A Fully Differential Analog Front-End for Signal Processing from EMG Sensor in 28 nm FDSOI Technology
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37050482
PubMed Central
PMC10098806
DOI
10.3390/s23073422
PII: s23073422
Knihovny.cz E-zdroje
- Klíčová slova
- active ground circuit, common-mode rejection ratio (CMRR), driven-right-leg circuit, electromyography (EMG), fully depleted silicon on insulator (FDSOI), fully differential difference amplifier (FDDA),
- Publikační typ
- časopisecké články MeSH
This paper presents a novel analog front-end for EMG sensor signal processing powered by 1 V. Such a low supply voltage requires specific design steps enabled using the 28 nm fully depleted silicon on insulator (FDSOI) technology from STMicroelectronics. An active ground circuit is implemented to keep the input common-mode voltage close to the analog ground and to minimize external interference. The amplifier circuit comprises an input instrumentation amplifier (INA) and a programmable-gain amplifier (PGA). Both are implemented in a fully differential topology. The actual performance of the circuit is analyzed using the corner and Monte Carlo analyses that comprise fifth-hundred samples for the global and local process variations. The proposed circuit achieves a high common-mode rejection ratio (CMRR) of 105.5 dB and a high input impedance of 11 GΩ with a chip area of 0.09 mm2.
Zobrazit více v PubMed
Cardes F., Baladari N., Lee J., Hierlemann A. A Low-Power Opamp-Less Second-Order Delta-Sigma Modulator for Bioelectrical Signals in 0.18 µm CMOS. Sensors. 2021;21:6456. doi: 10.3390/s21196456. PubMed DOI PMC
Kledrowetz V., Fujcik L., Prokop R., Haze J. A 1 V 92 dB SNDR 10 kHz Bandwidth Second-Order Asynchronous Delta-Sigma Modulator for Biomedical Signal Processing. Sensors. 2020;20:4137. doi: 10.3390/s20154137. PubMed DOI PMC
Boni A., Giuffredi L., Pietrini G., Ronchi M., Caselli M. A Low-Power Sigma-Delta Modulator for Healthcare and Medical Diagnostic Applications. IEEE Trans. Circuits Syst. Regul. Pap. 2022;69:207–219. doi: 10.1109/TCSI.2021.3112342. DOI
Kledrowetz V., Prokop R., Fujcik L., Pavlik M., Haze J. Low-power ASIC suitable for miniaturized wireless EMG systems. J. Electr.-Eng.-Elektrotechnicky Cas. 2019;70:393–399. doi: 10.2478/jee-2019-0071. DOI
Ishak A.J., Ahmad S.A., Soh A.C., Naraina N.A., Jusoh R.M.R., Chikamune W. Design of a wireless surface EMG acquisition system; Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP); Auckland, New Zealand. 21–23 November 2017; pp. 1–6. DOI
Kolar R. Lekarska Diagnosticka Technika. Brno University of Technology; Brno, Czech Republic: 2014.
Zhao Y., Shang Z., Lian Y. A 2.55 NEF 76 dB CMRR DC-Coupled Fully Differential Difference Amplifier Based Analog Front End for Wearable Biomedical Sensors. IEEE Trans. Biomed. Circuits Syst. 2019;13:918–926. doi: 10.1109/TBCAS.2019.2924416. PubMed DOI
Vafaei M., Parhizgar A., Abiri E., Salehi M.R. A low power and ultra-high input impedance analog front end based on fully differential difference inverter-based amplifier for biomedical applications. AEU Int. J. Electron. Commun. 2021;142:154005. doi: 10.1016/j.aeue.2021.154005. DOI
Lee J., Lee G.H., Kim H., Cho S. An Ultra-High Input Impedance Analog Front End Using Self-Calibrated Positive Feedback. IEEE J. Solid-State Circuits. 2018;53:2252–2262. doi: 10.1109/JSSC.2018.2831231. DOI
Avoli M., Centurelli F., Monsurrò P., Scotti G., Trifiletti A. Low power DDA-based instrumentation amplifier for neural recording applications in 65 nm CMOS. AEU Int. J. Electron. Commun. 2018;92:30–35. doi: 10.1016/j.aeue.2018.05.014. DOI
Zhang J., Chan S.C., Wang L. A 1.8 µW area-efficient bio-potential amplifier with 90 dB DC offset suppression; Proceedings of the 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS); College Station, TX, USA. 3–6 August 2014; pp. 286–289. DOI
Arbet D., Nagy G., Kovác M., Stopjaková V. Fully Differential Difference Amplifier for Low-Noise Applications; Proceedings of the 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems; Belgrade, Serbia. 22–24 April 2015; pp. 57–62. DOI
Khateb F., Kulej T., Kumngern M., Arbet D., Jaikla W. A 0.5-V 95-dB rail-to-rail DDA for biosignal processing. AEU Int. J. Electron. Commun. 2022;145:154098. doi: 10.1016/j.aeue.2021.154098. DOI
Prutchi D., Norris M. Design and Development of Medical Electronic Instrumentation: A Practical Perspective of the Design, Construction, and Test of Medical Devices. John Wiley & Sons; Hoboken, NJ, USA: 2005.
Cathelin A. Fully Depleted Silicon on Insulator Devices CMOS: The 28-nm Node Is the Perfect Technology for Analog, RF, mmW, and Mixed-Signal System-on-Chip Integration. IEEE Solid-State Circuits Mag. 2017;9:18–26. doi: 10.1109/MSSC.2017.2745738. DOI
Tu C.C., Lin T.H. Measurement and parameter characterization of pseudo-resistor based CCIA for biomedical applications; Proceedings of the 2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014); Chung Li, Taiwan. 11–14 April 2014; pp. 1–4. DOI
AbuShawish I.Y., Mahmoud S.A. CMOS Bio-medical Amplifier based on Tera-Ohm Pseudo-resistor for Bio-detection System; Proceedings of the 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD); Monastir, Tunisia. 22–25 March 2021; pp. 403–408. DOI
Zhang S., Zhou X., Li Q. A Voltage Swing Robust Pseudo-Resistor Structure for Biomedical Front-end Amplifier; Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS); Chengdu, China. 26–30 October 2018; pp. 61–64. DOI
Nasserian M., Peiravi A., Moradi F. A fully-integrated 16-channel EEG readout front-end for neural recording applications. AEU Int. J. Electron. Commun. 2018;94:109–121. doi: 10.1016/j.aeue.2018.06.045. DOI
Cherry J.A., Snelgrove W.M. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits. Kluwer Academic Publishers; Boston, MA, USA: 2002.
Bronzino J. The Biomedical Engineering Handbook 1. Springer; Berlin/Heidelberg, Germany: 2000. (Electrical Engineering Handbook Series).
Roland T., Wimberger K., Amsuess S., Russold M.F., Baumgartner W. An Insulated Flexible Sensor for Stable Electromyography Detection: Application to Prosthesis Control. Sensors. 2019;19:961. doi: 10.3390/s19040961. PubMed DOI PMC
Kose S., Salman E., Friedman E.G. Shielding Methodologies in the Presence of Power/Ground Noise. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011;19:1458–1468. doi: 10.1109/TVLSI.2010.2054119. DOI
Winter B.B., Webster J.G. Driven-right-leg circuit design. IEEE Trans. Biomed. Eng. 1983;BME-30:62–66. doi: 10.1109/TBME.1983.325168. PubMed DOI
Gray P.R., Hurst P.J., Lewis S.H., Meyer R.G. Analysis and Design of Analog Integrated Circuits. 5th ed. Wiley; Hoboken, NJ, USA: 2009.
Wang W.S., Wu Z.C., Huang H.Y., Luo C.H. Low-Power Instrumental Amplifier for Portable ECG; Proceedings of the 2009 IEEE Circuits and Systems International Conference on Testing and Diagnosis; Chengdu, China. 28–29 April 2009; pp. 1–4. DOI
Yan L., Bae J. Challenges of Physiological Signal Measurements Using Electrodes: Fudamentals to Understand the Instrumentation. IEEE Solid-State Circuits Mag. 2017;9:90–97. doi: 10.1109/MSSC.2017.2745860. DOI
Lee S., Kruse J. Biopotential electrode sensors in ECG/EEG/EMG systems. Analog Devices. 2008;200:1–2.
Burke M., Gleeson D. A micropower dry-electrode ECG preamplifier. IEEE Trans. Biomed. Eng. 2000;47:155–162. doi: 10.1109/10.821734. PubMed DOI
Sansen W. Analog Design Essentials. Springer; Berlin/Heidelberg, Germany: 2006. Number sv. 1 in Analog Design Essentials.
Surkanti P.R., Furth P.M. Converting a Three-Stage Pseudoclass-AB Amplifier to a True-Class-AB Amplifier. IEEE Trans. Circuits Syst. II Express Briefs. 2012;59:229–233. doi: 10.1109/TCSII.2012.2188462. DOI
Albulbul A. Evaluating major electrode types for idle biological signal measurements for modern medical technology. Bioengineering. 2016;3:20. doi: 10.3390/bioengineering3030020. PubMed DOI PMC
Goldberger A.L., Amaral L.A.N., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.K., Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation. 2000;101:e215–e220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI
Rezaee-Dehsorkh H., Ravanshad N., Lotfi R., Mafinezhad K., Sodagar A.M. Analysis and Design of Tunable Amplifiers for Implantable Neural Recording Applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 2011;1:546–556. doi: 10.1109/JETCAS.2011.2174492. DOI
Bagheri A., Salam M.T., Perez Velazquez J.L., Genov R. Low-Frequency Noise and Offset Rejection in DC-Coupled Neural Amplifiers: A Review and Digitally-Assisted Design Tutorial. IEEE Trans. Biomed. Circuits Syst. 2017;11:161–176. doi: 10.1109/TBCAS.2016.2539518. PubMed DOI
Majidzadeh V., Schmid A., Leblebici Y. Energy Efficient Low-Noise Neural Recording Amplifier With Enhanced Noise Efficiency Factor. IEEE Trans. Biomed. Circuits Syst. 2011;5:262–271. doi: 10.1109/TBCAS.2010.2078815. PubMed DOI
Chen M., Chun H.S., Castro I.D., Torfs T., Lin Q., van Hoof C., Wang G., Lian Y., van Helleputte N. A 400 GΩ Input-Impedance Active Electrode for Non-Contact Capacitively Coupled ECG Acquisition With Large Linear-Input-Range and High CM-Interference-Tolerance. IEEE Trans. Biomed. Circuits Syst. 2019;13:376–386. doi: 10.1109/TBCAS.2019.2895660. PubMed DOI
Yoo J., Yan L., El-Damak D., Altaf M.A.B., Shoeb A.H., Chandrakasan A.P. An 8-Channel Scalable EEG Acquisition SoC With Patient-Specific Seizure Classification and Recording Processor. IEEE J. -Solid-State Circuits. 2013;48:214–228. doi: 10.1109/JSSC.2012.2221220. DOI