The Effect of Addition Potassium Permanganate on Bond Strength of Hot-Dip Galvanized Plain Bars with Cement Paste

. 2023 Mar 23 ; 16 (7) : . [epub] 20230323

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37048848

Grantová podpora
20-24234S Czech Science Foundation

In this paper, the effect of gradually increasing amounts of KMnO4 (10-4, 10-3, 10-2 mol·L-1) in cement paste on the bond strength of a plain hot-dip galvanized steel bar was evaluated. The open-circuit potential of HDG samples in cement paste with various additions of MnO4- was monitored in order to follow a transfer of zinc from activity to passivity. Furthermore, the influence of the addition of these anions on the physicochemical properties of normal-strength concrete or cement paste was evaluated by means of hydration heat measurements, X-ray diffraction analysis, and compressive strength. The effective concentration of MnO4- anions prevents the corrosion of the coating with hydrogen evolution and ensures that the bond strength is not reduced by their action, which was determined to be 10-3 mol·L-1. Lower additions of MnO4- anions (10-4 mol·L-1) are ineffective in this respect. On the other hand, higher additions of MnO4- anions (10-2 mol·L-1), although they ensure the corrosion of the coating in fresh concrete without hydrogen evolution, but affect the hydration process of the cement paste that was demonstrated by slight water separation.

Zobrazit více v PubMed

Pour-Ali S., Dehghanian C., Kosari A. Corrosion protection of the reinforcing steel in chloride-laden concrete environment through epoxy/polyaniline-camphorsulfonate nanocomposite coating. Corros. Sci. 2015;90:239–247. doi: 10.1016/j.corsci.2014.10.015. DOI

Sari M.G., Ramezanzadeh B. Epoxy composite coating corrosion protection properties reinforcement through the addition of hydroxyl-terminated hyperbranched polyamide non-covalently assembled graphene oxide platforms. Constr. Build. Mater. 2020;234:117421. doi: 10.1016/j.conbuildmat.2019.117421. DOI

Saravanan K., Sathiyanarayanan S., Muralidharan S., Seyd Azim S., Venkatachari G. Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment. Prog. Org. Coat. 2007;59:160–167. doi: 10.1016/j.porgcoat.2007.03.002. DOI

Ann K.Y., Ahn J.H., Ryou J.S. The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Constr. Build. Mater. 2009;23:239–245. doi: 10.1016/j.conbuildmat.2007.12.014. DOI

Glass G.K., Buenfeld N.R. The presentation of the chloride threshold level for corrosion of steel in concrete. Corros. Sci. 1997;39:1001–1013. doi: 10.1016/S0010-938X(97)00009-7. DOI

Yeomans S.R. Galvanized Steel Reinforcement in Concrete. Elsevier; Canberra, Australia: 2004.

Slater W.A., Richard F.E., Scofield G.G. Tests of Bond Resistance between Concrete and Steel. Government Printing Office; Washington, DC, USA: 1920.

Andrade C., Holst J.D., Nürnberger U., Whiteley J.D., Woodman N. Protection system for reinforcement (Chapter 2—Hot dip galvanizing) CEB Bull. D’Inf. 1992;211:9–15.

Poursaee A. Corrosion of Steel in Concrete Structures. Elsevier; Chippenham, UK: 2017.

Kouřil M., Stoulil J., Bystrianský J., Malá R., Novák P. Korozivzdorné oceli pro výztuže betonu. Koroze Ochr. Mater. 2002;46:62–67.

Yeomans S.R. Comparative Studies of Galvanized and Epoxy Coated Steel Reinforcement in Concrete. The University of New South Wales; Canberra, Australia: 1991. pp. 1–15. Research Report No. R103.

Cusens A., Yu Z. Pullout tests of epoxy-coated reinforcement in concrete. Cem. Concr. Compos. 1992;14:269–276. doi: 10.1016/0958-9465(92)90025-Q. DOI

Assaad J.J., Issa C.A. Bond strength of epoxy-coated bars in underwater concrete. Constr. Build. Mater. 2011;30:667–674. doi: 10.1016/j.conbuildmat.2011.12.047. DOI

Pokorný P., Kouřil M., Kučera V. Kinetics of zinc corrosion in concrete as a function of water and oxygen availability. Materials. 2019;12:2786. doi: 10.3390/ma12172786. PubMed DOI PMC

Sistonen E., Cwirzen A., Puttonen J. Corrosion mechanism of hot-dip galvanised reinforcement bar in cracked concrete. Corros. Sci. 2008;50:3416–3428. doi: 10.1016/j.corsci.2008.08.050. DOI

Bellezze T., Malavolta M., Quaranta A., Ruffini N., Roventi G. Corrosion behaviour in concrete of tree differently galvanized steel bars. Cem. Concr. Compos. 2006;28:246–255. doi: 10.1016/j.cemconcomp.2006.01.011. DOI

Andrade C., Macias A. Galvanized reinforcement in concrete. Surface Coatings—2. Elsevier Applied Science Publishers; London, UK: 1988. pp. 137–182.

