Empagliflozin-associated postoperative mixed metabolic acidosis. Case report and review of pathogenesis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu kazuistiky, časopisecké články
PubMed
37060078
PubMed Central
PMC10103020
DOI
10.1186/s12902-023-01339-w
PII: 10.1186/s12902-023-01339-w
Knihovny.cz E-zdroje
- Klíčová slova
- Case report, Empagliflozin, Euglycemic ketoacidosis, Hyperchloremic acidosis, SGLT2 inhibitor,
- MeSH
- acidóza * chemicky indukované komplikace MeSH
- diabetes mellitus 2. typu * komplikace farmakoterapie MeSH
- diabetická ketoacidóza * diagnóza MeSH
- glifloziny * škodlivé účinky MeSH
- lidé MeSH
- srdeční zástava * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- empagliflozin MeSH Prohlížeč
- glifloziny * MeSH
BACKGROUND: Euglycemic diabetic ketoacidosis associated with SGLT2 inhibitors is a rare, relatively new and potentially fatal clinical entity, characterized by metabolic acidosis with normal or only moderately elevated glycemia. The mechanisms are not fully understood but involve increased ketogenesis and complex renal metabolic dysfunction, resulting in both ketoacidosis and hyperchloremic acidosis. We report a rare case of fatal empagliflozin-associated acidosis with profound hyperchloremia and review its pathogenesis. CASE PRESENTATION: A patient with type 2 diabetes mellitus treated with empagliflozin underwent an elective hip replacement surgery. Since day 4 after surgery, he felt generally unwell, leading to cardiac arrest on the day 5. Empagliflozin-associated euglycemic diabetic ketoacidosis with severe hyperchloremic acidosis was identified as the cause of the cardiac arrest. CONCLUSIONS: This unique case documents the possibility of severe SGLT2 inhibitor-associated mixed metabolic acidosis with a predominant hyperchloremic component. Awareness of this possibility and a high index of suspicion are crucial for correct and early diagnosis.
Zobrazit více v PubMed
Braunwald E. Gliflozins in the management of Cardiovascular Disease. N Engl J Med. 2022 May;26(21):2024–34. PubMed
Vaduganathan M, Docherty KF, Claggett BL, Jhund PS, de Boer RA, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet. 2022 Sep;400(3):757–67. PubMed
Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, et al. CREDENCE trial investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019 Jun;13(24):2295–306. PubMed
Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, et al. DAPA-CKD trial committees and investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020 Oct;8(15):1436–46. PubMed
Belkin MN, Cifu AS, Pinney S. Management of Heart Failure. JAMA. 2022 Oct4;328(13):1346–1347. PubMed
de Boer IH, Caramori ML, Chan JCN, Heerspink HJL, Hurst C et al. Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: evidence-based advances in monitoring and treatment. Kidney Int. 2020Oct;98(4):839–848. PubMed
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, ESC Scientific Document Group, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 Sep;21(36):3599–726. PubMed
FDA approves label changes. to SGLT2 inhibitors regarding temporary discontinuation of medication before scheduled surgery. https://www.fda.gov/drugs/drug-safety-and-availability/fda-revises-labels-sglt2-inhibitors-diabetes-include-warnings-about-too-much-acid-blood-and-serious. Accessed March 23, 2020
Koufakis T, Mustafa OG, Ajjan RA, Garcia-Moll X, Zebekakis P, et al. From Skepticism to Hope: the Evolving Concept of the initiation and use of sodium-glucose cotransporter 2 inhibitors in hospitalized patients. Drugs. 2022 Jun;82(9):949–55. PubMed PMC
Kosiborod MN, Esterline R, Furtado RHM, Oscarsson J, Gasparyan SB, et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021 Sep;9(9):586–94. PubMed PMC
Fadini GP, Bonora BM, Avogaro A. SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA adverse event reporting system. Diabetologia. 2017;60:1385–9. doi: 10.1007/s00125-017-4301-8. PubMed DOI
Charoenpiriya A, Chailurkit L, Ongphiphadhanakul B. Comparisons of biochemical parameters and diabetic ketoacidosis severity in adult patients with type 1 and type 2 diabetes. BMC Endocr Disord. 2022;22:7. doi: 10.1186/s12902-021-00922-3. PubMed DOI PMC
