A 1 V 92 dB SNDR 10 kHz Bandwidth Second-Order Asynchronous Delta-Sigma Modulator for Biomedical Signal Processing
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu dopisy
Grantová podpora
19-22248S
Grantová Agentura České Republiky
PubMed
32722380
PubMed Central
PMC7436079
DOI
10.3390/s20154137
PII: s20154137
Knihovny.cz E-zdroje
- Klíčová slova
- asynchronous delta-sigma modulator (ADSM), biomedical signals, biosensors, center frequency, operational amplifier,
- MeSH
- počítačové zpracování signálu * MeSH
- polovodiče * MeSH
- poměr signál - šum MeSH
- Publikační typ
- dopisy MeSH
- Geografické názvy
- Taiwan MeSH
In this paper, a second-order asynchronous delta-sigma modulator (ADSM) is proposed based on the active-RCintegrators. The ADSM is implemented in the 0.18 μ m CMOS Logic or Mixed-Signal/RF, General Purpose process from the Taiwan Semiconductor Manufacturing Company with a center frequency of 848 kHz at a supply voltage of 1 V with a 92 dB peak signal-to-noise and distortion ratio ( S N D R ), which corresponds to 15 bit resolution. These parameters were achieved in all the endogenous bioelectric signals bandwidth of 10 kHz. The ADSM dissipated 295 μ W and had an area of 0.54 mm 2 . The proposed ADSM with a high resolution, wide bandwidth, and rail-to-rail input voltage range provides the universal solution for endogenous bioelectric signal processing.
Zobrazit více v PubMed
Kledrowetz V., Prokop R., Fujcik L., Pavlik M., Háze J. Low-power ASIC suitable for miniaturized wireless EMG systems. J. Electr. Eng. 2019;70:393–399. doi: 10.2478/jee-2019-0071. DOI
Magno M., Benini L., Spagnol C., Popovici E. Wearable low power dry surface wireless sensor node for healthcare monitoring application; Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob); Lyon, France. 7–9 October 2013; pp. 189–195.
Vinod A.P., Da C.Y. An integrated surface EMG data acquisition system for sports medicine applications; Proceedings of the 2013 7th International Symposium on Medical Information and Communication Technology (ISMICT); Tokyo, Japan. 6–8 March 2013; pp. 98–102.
Northrop R.B. Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation (Biomedical Engineering) CRC Press, Inc.; Boca Raton, FL, USA: 2004.
Webster J. Medical Instrumentation: Application and Design. John Wiley & Sons; Hoboken, NJ, USA: 2010.
Prutchi D., Norris M. Design and Development of Medical Electronic Instrumentation. Wiley Online Library; Hoboken, NJ, USA: 2005.
Delgado J.M. Electrophysiological Methods. Elsevier; Amsterdam, The Netherlands: 1964. Electrodes for extracellular recording and stimulation; pp. 88–143.
Rodríguez-Pérez A., Delgado-Restituto M., Medeiro F. Power Efficient ADCs for Biomedical Signal Acquisition. [(accessed on 25 July 2020)]; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.936.432&rep=rep1&type=pdf.
Zou X., Xu X., Yao L., Lian Y. A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip. IEEE J. Solid-State Circuits. 2009;44:1067–1077. doi: 10.1109/JSSC.2009.2014707. DOI
Sundarasaradula Y., Constandinou T.G., Thanachayanont A. A 6-bit, two-step, successive approximation logarithmic ADC for biomedical applications; Proceedings of the 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS); Monte Carlo, Monaco. 11–14 December 2016; pp. 25–28.
Mesgarani A., Ay S.U. A low voltage, energy efficient supply boosted SAR ADC for biomedical applications; Proceedings of the 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS); San Diego, CA, USA. 10–12 November 2011; pp. 401–404.
De la Rosa J.M., Schreier R., Pun K., Pavan S. Next-Generation Delta-Sigma Converters: Trends and Perspectives. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015;5:484–499. doi: 10.1109/JETCAS.2015.2502164. DOI
Ouzounov S., Engel R., Hegt J.A., van der Weide G., van Roermund A.H.M. Analysis and design of high-performance asynchronous sigma-delta Modulators with a binary quantizer. IEEE J. Solid-State Circuits. 2006;41:588–596. doi: 10.1109/JSSC.2005.864147. DOI
Dazhi W., Vaibhav G., Harris J.G. An asynchronous delta-sigma converter implementation; Proceedings of the 2006 IEEE International Symposium on Circuits and Systems; Island of Kos, Greece. 21–24 May 2006; p. 4.