Macías A., Andrade C. Corrosion of galvanized steel reinforcements in alkaline solutions. Part 2: SEM study and identification of corrosion products. Br. Corros. J. 1987;22:119–129. doi: 10.1179/000705987798271749. DOI

Blanco M.T., Macías A., Andrade C. SEM study of the corrosion products of galvanized reinforcements immersed in solutions in the pH range 12.6-13.6. Br. Corros. J. 1984;19:41–48. doi: 10.1179/000705984798273524. DOI

Pokorný P., Kostelecká M., Prodanovic N., Sýkora M. Effect of calcium hydroxyzincate on bond strength of hot-dip galvanized plain bars with normal strength concrete. Cem. Concr. Compos. 2022;130:104540. doi: 10.1016/j.cemconcomp.2022.104540. DOI

Wienerová K., Kouřil M., Stoulil J. Koroze a ochrana zinkované oceli v prostředí betonu. Koroze Ochr. Mater. 2010;54:148–154.

Gallego A. Comparison between concrete-black steel and concrete-galvanized steel bond via the pull-out test supplied with acoustic emission; Proceedings of the 26th European Conference on Acoustic Emission Testing; Berlin, Germany. 15–17 September 2004; pp. 761–767.

Guklid I., Hofsøy A. Hot dip galvanized steel reinforcement [Varmforsinket armeringsstål] Tek. Ukebl. 1965:37–43.

Sanchez M., Alonso M.C., Cecilio P., Montemor M.F., Andrade C. Electrochemical and analytical assessment of galvanized steel reinforcement pre-treated with Ce and La salts under alkaline media. Cem. Concr. Compos. 2006;28:256–266. doi: 10.1016/j.cemconcomp.2006.01.004. DOI

Figueira R.B., Silva C.J.R., Pereira E.V. Hybrid sol-gel coatings for corrosion protection on hot-dip galvanized steel in alkaline medium. Surf. Coat. Technol. 2015;265:191–204. doi: 10.1016/j.surfcoat.2015.01.034. DOI

Figueira R.B., Silva C.J.R., Pereira E.V. Hot-dip galvanized steel dip-coated with ureasilicate hybrid in simulated concrete pore solution: Assessment of coating morphology and corrosion protection efficiency. Prog. Org. Coat. 2015;88:245–255. doi: 10.1016/j.porgcoat.2015.07.008. DOI

Arenas M.A., Casado C., Nobel-Pujol V., Damborenea J. Influence of the conversion coating on the corrosion of galvanized steel. Cem. Concr. Compos. 2006;28:267–275. doi: 10.1016/j.cemconcomp.2006.01.010. DOI

Bowsher B. Corrosion Protection of Reinforcing Steels. IFSC; Lausanne, Switzerland: 2009. Technical report fib-Bulletin 49.

Figueria R.M., Pereira E.V., Silva C.J.R., Salta M.M. Corrosion protection of hot dip galvanized steel in mortar. Port. Electrochim. Acta. 2013;31:277–287. doi: 10.4152/pea.201305277. DOI

Mang R., Müller R.H. Untersuchungen zur Anwendbarkeit feuerverzinkter Bevehrung im Stahlbeton-bau. Stahl Eisen. 1982:889–894.

Costa M. Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit. Rev. Toxicol. 1997;27:431–442. doi: 10.3109/10408449709078442. PubMed DOI

DesMarias T.L., Costa M. Mechanism of chromium-induced toxicity. Curr. Opin. Toxicol. 2019;14:1–7. doi: 10.1016/j.cotox.2019.05.003. PubMed DOI PMC

Corderoy D.J.H., Herzog H. Corrosion of Reinforcing Steel in Concrete. ASTM; Philadelphia, PA, USA: 1978. Passivation of galvanized reinforcement by anhibitor anions; pp. 142–159.

