Diarra B.S., Kanoute M.B., Cisse K.B., Dembele A.B., Keita S., Gamain B., et al. Host factors that modify Plasmodium falciparum adhesion to endothelial receptors. Sci. Rep. 2017;7:13872. doi: 10.1038/s41598-017-14351-7. PubMed DOI PMC
Che J.N., Nmorsi O.P.G., Nkot B.P., Isaac C., Okonkwo B.C. Chemokines responses to Plasmodium falciparum malaria and co-infections among rural Cameroonians. Parasitol. Int. 2015;64:139–144. doi: 10.1016/j.parint.2014.11.003. PubMed DOI
Feng X., Ma B.-F., Liu B., Ding P., Wei J.-H., Cheng P., Li S.-Y., Chen D.-X., Sun Z.-J., Li Z. The Involvement of the Chemokine RANTES in Regulating Luminal Acidification in Rat Epididymis. Front. Immunol. 2020;11:583274. doi: 10.3389/fimmu.2020.583274. PubMed DOI PMC
Albuquerque S.S., Carret C., Grosso A.R., Tarun A.S., Peng X., Kappe S.H., Prudêncio M., Mota M.M. Host cell transcriptional profiling during malaria liver stage infection reveals a coordinated and sequential set of biological events. BMC Genom. 2009;10:270. doi: 10.1186/1471-2164-10-270. PubMed DOI PMC
Bando H., Pradipta A., Iwanaga S., Okamoto T., Okuzaki D., Tanaka S., Vega-Rodríguez J., Lee Y., Ma J.S., Sakaguchi N., et al. CXCR4 regulates Plasmodium development in mouse and human hepatocytes. J. Exp. Med. 2019;216:1733–1748. doi: 10.1084/jem.20182227. PubMed DOI PMC
Ioannidis L.J., Nie C.Q., Hansen D.S. The role of chemokines in severe malaria: More than meets the eye. Parasitology. 2014;141:602–613. doi: 10.1017/S0031182013001984. PubMed DOI PMC
Sercundes M.K., Ortolan L.S., Debone D., Soeiro-Pereira P.V., Gomes E., Aitken E.H., Neto A.C., Russo M., Lima M.R.D.I., Alvarez J.M., et al. Targeting Neutrophils to Prevent Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome in Mice. PLoS Pathog. 2016;12:e1006054. doi: 10.1371/journal.ppat.1006054. PubMed DOI PMC
Rodrigues D.S.A., Rodrigues D., Prestes E.B., de Souza Silva L., Pinheiro A.A.S., Ribeiro J.M.C., Dicko A., Duffy P.E., Fried M., Francischetti I.M.B., et al. CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes. bioRxiv. 2019;16:852574. doi: 10.1101/852574. PubMed DOI PMC
Dunst J., Kamena F., Matuschewski K. Cytokines and Chemokines in Cerebral Malaria Pathogenesis. Front. Cell. Infect. Microbiol. 2017;7:324. doi: 10.3389/fcimb.2017.00324. PubMed DOI PMC
Wangala B., Vovor A., Gantin R., Agbeko Y., Lechner C., Huang X., Soboslay P., Köhler C. Chemokine levels and parasite- and allergen-specific antibodyresponses in children and adults with severe or uncomplicated Plasmodium falciparum malaria. Eur. J. Microbiol. Immunol. 2015;5:131. doi: 10.1556/EuJMI-D-14-00041. PubMed DOI PMC
Abrams E.T., Brown H., Chensue S.W., Turner G.D.H., Tadesse E., Lema V.M., Molyneux M.E., Rochford R., Meshnick S.R., Rogerson S.J. Host Response to Malaria During Pregnancy: Placental Monocyte Recruitment Is Associated with Elevated β Chemokine Expression. J. Immunol. 2003;170:2759–2764. doi: 10.4049/jimmunol.170.5.2759. PubMed DOI
Hojo-Souza N.S., Pereira D.B., de Souza F.S.H., Mendes T.A.D.O., Cardoso M.S., Tada M.S., Zanini G.M., Bartholomeu D.C., Fujiwara R.T., Bueno L.L. On the cytokine/chemokine network during Plasmodium vivax malaria: New insights to understand the disease. Malar. J. 2017;16:42. doi: 10.1186/s12936-017-1683-5. PubMed DOI PMC