Daniels J., Dehaene W., Steyaert M.S., Wiesbauer A. A/D conversion using asynchronous delta-sigma modulation and time-to-digital conversion. IEEE Trans. Circuits Syst. I Regul. Pap. 2010;57:2404–2412. doi: 10.1109/TCSI.2010.2043169. DOI
Lee J., Song S., Roh J. A 103 dB DR Fourth-Order Delta-Sigma Modulator for Sensor Applications. Electronics. 2019;8:1093. doi: 10.3390/electronics8101093. DOI
Sohel A., al Khadir A., Naaz M., Najeeb A. A 1.8V 204.8-μW 12-Bit Fourth Order Active Passive ΣΔ Modulator for Biomedical Applications; Proceedings of the 2019 Devices for Integrated Circuit (DevIC); Kalyani, India. 23–24 March 2019; pp. 124–127.
Ferreira L.H.C., Sonkusale S.R. A 0.25-V 28-nW 58-dB Dynamic Range Asynchronous Delta Sigma Modulator in 130-nm Digital CMOS Process. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015;23:926–934. doi: 10.1109/TVLSI.2014.2330698. DOI
Kulej T., Khateb F., Ferreira L.H.C. A 0.3-V 37-nW 53-dB SNDR Asynchronous Delta–Sigma Modulator in 0.18-μm CMOS. IEEE Trans. Large Scale Integr. (VLSI) Syst. 2019;27:316–325. doi: 10.1109/TVLSI.2018.2878625. DOI
Akbari M., Hashemipour O., Moradi F. Design and analysis of an ultra-low-power second-order asynchronous delta–sigma modulator. Circuits Syst. Signal Process. 2017;36:4919–4936. doi: 10.1007/s00034-017-0658-7. DOI
Roza E. Analog-to-digital conversion via duty-cycle modulation. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 1997;44:907–914. doi: 10.1109/82.644044. DOI
Rabii S., Wooley B.A. A 1.8-V digital-audio sigma-delta modulator in 0.8-/spl mu/m CMOS. IEEE J. Solid-State Circuits. 1997;32:783–796. doi: 10.1109/4.585245. DOI
Furth P.M., Tsen Y.C., Kulkarni V.B., Raju T.K.P.H. On the design of low-power CMOS comparators with programmable hysteresis; Proceedings of the 2010 53rd IEEE International Midwest Symposium on Circuits and Systems; Seattle, WA, USA. 1–4 August 2010; Piscataway, NJ, USA: IEEE; 2010. pp. 1077–1080.
Yoon Y., Choi D., Roh J. A 0.4 V 63 μW 76.1 dB SNDR 20 kHz Bandwidth Delta-Sigma Modulator Using a Hybrid Switching Integrator. IEEE J. Solid-State Circuits. 2015;50:2342–2352. doi: 10.1109/JSSC.2015.2468857. DOI
Leow Y.H., Tang H., Sun Z.C., Siek L. A 1 V 103 dB 3rd-Order Audio Continuous-Time ΔΣ ADC with Enhanced Noise Shaping in 65 nm CMOS. IEEE J. Solid-State Circuits. 2016;51:2625–2638. doi: 10.1109/JSSC.2016.2593777. DOI
Liao S., Wu J. A 1 V 175 μW 94.6 dB SNDR 25 kHz bandwidth delta-sigma modulator using segmented integration techniques; Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC); San Diego, CA, USA. 8–11 April 2018; pp. 1–4.
Michel F., Steyaert M.S.J. A 250 mV 7.5 μW 61 dB SNDR SC ΔΣ Modulator Using Near-Threshold-Voltage-Biased Inverter Amplifiers in 130 nm CMOS. IEEE J. Solid-State Circuits. 2012;47:709–721. doi: 10.1109/JSSC.2011.2179732. DOI