Bellezze T., Timofeeva D., Giuliani G., Roventi G. Effect of soluble inhibitors on the corrosion behaviour of galvanized steel in fresh concrete. Cem. Con. Res. 2018;107:1–10. doi: 10.1016/j.cemconres.2018.02.008. DOI

Fayala I., Dhouibi L., Nóvoa X.R., Ben Ouezdou M. Effect of inhibitors on the corrosion of galvanized steel and on mortar properties. Cem. Concr. Compos. 2013;35:181–189. doi: 10.1016/j.cemconcomp.2012.08.014. DOI

Wang Y., Kong G., Che C., Zhang B. Inhibitive effect of sodium molybdate on the corrosion behavior of galvanized steel in simulated concrete pore solution. Constr. Build. Mater. 2018;162:383–392. doi: 10.1016/j.conbuildmat.2017.12.035. DOI

Wang Y., Kong G. Corrosion inhibition of galvanized steel by MnO4− ion as a soluble inhibitor in simulated fresh concrete environment. Constr. Build. Mater. 2020;257:119532. doi: 10.1016/j.conbuildmat.2020.119532. DOI

Wang Z., Liu L., Zhou J., Zhou C. Impacts of potassium permanganate (KMnO4) catalyst on properties of hydrogen peroxide (H2O2) foamed porous cement slurry. Constr. Build. Mater. 2016;111:72–76. doi: 10.1016/j.conbuildmat.2016.02.076. DOI

RILEM . RC6: Bond Test for Reinforcement Steel. 2: Pull-Out Test. E & FN SPON; Paris, France: 1983.

Standard Test Method for Comparing Concretes on the Basis of the Bond Developed with Reinforcing Steel. ASTM International; West Conshohocken, PA, USA: 1991.

Marder A.R. The metallurgy of zinc-coated steel. Prog. Mater. Sci. 2000;45:191–271. doi: 10.1016/S0079-6425(98)00006-1. DOI

Pokorný P., Pernicová R., Tej P., Kolísko J. Changes of bond strength properties of hot-dip galvanized plain bars with cement paste after 1 year of curing. Constr. Build. Mater. 2019;226:920–931. doi: 10.1016/j.conbuildmat.2019.07.147. DOI

Okamoto N.L., Kashioka D., Inomoto M., Inui H., Takebayashi H., Yamaguchi S. Compression deformability of Γ and ζ Fe-Zn intermetallics to mitigate detachment of brittle intermetallic coating of galvannealed steels. Scr. Mater. 2013;69:307–310. doi: 10.1016/j.scriptamat.2013.05.003. DOI

Sa-nguanmoo R., Nisaratanaporn E., Boonyongmaneerat Y. Hot-dip galvanization with pulse-electrodeposited nickel pre-coatings. Corros. Sci. 2011;53:122–126. doi: 10.1016/j.corsci.2010.09.031. DOI

Okamoto N.L., Yasuhara A., Inui H. Order-disorder structure of the δ1k phase in the Fe-Zn system determined by scanning transmission electron microscopy. Acta Mater. 2014;81:345–357. doi: 10.1016/j.actamat.2014.08.025. PubMed DOI PMC

Okamoto N.L., Tanaka K., Yasuhara A., Inui H. Structure refinement of the δ1p phase in the Fe-Zn system by single-crystal X-ray diffraction combined with scanning transmission electron microscopy. Acta Crystallogr. 2014;B70:275–282. PubMed PMC

Belin R., Tillard M., Monconduit L. Redetermination of the iron-zinc phase FeZn13. Acta Crystallogr. C. 2000;56:267–268. doi: 10.1107/S0108270199014997. PubMed DOI

Okamoto N.L., Inomoto M., Adachi H., Takebayashi H., Inui H. Micropillar compression deformation of single crystals of the intermetallic compound ζ-FeZn13. Acta Mater. 2014;65:229–239. doi: 10.1016/j.actamat.2013.10.065. DOI

Jordan C.E., Zuhr R., Marder A.R. Effect of phosphorous surface segregation on iron-zinc reaction kinetics during hot-dip galvanizing. Metall. Mater. Trans. A. 1997;28A:2695–2703. doi: 10.1007/s11661-997-0026-5. DOI

Maahn E., Sorensen B. The influence of microstructure on the corrosion properties of hot-dip galvanized reinforcement in concrete. Corrosion. 1986;42:187–196. doi: 10.5006/1.3585996. DOI

Short N.R., Zhou S., Dennis J.K. Electrochemical studies on the corrosion of a range of zinc alloy coated steel in alkaline solutions. Surf. Coat. Technol. 2014;240:63–69. doi: 10.1016/0257-8972(95)02428-X. DOI

Pokorný P., Vacek V., Prodanovic N., Zabloudil A., Fojt J., Johánek V. The influence of graded amount of potassium permanganate on corrosion of hot-dip galvanized steel in simulated concrete pore solutions. Materials. 2022;15:7864. PubMed PMC

Xie W., Li J., Li Y. Electrochemical corrosion behavior of carbon steel and hot dip galvanized steel in simulated concrete solution with defferent pH values. Mater. Sci. 2017;23:280–284.