Raacke M., Kerr A., Dörpinghaus M., Brehmer J., Wu Y., Lorenzen S., Fink C., Jacobs T., Roeder T., Sellau J., et al. Altered Cytokine Response of Human Brain Endothelial Cells after Stimulation with Malaria Patient Plasma. Cells. 2021;10:1656. doi: 10.3390/cells10071656. PubMed DOI PMC
Chen Z., Haus J.M., Chen L., Wu S.C., Urao N., Koh T.J., Minshall R.D. CCL28-induced CCR10/eNOS Interaction in Angiogenesis and Skin Wound Healing. FASEB J. 2020;34:5838. doi: 10.1096/fj.201902060R. PubMed DOI PMC
Machado F.S., Desruisseaux M.S., Kennan R.P., Hetherington H.P., Wittner M., Weiss L.M., Lee S.C., Scherer P.E., Tsuji M., Tanowitz H.B., et al. Endothelin in a murine model of cerebral malaria. Exp. Biol. Med. 2017;231:1176–1181. PubMed
Freeman B.D., Martins Y.C., Akide-Ndunge O.B., Bruno F.P., Wang H., Tanowitz H.B., Spray D.C., Desruisseaux M.S. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria. PLoS Pathog. 2016;12:e1005477. doi: 10.1371/journal.ppat.1005477. PubMed DOI PMC
Martins Y.C., Freeman B.D., Ndunge O.B.A., Weiss L.M., Tanowitz H.B., Desruisseaux M.S. Endothelin-1 Treatment Induces an Experimental Cerebral Malaria-Like Syndrome in C57BL/6 Mice Infected with Plasmodium berghei NK65. Am. J. Pathol. 2016;186:2957–2969. doi: 10.1016/j.ajpath.2016.07.020. PubMed DOI PMC
Wenisch C., Wenisch H., Wilairatana P., Looareesuwan S., Vannaphan S., Wagner O., Graninger W., Schönthal E., Rumpold H. Big Endothelin in Patients with Complicated Plasmodium falciparum Malaria. J. Infect. Dis. 1996;173:1281–1284. doi: 10.1093/infdis/173.5.1281. PubMed DOI
Dietmann A., Lackner P., Helbok R., Spora K., Issifou S., Lell B., Reindl M., Kremsner P., Schmutzhard E. Opposed circulating plasma levels of endothelin-1 and C-type natriuretic peptide in children with Plasmodium falciparum malaria. Malar. J. 2008;7:253. doi: 10.1186/1475-2875-7-253. PubMed DOI PMC
Colborn J.M., Ylöstalo J.H., Koita O.A., Cissé O.H., Krogstad D.J. Human Gene Expression in Uncomplicated Plasmodium falciparum Malaria. J. Immunol. Res. 2015;2015:162639. doi: 10.1155/2015/162639. PubMed DOI PMC
Graham S.M., Chen J., Chung D.W., Barker K.R., Conroy A.L., Hawkes M.T., Namasopo S., Kain K.C., López J.A., Liles W.C. Endothelial activation, haemostasis and thrombosis biomarkers in Ugandan children with severe malaria participating in a clinical trial. Malar. J. 2016;15:56. doi: 10.1186/s12936-016-1106-z. PubMed DOI PMC
O’Donnell A.S., Fazavana J., O’Donnell J.S. The von Willebrand factor—ADAMTS-13 axis in malaria. Res. Pract. Thromb. Haemost. 2022;6:e12641. doi: 10.1002/rth2.12641. PubMed DOI PMC
Mbagwu S.I., Filgueira L. Differential Expression of CD31 and Von Willebrand Factor on Endothelial Cells in Different Regions of the Human Brain: Potential Implications for Cerebral Malaria Pathogenesis. Brain Sci. 2020;10:31. doi: 10.3390/brainsci10010031. PubMed DOI PMC
O’Regan N., Gegenbauer K., O’Sullivan J.M., Maleki S., Brophy T.M., Dalton N., Chion A., Fallon P.G., Grau G., Budde U., et al. A novel role for von Willebrand factor in the pathogenesis of experimental cerebral malaria. Blood. 2016;127:1192–1201. doi: 10.1182/blood-2015-07-654921. PubMed DOI PMC
Kraisin S., Martinod K., Desender L., Pareyn I., Verhenne S., Deckmyn H., Vanhoorelbeke K., Van den Steen P.E., De Meyer S.F. von Willebrand factor increases in experimental cerebral malaria but is not essential for late-stage patho-genesis in mice. J. Thromb. Haemost. 2020;18:2377–2390. doi: 10.1111/jth.14932. PubMed DOI
Hollestelle M.J., Donkor C., Mantey E.A., Chakravorty S.J., Craig A., Akoto A.O., O’Donnell J., van Mourik J.A., Bunn J. von Willebrand factor propeptide in malaria: Evidence of acute endothelial cell activation. Br. J. Haematol. 2006;133:562–569. doi: 10.1111/j.1365-2141.2006.06067.x. PubMed DOI
Cox P.R., Fowler V., Xu B., Sweatt J., Paylor R., Zoghbi H.Y. Mice lacking tropomodulin-2 show enhanced long-term potentiation, hyperactivity, and deficits in learning and memory. Mol. Cell. Neurosci. 2003;23:1–12. doi: 10.1016/S1044-7431(03)00025-3. PubMed DOI
Armah H.B., Wilson N.O., Sarfo B.Y., Powell M.D., Bond V.C., Anderson W., Adjei A.A., Gyasi R.K., Tettey Y., Wiredu E.K., et al. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar. J. 2007;6:147. doi: 10.1186/1475-2875-6-147. PubMed DOI PMC
Polimeni M., Prato M. Host matrix metalloproteinases in cerebral malaria: New kids on the block against blood–brain barrier integrity? Fluids Barriers CNS. 2014;11:1. doi: 10.1186/2045-8118-11-1. PubMed DOI PMC
Prato M., Giribaldi G. Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria. J. Trop. Med. 2011;2011:628435. doi: 10.1155/2011/628435. PubMed DOI PMC
Polimeni M., Valente E., Ulliers D., Opdenakker G., Van den Steen P.E., Giribaldi G., Prato M. Natural haemozoin induces expression and release of human monocyte tissue inhibitor of metallopro-teinase-1. PLoS ONE. 2013;8:e71468. doi: 10.1371/journal.pone.0071468. PubMed DOI PMC
Prato M., D’Alessandro S., Van den Steen P.E., Opdenakker G., Arese P., Taramelli D., Basilico N. Natural haemozoin modulates matrix metalloproteinases and induces morphological changes in human microvascular endothelium. Cell. Microbiol. 2011;13:1275–1285. doi: 10.1111/j.1462-5822.2011.01620.x. PubMed DOI
Mandala W.L., Msefula C.L., Gondwe E.N., Drayson M.T., Molyneux M.E., MacLennan C.A. Cytokine Profiles in Malawian Children Presenting with Uncomplicated Malaria, Severe Malarial Anemia, and Cerebral Malaria. Clin. Vaccine Immunol. 2017;24:e00533-16. doi: 10.1128/CVI.00533-16. PubMed DOI PMC
Bujarbaruah D., Kalita M.P., Baruah V., Basumatary T.K., Hazarika S., Begum R.H., Medhi S., Bose S. RANTES levels as a determinant of falciparum malaria severity or recovery. Parasite Immunol. 2017;39:e12452. doi: 10.1111/pim.12452. PubMed DOI
Ochiel D.O., Awandare G.A., Keller C.C., Hittner J.B., Kremsner P.G., Weinberg J.B., Perkins D.J. Differential Regulation of β-Chemokines in Children with Plasmodium falciparum Malaria. Infect. Immun. 2005;73:4190–4197. doi: 10.1128/IAI.73.7.4190-4197.2005. PubMed DOI PMC
Camp J.G., Badsha F., Florio M., Kanton S., Gerber T., Wilsch-Bräuninger M., Lewitus E., Sykes A., Hevers W., Lancaster M.A., et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl. Acad. Sci. USA. 2015;112:15672–15677. doi: 10.1073/pnas.1520760112. PubMed DOI PMC
Ciarpella F., Zamfir R.G., Campanelli A., Ren E., Pedrotti G., Bottani E., Borioli A., Caron D., Di Chio M., Dolci S., et al. Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity. iScience. 2021;24:103438. doi: 10.1016/j.isci.2021.103438. PubMed DOI PMC
Dezonne R.S., Sartore R.C., Nascimento J.M., Saia-Cereda V.M., Romão L.F., Alves-Leon S.V., de Souza J.M., Martins-De-Souza D., Rehen S.K., Gomes F.C.A. Derivation of Functional Human Astrocytes from Cerebral Organoids. Sci. Rep. 2017;7:srep45091. doi: 10.1038/srep45091. PubMed DOI PMC
Nascimento J.M., Saia-Cereda V.M., Sartore R.C., da Costa R.M., Schitine C.S., Freitas H.R., Murgu M., Reis R.A.D.M., Rehen S.K., Martins-De-Souza D. Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Front. Cell Dev. Biol. 2019;7:303. doi: 10.3389/fcell.2019.00303. PubMed DOI PMC
Park D., Xiang A.P., Mao F.F., Zhang L., Di C.-G., Liu X.-M., Shao Y., Ma B.-F., Lee J.-H., Ha K.-S., et al. Nestin Is Required for the Proper Self-Renewal of Neural Stem Cells. Stem Cells. 2010;28:2162–2171. doi: 10.1002/stem.541. PubMed DOI
Huang S., Zhang Z., Cao J., Yu Y., Pei G. Chimeric cerebral organoids reveal the essentials of neuronal and astrocytic APOE4 for Alzheimer’s tau pathology. Signal Transduct. Target. Ther. 2022;7:176. doi: 10.1038/s41392-022-01006-x. PubMed DOI PMC
Yakoub A.M. Cerebral organoids exhibit mature neurons and astrocytes and recapitulate electrophysiological activity of the human brain. Neural Regen. Res. 2019;14:757–761. doi: 10.4103/1673-5374.249283. PubMed DOI PMC
Renner M., Lancaster M.A., Bian S., Choi H., Ku T., Peer A., Chung K., Knoblich J.A. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 2017;36:1316–1329. doi: 10.15252/embj.201694700. PubMed DOI PMC
Glushakova O.Y., Glushakov A.A., Wijesinghe D.S., Valadka A.B., Hayes R.L., Glushakov A.V. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neuro-vascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ. 2017;3:87. doi: 10.4103/bc.bc_27_16. PubMed DOI PMC
Ramirez S., Mukherjee A., Sepulveda S., Becerra-Calixto A., Bravo-Vasquez N., Gherardelli C., Chavez M., Soto C. Modeling Traumatic Brain Injury in Human Cerebral Organoids. Cells. 2021;10:2683. doi: 10.3390/cells10102683. PubMed DOI PMC
An H.L., Kuo HCTang T.K. Modeling Human Primary Microcephaly With hiPSC-Derived Brain Organoids Carrying CPAP-E1235V Disease-Associated Mutant Protein. Front. Cell Dev. Biol. 2022;10:451. PubMed PMC
Hyland R.M., Brody S.L. Impact of Motile Ciliopathies on Human Development and Clinical Consequences in the Newborn. Cells. 2021;11:125. doi: 10.3390/cells11010125. PubMed DOI PMC
Ki S.M., Jeong H.S., Lee J.E. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front. Neurosci. 2021;15:736888. doi: 10.3389/fnins.2021.736888. PubMed DOI PMC
Lee J.E., Gleeson J.G. Cilia in the nervous system: Linking cilia function and neurodevelopmental disorders. Curr. Opin. Neurol. 2011;24:98–105. doi: 10.1097/WCO.0b013e3283444d05. PubMed DOI PMC
Ringers C., Olstad E.W., Jurisch-Yaksi N. The role of motile cilia in the development and physiology of the nervous system. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190156. doi: 10.1098/rstb.2019.0156. PubMed DOI PMC
Zhang W., Yang S.-L., Yang M., Herrlinger S., Shao Q., Collar J.L., Fierro E., Shi Y., Liu A., Lu H., et al. Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors. Nat. Commun. 2019;10:2612. doi: 10.1038/s41467-019-10497-2. PubMed DOI PMC