Oh MS, Banerji MA, Carroll HJ. The mechanism of hyperchloremic acidosis during the recovery phase of diabetic ketoacidosis. Diabetes. 1981;30:310–3. doi: 10.2337/diab.30.4.310. PubMed DOI
Kellum JA. Clinical review: reunification of acid-base physiology. Crit Care. 2005;9:500–7. doi: 10.1186/cc3789. PubMed DOI PMC
Perry RJ, Shulman GI. Sodium-glucose cotransporter-2 inhibitors: understanding the mechanisms for therapeutic promise and persisting risks. J Biol Chem. 2020;295:14379–90. doi: 10.1074/jbc.REV120.008387. PubMed DOI PMC
Palmer BF, Clegg DJ. Euglycemic ketoacidosis as a complication of SGLT2 inhibitor therapy. Clin J Am Soc Nephrol. 2021;16:1284–91. doi: 10.2215/CJN.17621120. PubMed DOI PMC
Palmer BF, Clegg DJ. Starvation ketosis and the kidney. Am J Nephrol. 2021;52:467–78. doi: 10.1159/000517305. PubMed DOI
Perry RJ, Rabin-Court A, Song JD, Cardone RL, Wang Y, Kibbey RG, Shulman GI. Dehydration and insulinopenia are necessary and sufficient for euglycemic ketoacidosis in SGLT2 inhibitor-treated rats. Nat Commun. 2019;10:548. doi: 10.1038/s41467-019-08466-w. PubMed DOI PMC
Burke KR, Schumacher CA, Harpe SE. SGLT2 inhibitors: a systematic review of Diabetic Ketoacidosis and related risk factors in the primary literature. Pharmacotherapy. 2017;37:187–94. doi: 10.1002/phar.1881. PubMed DOI
Blau JE, Tella SH, Taylor SI, Rother KI. Ketoacidosis associated with SGLT2 inhibitor treament: Analysis of FAERS data. Diabetes Metab Res Rev2017;33 PubMed PMC
Kamel KS, Halperin ML. Acid-base problems in diabetic ketoacidosis. N Engl J Med. 2015;372:1969–70. doi: 10.1056/NEJMra1207788. PubMed DOI
Sampani E, Sarafidis P, Dimitriadis C, Kasimatis E, Daikidou D, Bantis K, Papanikolaou A, Papagianni A. Severe euglycemic diabetic ketoacidosis of multifactorial etiology in a type 2 diabetic patient treated with empagliflozin: case report and literature review. BMC Nephrol. 2020;21:276. doi: 10.1186/s12882-020-01930-6. PubMed DOI PMC
Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, Song P, Freeman B, Kim YC, Soleimani M, Sharma K, Thomson SC, Vallon V. A role for tubular Na+/H + exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol. 2020;319:F712–28. doi: 10.1152/ajprenal.00264.2020. PubMed DOI PMC
Vinay P, Lemieux G, Cartier P, Ahmad M. Effect of fatty acids on renal ammoniagenesis in in vivo and in vitro studies. Am J Physiol. 1976;231:880–7. doi: 10.1152/ajplegacy.1976.231.3.880. PubMed DOI
Hall JE, Hall ME, Guyton AC. Guyton and Hall textbook of medical physiology. Elsevier; 2021.
Goldstein L, Boylan JM, Schröck H. Adaptation of renal ammonia production in the diabetic ketoacidotic rat. Kidney Int. 1980;17:57–65. doi: 10.1038/ki.1980.7. PubMed DOI
Warming-Larsen A. Renal excretion of ketone bodies. II Acta Med Scand. 1952;144:197–200. doi: 10.1111/j.0954-6820.1952.tb15684.x. PubMed DOI
Kubera B, Hubold C, Wischnath H, Zug S, Peters A. Rise of ketone bodies with psychosocial stress in normal weight men. Psychoneuroendocrinology. 2014;45:43–8. doi: 10.1016/j.psyneuen.2014.03.008. PubMed DOI
Arlas N, Vandiver JW. Fanconi syndrome and euglycemic diabetic ketoacidosis secondary to canagliflozin use in a type 2 diabetic. Journal of Clinical and Translational Endocrinology 2022: Case Reports, Volume 23.
Esprit DH, Koratala A. Fanconi syndrome associated with SGLT2 inhibitor, canagliflozin. Nephrol (Carlton) 2018;23:493. doi: 10.1111/nep.13094. PubMed DOI
Khan N, Tso K, Broussard J, Dziuba M. Canagliflozin-induced Fanconi syndrome in a patient with previously unrecognized type 1 diabetes. Am J Health Sys Pharm. 2019;76:1930–3. doi: 10.1093/ajhp/zxz226. PubMed DOI
Koufakis T, Mustafa OG, Ajjan RA, Garcia-Moll X, Zebekakis P, et al. The use of sodium-glucose co-transporter 2 inhibitors in the inpatient setting: is the risk worth taking? J Clin Pharm Ther. 2020 Oct;45(5):883–91. PubMed
Khunti K, Aroda VR, Bhatt DL, Bozkurt B, Buse JB, et al. Re-examining the widespread policy of stopping sodium-glucose cotransporter-2 inhibitors during acute illness: a perspective based on the updated evidence. Diabetes Obes Metab. 2022 Nov;24(11):2071–80. PubMed