Murakami K., Kanematsu H., Nakata K. Corrosion characteristics in concrete environment of hot dip galvanised steel and Zn alloy hot dip coated steel. Trans. IMF. 2009;87:23–27. doi: 10.1179/174591908X371177. DOI

Kurdowski W. Cement and Concrete Chemistry. Springer; London, UK: 2014.

Al Khalaf M.N., Page C.L. Steel/mortar interfaces: Microstructural features and mode of failure. Cem. Con. Res. 1979;9:197–207. doi: 10.1016/0008-8846(79)90026-7. DOI

Yadav A.P., Nishikata A., Tsuru T. Oxygen reduction mechanism on corroded zinc. J. Electroanal. Chem. 2005;585:142–149.

Monnier J., Burger E., Berger P., Neff D., Guillot I., Dillmann P. Localisation of oxygen reduction sites in the case of iron long term atmospheric corrosion. Corros. Sci. 2011;53:2468–2473. doi: 10.1016/j.corsci.2011.04.002. DOI

Chong K.Z., Shih T.S. Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution. Mat. Chem. Phys. 2003;80:191–200. doi: 10.1016/S0254-0584(02)00481-9. DOI

Umehara H., Takaya M., Kojima J. An investigation of the structure and corrosion resistance of permanganate conversion coatings on AZ91D magnesium alloy. Mater. Transac. 2001;42:1691–1699. doi: 10.2320/matertrans.42.1691. DOI

Pourbaix M., Franklin J.A. Potential-pH Diagrams: Atlas of Electrochemical Equilibria in Aqueous Solutions. CEBELCOR; Brussels, Belgium: Pergamon; New York, NY, USA: 1966.

Bishoff C.F., Fitz O.S., Burns J., Bauer M., Gentischer H., Birke K.P., Henning H.-M., Biro D. Revealing the local pH value changes of acidic aqueous zinc ion batteries with a manganese dioxide electrode during cycling. J. Electrochem. Soc. 2020;167:020545.

Rankin D.W.H. CRC handbook of chemistry and physics, 89th edition, edited by David R. Lide. Crystallogr. Rev. 2009;15:223–224. doi: 10.1080/08893110902764125. DOI

Štulík K., Vohlídal J., Julák A. Chemické a Analytické Tabulky. Grada Publishing; Prague, Czech Republic: 1999.

Sarker P.K. Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete. Mater. Struct. 2011;44:1021–1030.

Dancygier A.N., Katz A., Wexler U. Bond between deformed reinforcement and normal and high-strength concrete with and without fibers. Mater. Struct. 2010;43:839–856. doi: 10.1617/s11527-009-9551-6. DOI

Arliguie G., Grandet J., Ollivier J.P. Orientation de la portlandite dans les mortiers et bétons de ciment Portland: Influence de la nature et de l’état de surface du support de cristallisation. Mater. Struct. 1985;18:263–267. doi: 10.1007/BF02472914. DOI

Li Z., Peng H., Liu Y., Wang J., Su X. Effect of Surface Micromorphology and Roughness of Iron Ingot on Microstructures of Hot-Dip Galvanized Coating. Trans. Indian Inst. Met. 2022;75:397–406.

Bakhtiari A. The relationship between surface treatments and corrosion resistance of hot-dip galvanized steel. Assoc. Metall. Eng. Serb. 2014;20:165–170. doi: 10.5937/metmateng1403165B. DOI

Kumar M., Singh S.K., Singh N.P. Heat evolution during the hydration of Porland cement in the presence of fly ash, calcium hydroxide and super plasticizer. Thermochim. Acta. 2012;548:27–32. doi: 10.1016/j.tca.2012.08.028. DOI

Silva W.R., Šmilauer V., Štemberk P. Upscaling semi-adiabatic measurements for simulating temperature evolution of mass concrete structures. Mater. Struct. 2015;48:1031–1041. doi: 10.1617/s11527-013-0213-3. DOI

Langan B.W., Weng K., Ward M.A. Effect of silica fume and fly ash on heat of hydration of Porlnad cement. Cem. Concr. Res. 2002;32:1045–1051. doi: 10.1016/S0008-8846(02)00742-1. DOI

Ballim Y., Graham P.C. Early-age heat-evolution of clinker cements in relation to microstructure and composition: Implications for temperature development in large concrete elements. Cem. Concr. Compos. 2004;26:417–426. doi: 10.1016/S0958-9465(03)00064-7. DOI

Thomas N.L., Birchall J.D. The retarding action of sugars on cement hydration. Cem. Concr. Res. 1983;13:830–842. doi: 10.1016/0008-8846(83)90084-4. DOI

Young J.F. A review of the mechanisms of set-retardation in portland cement pastes containing organic admixtures. Cem. Concr. Res. 1972;2:415–433.

