Regioselective Cyclic Iminium Formation of Ugi Advanced Intermediates: Rapid Access to 3,4-Dihydropyrazin-2(1H)-ones and Other Diverse Nitrogen-Containing Heterocycles

. 2023 Mar 29 ; 28 (7) : . [epub] 20230329

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37049824

Herein, advanced intermediates were synthesized through Ugi four-component reactions of isocyanides, aldehydes, masked amino aldehyde, and carboxylic acids, including N-protected amino acids. The presence of a masked aldehyde enabled acid-mediated deprotection and subsequent cyclization via the carbonyl carbon and the amide nitrogen. Utilizing N-protected amino acid as a carboxylic acid component, Ugi intermediates could be cyclized from two possible directions to target 3,4-dihydropyrazin-2(1H)-ones. Cyclization to the amino terminus (westbound) and to the carboxyl terminus (eastbound) was demonstrated. Deliberate selection of building blocks drove the reaction regioselectively and yielded diverse heterocycles containing a 3,4-dihydropyrazin-2(1H)-one core, pyrazin-2(1H)-one, and piperazin-2-one, as well as a tricyclic framework with a 3D architecture, 2,3-dihydro-2,6-methanobenzo[h][1,3,6]triazonine-4,7(1H,5H)-dione, from Ugi adducts under mild reaction conditions. The latter bridged heterocycle was achieved diastereoselectively. The reported chemistry represents diversity-oriented synthesis. One common Ugi advanced intermediate was, without isolation, rapidly transformed into various nitrogen-containing heterocycles.

Zobrazit více v PubMed

Weber L. The Application of Multi-Component Reactions in Drug Discovery. Curr. Med. Chem. 2003;9:2085–2093. doi: 10.2174/0929867023368719. PubMed DOI

Hulme C., Gore V. “Multi-component Reactions: Emerging Chemistry in Drug Discovery” ‘From Xylocain to Crixivan’. Curr. Med. Chem. 2003;10:51–80. doi: 10.2174/0929867033368600. PubMed DOI

Cankařová N., Krchňák V. Isocyanide Multicomponent Reactions on Solid Phase: State of the Art and Future Application. Int. J. Mol. Sci. 2020;21:9160. doi: 10.3390/ijms21239160. PubMed DOI PMC

Li Petri G., Di Martino S., De Rosa M. Peptidomimetics: An Overview of Recent Medicinal Chemistry Efforts toward the Discovery of Novel Small Molecule Inhibitors. J. Med. Chem. 2022;65:7438–7475. doi: 10.1021/acs.jmedchem.2c00123. PubMed DOI

Smyslová P., Kisseljova K., Krchňák V. Base-Mediated Intramolecular C- and N-Arylation of N,N-Disubstituted 2-Nitrobenzenesulfonamides: Advanced Intermediates for the Synthesis of Diverse Nitrogenous Heterocycles. ACS Comb. Sci. 2014;16:500–505. doi: 10.1021/co5000739. PubMed DOI

Zoghroban H.S., El-Kowrany S.I., Aboul Asaad I.A., El Maghraby G.M., El-Nouby K.A., Abd Elazeem M.A. Niosomes for enhanced activity of praziquantel against Schistosoma mansoni: In vivo and in vitro evaluation. Parasit. Res. 2019;118:219–234. doi: 10.1007/s00436-018-6132-z. PubMed DOI

Poullennec K.G., Romo D. Enantioselective Total Synthesis of (+)-Dibromophakellstatin. J. Am. Chem. Soc. 2003;125:6344–6345. doi: 10.1021/ja034575i. PubMed DOI

Mason C.K., McFarlane S., Johnston P.G., Crowe P., Erwin P.J., Domostoj M.M., Campbell F.C., Manaviazar S., Hale K.J., El-Tanani M. Agelastatin A: A novel inhibitor of osteopontin-mediated adhesion, invasion, and colony formation. Mol. Cancer Ther. 2008;7:548–558. doi: 10.1158/1535-7163.MCT-07-2251. PubMed DOI

Gunasekera S.P., McCarthy P.J., Kelly-Borges M. Hamacanthins A and B, New Antifungal Bis Indole Alkaloids from the Deep-Water Marine Sponge, Hamacantha Sp. J. Nat. Prod. 1994;57:1437–1441. doi: 10.1021/np50112a014. PubMed DOI

Miller M.J. Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogs. Chem. Rev. 1989;89:1563–1579. doi: 10.1021/cr00097a011. DOI

Khattak S.U., Lutfullah G., Iqbal Z., Ahmad J., Rehman I.U., Shi Y., Ikram S. Aspergillus flavus originated pure compound as a potential antibacterial. BMC Microbiolog. 2021;21:322. doi: 10.1186/s12866-021-02371-3. PubMed DOI PMC

Longley R.E., Beach V., Isbrucker R.A., Wright A.E. Use of Imidazole and Indole Compounds as Inhibitors of Nitric Oxide Synthase. 6087363. Patent. 2000 November 7;

Thorns V., Hansen L., Masliah E. nNOS Expressing Neurons in the Entorhinal Cortex and Hippocampus Are Affected in Patients with Alzheimer’s Disease. Exp. Neurol. 1998;150:14–20. doi: 10.1006/exnr.1997.6751. PubMed DOI

Molina J.A., Jiménez-Jiménez F.J., Ortí-Pareja M., Navarro J.A. The Role of Nitric Oxide in Neurodegeneration. Drugs Aging. 1998;12:251–259. doi: 10.2165/00002512-199812040-00001. PubMed DOI

Garg N.K., Sarpong R., Stoltz B.M. The First Total Synthesis of Dragmacidin D. J. Am. Chem. Soc. 2002;124:13179–13184. doi: 10.1021/ja027822b. PubMed DOI

La Venia A., Lemrová B., Krchňák V. Regioselective Incorporation of Backbone Constraints Compatible with Traditional Solid-Phase Peptide Synthesis. ACS Comb. Sci. 2013;15:59–72. doi: 10.1021/co300125m. PubMed DOI

Vaňková B., Brulíková L., Wu B., Krchňák V. Synthesis of Piperazinones, Piperazines, Tetrahydropyrazines, and Dihydropyrazinones from Polymer-Supported Acyclic Intermediates via N-Alkyl- and N-Acyliminiums. Eur. J. Org. Chem. 2012;2012:5075–5084. doi: 10.1002/ejoc.201200591. DOI

Lee S.C., Park S.B. Practical Solid-Phase Parallel Synthesis of D5-2-Oxopiperazines via N-Acyliminium Ion Cyclization. J. Comb. Chem. 2007;9:828–835. doi: 10.1021/cc0700492. PubMed DOI

Lenci E., Innocenti R., Menchi G., Faggi C., Trabocchi A. Two-step one-pot synthesis of dihydropyrazinones as Xaa-Ser dipeptide isosteres through morpholine acetal rearrangement. Org. Biomol. Chem. 2015;13:7013–7019. doi: 10.1039/C5OB00783F. PubMed DOI

Broggini G., Galli S., Rigamonti M., Sottocornola S., Zecchi G. Entry to nitrogen-containing heterocycles by based-promoted heterocyclization on allenylamides of L-α-aminoacids. Tetrahedron Lett. 2009;50:1447–1449. doi: 10.1016/j.tetlet.2009.01.074. DOI

Dömling A., Ugi I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. 2000;39:3168–3210. doi: 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U. PubMed DOI

Dömling A., Wang W., Wang K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012;112:3083–3135. doi: 10.1021/cr100233r. PubMed DOI PMC

Lee D., Sello J.K., Schreiber S.L. Pairwise Use of Complexity-Generating Reactions in Diversity-Oriented Organic Synthesis. Org. Lett. 2000;2:709–712. doi: 10.1021/ol005574n. PubMed DOI

Cheng J.F., Chen M., Arrhenius T., Nadzan A. A convenient solution and solid-phase synthesis of D5-2-oxopiperazines via N-acyliminium ions cyclization. Tetrahedron Lett. 2002;43:6293–6295. doi: 10.1016/S0040-4039(02)01403-X. DOI

Azuaje J., El Maatougui A., Pérez-Rubio J.M., Coelho A., Fernández F., Sotelo E. Multicomponent Assembly of Diverse Pyrazin-2(1H)-one Chemotypes. J. Org. Chem. 2013;78:4402–4409. doi: 10.1021/jo4003163. PubMed DOI

Zoll A.J., Molas J.C., Mercado B.Q., Ellman J.A. Imine Directed Cp*RhIII-Catalyzed N-H Functionalization and Annulation with Amino Amides, Aldehydes, and Diazo Compounds. Angew. Chem. Int. Ed. 2023;62:e202210822. doi: 10.1002/anie.202210822. PubMed DOI PMC

Singh S.P., Tripathi S., Yadav A., Kant R., Srivastava H.K., Srivastava A.K. Synthesis of β- and γ-lactam fused dihydropyrazinones from Ugi adducts via a sequential ring construction strategy. Chem. Commun. 2020;56:12789–12792. doi: 10.1039/D0CC04415F. PubMed DOI

Singh S.P., Kumar A., Kant R., Srivastava A.K. Regioselective Synthesis of Functionalized Pyrrolo[1,2-a]pyrazine-3,6(2H,4H)-diones via Tandem Post-Ugi Cyclization and Gold(I)-Catalyzed Annulation. J. Org. Chem. 2022;87:12799–12815. doi: 10.1021/acs.joc.2c01404. PubMed DOI

Icelo-Ávila E., Amador-Sánchez Y.A., Polindara-García L.A., Miranda L.D. Synthesis of 6-methyl-3,4-dihydropyrazinones using an Ugi 4-CR/allenamide cycloisomerization protocol. Org. Biomol. Chem. 2017;15:360–372. doi: 10.1039/C6OB02266A. PubMed DOI

Amador-Sánchez Y.A., Hernández-Vázquez E., González-Mojica N., Ramírez-Apan M.T., Miranda L.D. Diversity-oriented synthesis and cytotoxic screening of fused dihydropyrazin-2(1H)-ones through a Ugi 4-CR/deprotection/Heck sequence. Tetrahedron. 2020;76:131383. doi: 10.1016/j.tet.2020.131383. DOI

Schreiber S.L. Target-Oriented and Diversity-Oriented Organic Synthesis in Drug Discovery. Science. 2000;287:1964–1969. doi: 10.1126/science.287.5460.1964. PubMed DOI

Burke M.D., Schreiber S.L. A Planning Strategy for Diversity-Oriented Synthesis. Angew. Chem. Int. Ed. 2004;43:46–58. doi: 10.1002/anie.200300626. PubMed DOI

Galloway W.R.J.D., Isidro-Llobet A., Spring D.R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 2010;1:80. doi: 10.1038/ncomms1081. PubMed DOI

Vojkovský T., Weichsel A., Pátek M. Solid-Phase Synthesis of Heterocycles Containing an 1-Acyl-3-oxopiperazine Skeleton. J. Org. Chem. 1998;63:3162–3163. doi: 10.1021/jo980203u. DOI

Royer J., Bonin M., Micouin L. Chiral Heterocycles by Iminium Ion Cyclization. Chem. Rev. 2004;104:2311–2352. doi: 10.1021/cr020083x. PubMed DOI

Wu P., Nielsen T.E. Scaffold Diversity from N-Acyliminium Ions. Chem. Rev. 2017;117:7811–7856. doi: 10.1021/acs.chemrev.6b00806. PubMed DOI

Cankařová N., Krchňák V. Polymer-Supported Stereoselective Synthesis of Benzimidazolinopiperazinones. J. Org. Chem. 2012;77:5687–5695. doi: 10.1021/jo300836c. PubMed DOI

Cankařová N., La Venia A., Krchňák V. Polymer-Supported Stereoselective Synthesis of Tetrahydrobenzopyrazino-thiadiazinone Dioxides via N-Sulfonyl Iminiums. ACS Comb. Sci. 2014;16:293–302. doi: 10.1021/co5000163. PubMed DOI

Cankařová N., La Venia A., Krajčovičová S., Krchňák V. Configuration-Dependent Medium-Sized Ring Formation: Chiral Molecular Framework with Three-Dimensional Architecture. J. Org. Chem. 2019;84:636–644. doi: 10.1021/acs.joc.8b02465. PubMed DOI

Ventosa-Andrés P., Hradilová L., Krchňák V. Privileged Structures as Peptide Backbone Constraints: Polymer-Supported Stereoselective Synthesis of Benzimidazolinopiperazinone Peptides. ACS Comb. Sci. 2014;16:359–366. doi: 10.1021/co500023k. PubMed DOI

Ventosa-Andrés P., Barea Ripoll C.A., La-Venia A., Krchňák V. Solid-phase synthesis of fused 1,4-diazepanone peptidomimetics via tandem N-iminium ion cyclization-nucleophilic addition. Tetrahedron Lett. 2015;56:5424–5428. doi: 10.1016/j.tetlet.2015.08.015. DOI

Schütznerová E., Oliver A.G., Zajíček J., Krchňák V. Polymer-Supported Stereoselective Synthesis of (1S,5S)-6-Oxa-3,8-diazabicyclo[3.2.1]octanes. Eur. J. Org. Chem. 2013;2013:3158–3165. doi: 10.1002/ejoc.201300093. DOI

La Venia A., Ventosa-Andrés P., Hradilová L., Krchňák V. From Amino Acids to Nature-Inspired Molecular Scaffolds: Incorporation of Medium-Sized Bridged Heterocycles into a Peptide Backbone. J. Org. Chem. 2014;79:10378–10389. doi: 10.1021/jo501983j. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...