Sowoidnich T., Rachowski T., Rößler C., Völkel A., Ludwig H.-M. Calcium complexation and cluster formation as principal modes of action of polymers used as superplasticizer in cement systems. Cem. Concr. Res. 2015;73:42–50.

Li P., Jiang Z., An X., Maekawa K., Du S. Time-dependent retardation effect of epoxy latexes on cement hydration: Experiments and multi-component hydration model. Constr. Build. Mater. 2022;320:126282.

Lieber W. Influence of zinc oxide on the setting and hardening of Porland cement. Zem. Kalk Gips. 1967;20:91–95.

Lieber W. The influence of lead and zinc compounds on the hydration of Portland cement; Proceedings of the 5th International Symposium on the Chemistry of Cement; Tokyo, Japan. 7–11 October 1968; pp. 444–454.

Olmo I.F., Chacon E., Irabien A. Influence of lead, zinc, iron (III) and chromium (III) oxides on the setting time and strength development of Portland cement. Cem. Concr. Res. 2001;31:1213–1219. doi: 10.1016/S0008-8846(01)00545-2. DOI

Asavapisit S., Fowler G., Cheeseman C.R. Solution chemistry during cement hydration in the presence of metal hydroxide wastes. Cem. Concr. Res. 1997;27:1249–1260. doi: 10.1016/S0008-8846(97)00109-9. DOI

Hill J., Sharp J.H. The hydration products of Portland cement in the presence of tin(II) chloride. Cem. Concr. Res. 2003;33:121–124. doi: 10.1016/S0008-8846(02)00936-5. DOI

Testing Fresh Concrete—Part 2: Slump Test. European Committee for Standardization; Brussels, Belgium: 2019.

Concrete—Specification, Performance, Production and Conformity. European Committee for Standardization; Brussels, Belgium: 2021.

Josserand L., Coussy O., Larrard F. Bleeding of concrete as an ageing consolidation process. Cem. Concr. Res. 2006;36:1603–1608. doi: 10.1016/j.cemconres.2004.10.006. DOI

Topçu I.B., Elgün V.B. Influence of concrete properties on bleeding and evaporation. Cem. Concr. Res. 2004;34:275–281. doi: 10.1016/j.cemconres.2003.07.004. DOI

Dong W., Li W., Guo Y., He X., Sheng D. Effect of silica fume on physicochemical properties and piezoresistivity of intelligent carbon black-cementitious composites. Constr. Build. Mater. 2020;259:120399.

Koenders E.A.B., Pepe M., Martinelli E. Compressive strength and hydration processes of concrete with recycled aggregates. Cem. Concr. Res. 2014;56:203–212.

Lothenbach B., Winnefeld F., Alder C., Wieland E., Lunk P. Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cem. Concr. Res. 2007;37:483–491.

Li P., Li W., Sun Z., Shen L., Sheng D. Development of sustainable concrete incorporating seawater: A critical review on cement hydration, microstructure and mechanical strength. Cem. Concr. Compos. 2021;121:104100.

Bentz D.P. Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations. Cem. Concr. Res. 2006;36:238–244.

Beddaa H., Fraj A.B., Lavergne F., Torrenti J.-M. Effect of potassium humate as humic substance from river sediments on the rheology, the hydration and the strength development of a cement paste. Cem. Concr. Compos. 2019;104:103400.

Singh N.B., Singh S.P., Sarvehi R. Effect of phenols on the hydration of Portland cement. Adv. Cem. Res. 1989;2:43–47.

Zhang H., Feng P., Li L., Wang W. Effects of starch-type polysaccharide on cement hydration and its mechanism. Thermochim. Acta. 2019;678:178307.

Singh S.B., Munjal P., Thammishetti N. Role of water/cement ratio on strength development of cement mortar. J. Build. Eng. 2015;4:94–100.

Yaprak H., Karaci A., Demir I. Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks. Neural Comput. Appl. 2013;22:133–141.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace