An integrated leaf trait analysis of two Paleogene leaf floras

. 2023 ; 11 () : e15140. [epub] 20230410

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37065698

OBJECTIVES: This study presents the Integrated Leaf Trait Analysis (ILTA), a workflow for the combined application of methodologies in leaf trait and insect herbivory analyses on fossil dicot leaf assemblages. The objectives were (1) to record the leaf morphological variability, (2) to describe the herbivory pattern on fossil leaves, (3) to explore relations between leaf morphological trait combination types (TCTs), quantitative leaf traits, and other plant characteristics (e.g., phenology), and (4) to explore relations of leaf traits and insect herbivory. MATERIAL AND METHODS: The leaves of the early Oligocene floras Seifhennersdorf (Saxony, Germany) and Suletice-Berand (Ústí nad Labem Region, Czech Republic) were analyzed. The TCT approach was used to record the leaf morphological patterns. Metrics based on damage types on leaves were used to describe the kind and extent of insect herbivory. The leaf assemblages were characterized quantitatively (e.g., leaf area and leaf mass per area (LMA)) based on subsamples of 400 leaves per site. Multivariate analyses were performed to explore trait variations. RESULTS: In Seifhennersdorf, toothed leaves of TCT F from deciduous fossil-species are most frequent. The flora of Suletice-Berand is dominated by evergreen fossil-species, which is reflected by the occurrence of toothed and untoothed leaves with closed secondary venation types (TCTs A or E). Significant differences are observed for mean leaf area and LMA, with larger leaves tending to lower LMA in Seifhennersdorf and smaller leaves tending to higher LMA in Suletice-Berand. The frequency and richness of damage types are significantly higher in Suletice-Berand than in Seifhennersdorf. In Seifhennersdorf, the evidence of damage types is highest on deciduous fossil-species, whereas it is highest on evergreen fossil-species in Suletice-Berand. Overall, insect herbivory tends to be more frequently to occur on toothed leaves (TCTs E, F, and P) that are of low LMA. The frequency, richness, and occurrence of damage types vary among fossil-species with similar phenology and TCT. In general, they are highest on leaves of abundant fossil-species. DISCUSSION: TCTs reflect the diversity and abundance of leaf architectural types of fossil floras. Differences in TCT proportions and quantitative leaf traits may be consistent with local variations in the proportion of broad-leaved deciduous and evergreen elements in the ecotonal vegetation of the early Oligocene. A correlation between leaf size, LMA, and fossil-species indicates that trait variations are partly dependent on the taxonomic composition. Leaf morphology or TCTs itself cannot explain the difference in insect herbivory on leaves. It is a more complex relationship where leaf morphology, LMA, phenology, and taxonomic affiliation are crucial.

Zobrazit více v PubMed

Adroit B, Teodoridis V, Güner TH, Denk T. Patterns of insect damage types reflect complex environmental signal in Miocene forest biomes of Central Europe and the Mediterranean. Global and Planetary Change. 2021;199:103451. doi: 10.1016/j.gloplacha.2021.103451. DOI

Adroit B, Zhuang X, Wappler T, Terral JF, Wang B. A case of long-term herbivory: specialized feeding trace on Parrotia (Hamamelidaceae) plant species. Royal Society Open Science. 2020;7(10):201449. doi: 10.1098/rsos.201449. PubMed DOI PMC

Ahrens H. Stratigrafisch-tektonische Untersuchung im Tertiär von Seifhennersdorf. Geologie. 1959;8:340–341.

Akhmetiev M, Walther H, Kvaček Z. Mid-latitude Palaeogene floras of Eurasia bound to volcanic settings and palaeoclimatic events—experience obtained from the Far East of Russia (Sikhote-Alin′) and Central Europe (Bohemian Massif) Fossil Imprint/Acta Musei Nationalis Pragae, Series B—Historia Naturalis. 2009;65:61–129.

Azevedo Schmidt LE, Dunn RE, Mercer J, Dechesne M, Currano ED. Plant and insect herbivore community variation across the Paleocene-Eocene boundary in the Hanna Basin, southeastern Wyoming. PeerJ. 2019;7(5):e7798. doi: 10.7717/peerj.7798. PubMed DOI PMC

Bairstow KA, Clarke KL, McGeoch MA, Andrew NR. Leaf miner and plant galler species richness on Acacia: relative importance of plant traits and climate. Oecologia. 2010;163(2):437–448. doi: 10.1007/s00442-010-1606-4. PubMed DOI

Bellon H, Bůžek Č, Gaudant J, Kvaček Z, Walter H. The Česke Středohoří magmatic complex in Northern Bohemia 40K-40Ar ages for volcanism and biostratigraphy of the Cenozoic freshwater formations. Newsletters on Stratigraphy. 1998;36(2–3):77–103. doi: 10.1127/nos/36/1998/77. DOI

Boogs J. Yellow Poplar Weevil reared its snout in Central Ohio. 2018. https://bygl.osu.edu/node/1103. [12 September 2022]. https://bygl.osu.edu/node/1103

Cajz V. Proposal of lithostratigraphy for the České středohoří Mts. volcanics. Bulletin of Geosciences. 2000;75:7–16.

Carvalho MR, Wilf P, Barrios H, Windsor DM, Currano ED, Labandeira CC, Jaramillo CA. Insect leaf-chewing damage tracks herbivore richness in modern and ancient forests. PLOS ONE. 2014;9(5):e94950. doi: 10.1371/journal.pone.0094950. PubMed DOI PMC

Choong MF, Lucas PW, Ong JSY, Pereira B, Tan HTW, Turner IM. Leaf fracture toughness and sclerophylly: their correlations and ecological implications. The New Phytologist. 1992;121(4):597–610. doi: 10.1111/j.1469-8137.1992.tb01131.x. DOI

Coley PD, Barone JA. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics. 1996;27(1):305–335. doi: 10.1146/annurev.ecolsys.27.1.305. DOI

Currano ED, Azevedo-Schmidt LE, Maccracken SA, Swain A. Scars on fossil leaves: an exploration of ecological patterns in plant-insect herbivore associations during the age of Angiosperms. Palaeogeography, Palaeoclimatology, Palaeoecology. 2021;582(20):110636. doi: 10.1016/j.palaeo.2021.110636. DOI

Currano ED, Labandeira CC, Wilf P. Fossil insect folivory tracks paleotemperature for six million years. Ecological Monographs. 2010;80(4):547–567. doi: 10.1890/09-2138.1. DOI

Currano ED, Laker R, Flynn AG, Fogt KK, Stradtman H, Wing SL. Consequences of elevated temperature and pCO2 on insect folivory at the ecosystem level: perspectives from the fossil record. Ecology and Evolution. 2016;6(13):4318–4331. doi: 10.1002/ece3.2203. PubMed DOI PMC

de la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PLOS ONE. 2016;11(2):e0148788. doi: 10.1371/journal.pone.0148788. PubMed DOI PMC

Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD. The global spectrum of plant form and function. Nature. 2016;529(7585):167–171. doi: 10.1038/nature16489. PubMed DOI

Donovan MP, Iglesias A, Wilf P, Labandeira CC, Cúneo NR. Rapid recovery of Patagonian plant-insect associations after the end-Cretaceous extinction. Nature Ecology & Evolution. 2016;1(1):1–5. doi: 10.1038/s41559-016-0012. PubMed DOI

Ellis B, Daly DC, Hickey LJ, Johnson K, Mitchell JD, Wilf P, Wing SL. Manual of leaf architecture. Ithaca: Cornell University Press; 2009.

Fox J, Weisberg S. An R companion to applied regression. Third Edition. Thousand Oaks CA: Sage; 2019.

Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP. Plant functional markers capture ecosystem properties during secondary succession. Ecology. 2004;85(9):2630–2637. doi: 10.1890/03-0799. DOI

Givnish T. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica. 2002;36(3):703–743. doi: 10.14214/sf.535. DOI

Gotelli NJ, Colwell RK. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters. 2001;4(4):379–391. doi: 10.1046/j.1461-0248.2001.00230.x. DOI

Gunkel S, Wappler T. Plant-insect interactions in the upper Oligocene of Enspel (Westerwald, Germany), including an extended mathematical framework for rarefaction. Palaeobiodiversity and Palaeoenvironments. 2015;95(1):55–75. doi: 10.1007/s12549-014-0176-6. DOI

Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM. Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics. 2007;8(4):157–178. doi: 10.1016/j.ppees.2007.01.001. DOI

Hazra M, Hazra T, Spicer RA, Sarkar SK, Spicer TEV, Bera S, Khan MA. In situ occurrence of a gall midge (Insecta, Diptera, Cecidomyiidae) on fossilized angiosperm leaf cuticle fragments from the Pliocene sediments of eastern India. Journal of Asia-Pacific Entomology. 2020;23(3):762–771. doi: 10.1016/j.aspen.2020.06.004. DOI

Hazra T, Spicer RA, Hazra M, Sarkar SK, Spicer TEV, Bera S, Khan MA. First fossil evidence of leaf-feeding caterpillars from India and their feeding strategies. Lethaia. 2021;81:1–15. doi: 10.1111/let.12446. DOI

Kassambara A, Mundt F. Factoextra: extract and visualize the results of multivariate data analysis. R package version 1.0.7. 2020. https://CRAN.R-project.org/package=factoextra. [1 September 2021]. https://CRAN.R-project.org/package=factoextra

Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, Berenbaum MR, Delucia EH. Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytologist. 2005;167(1):207–218. doi: 10.1111/j.1469-8137.2005.01399.x. PubMed DOI

Knor S, Skuhravá M, Wappler T, Prokop J. Galls and gall makers on plant leaves from the lower Miocene (Burdigalian) of the Czech Republic: systematic and palaeoecological implications. Review of Palaeobotany and Palynology. 2013;188(1):38–51. doi: 10.1016/j.revpalbo.2012.10.001. DOI

Koch M. Plant-insect interaction and the climate implications in the Early Oligocene of Seifhennersdorf (Eastern Germany) and Kundratice (Southern Czech Republic). Diploma Thesis. University of Bonn. 2011.

Kunzmann L, Moraweck K, Müller C, Schröder I, Wappler T, Grein M, Roth-Nebelsick A. A Paleogene leaf flora (Profen, Sachsen-Anhalt, Germany) and its potentials for palaeoecological and palaeoclimate reconstructions. Flora. 2019;254(1T):71–87. doi: 10.1016/j.flora.2018.11.005. DOI

Kvaček Z, Walther H. The Oligocene volcanic flora of Suletice-Berand near Ústí nad Labem, North Bohemia–a review. Fossil Imprint/Acta Musei Nationalis Pragae, Series B—Historia Naturalis Praha. 1995;50:25–54.

Kvaček Z, Walther H. The Oligocene of Central Europe and the develoment of forest vegetation in space and time based on megafossils. Palaeontographica Abteilung B. 2001;259:125–148. doi: 10.1127/palb/259/2001/125. DOI

Kvaček Z, Walther H. Reconstruction of vegetation and landscape development during the volcanic activity in the České středohoří Mountains. Geolines, Hibsch Special Volume. 2003;15:60–64.

Labandeira CC. Plant-insect associations from the fossil record. Geotimes. 1998;43:18–24.

Labandeira CC. Paleobiology of middle Eocene plant-insect associations from the Pacific Northwest: a preliminary report. Rocky Mountain Geology. 2002;37(1):31–59. doi: 10.2113/gsrocky.37.1.31. DOI

Labandeira CC. Fossil history and evolutionary ecology of diptera and their associations with plants. In: Yeates DK, Wiegmann BM, editors. The Evolutionary Biology of Flies. New York: Columbia University Press; 2005. pp. 217–273.

Labandeira CC. Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften. 2013;100(4):355–364. doi: 10.1007/s00114-013-1035-4. PubMed DOI

Labandeira CC. The fossil record of insect mouthparts: innovation, functional convergence, and associations with other organisms. In: Krenn HW, editor. Insect Mouthparts: Form, Function, Development and Performance. Zoological Monographs. Cham: Springer; 2019. pp. 567–671.

Labandeira CC. Ecology and evolution of gall-inducing arthropods: the pattern from the terrestrial fossil record. Frontiers in Ecology and Evolution. 2021;9:632449. doi: 10.3389/fevo.2021.632449. DOI

Labandeira CC, Wilf P, Johnson KR, Marsh F. Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Washington, D.C: Smithsonian Institution, National Museum of Natural History, Department of Paleobiology; 2007.

Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software. 2008;25(1):1–18. doi: 10.18637/jss.v025.i01. DOI

Li Y, Liu C, Sack L, Xu L, Li M, Zhang J, He N. Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecology Letters. 2022;25(6):1442–1457. doi: 10.1111/ele.14009. PubMed DOI

Li Y, Wang Z, Xu X, Han W, Wang Q, Zou D. Leaf margin analysis of Chinese woody plants and the constraints on its application to palaeoclimatic reconstruction. Global Ecology and Biogeography. 2016;25(12):1401–1415. doi: 10.1111/geb.12498. DOI

Lucas PW, Turner IM, Dominy NJ, Yamashita N. Mechanical defences to herbivory. Annals of Botany. 2000;86(5):913–920. doi: 10.1006/anbo.2000.1261. DOI

Lüdecke D, Ben-Shachar M, Patil I, Waggoner P, Makowski D. Performance: an R package for assessment, comparison and testing of statistical models. Journal of Open Source Software. 2021;6(60):3139. doi: 10.21105/joss.03139. DOI

Maccracken SA, Miller IM, Johnson KR, Sertich JM, Labandeira CC. Insect herbivory on Catula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA) PLOS ONE. 2022;17(1):e0261397. doi: 10.1371/journal.pone.0261397. PubMed DOI PMC

Maccracken SA, Sohn JC, Miller IM, Labandeira CC. A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: Lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. Journal of Systematic Palaeontology. 2021;19(2):131–144. doi: 10.1080/14772019.2021.1881177. DOI

Matos IF, do Carmo Silva B, de Souza SB, Bertolazi AA, de Souza Pedroni NL, Intorne A, Ribeiro DP, Ramos AC. Ecophysiology of nitrogen in symbiotic relationships of plants and microorganisms. In: Cruz C, Vishwakarma K, Choudhary DK, Varma A, editors. Soil Nitrogen Ecology. Soil Biology. Cham: Springer; 2021. pp. 33–50.

Mattson WJ. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics. 1980;11(1):119–161. doi: 10.1146/annurev.es.11.110180.001003. DOI

Mendiburu F. agricolae: statistical procedures for agricultural research. R package version 1.3-3. 2020. https://CRAN.R-project.org/package=agricolae. [1 September 2021]. https://CRAN.R-project.org/package=agricolae

Moraweck K, Grein M, Konrad W, Kvaček J, Kova-Eder J, Neinhuis C, Traiser C, Kunzmann L. Leaf traits of long-ranging Paleogene species and their relationship with depositional facies, climate and atmospheric CO2 level. Palaeontographica Abteilung B. 2019;298(4–6):93–172. doi: 10.1127/palb/2019/0062. DOI

Müller C, Wappler T, Kunzmann L. Insect herbivory patterns in late Eocene coastal lowland riparian associations from central Germany. Palaeogeography, Palaeoclimatology, Palaeoecology. 2018;491(44):170–184. doi: 10.1016/j.palaeo.2017.12.006. DOI

Nakamura M, Inari N, Hiura T. Spatial variation in leaf traits and herbivore community within the beech canopy between two different latitudes. Arthropod-Plant Interactions. 2014;8:571–579. doi: 10.1007/s11829-014-9346-8. DOI

Nascimento AA, Luiz JC, Vega MRG, Villela DM, Nascimento MT. Effect of leaf quality on herbivory of three atlantic forest species. Floresta e Ambiente. 2019;26(4):421. doi: 10.1590/2179-8087.081017. DOI

Peppe DJ, Baumgartner A, Flynn A, Blonder B. Reconstructing paleoclimate and paleoecology using fossil leaves. In: Croft DA, Su DF, Simpson SW, editors. Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Cham: Springer International Publishing; 2018. pp. 289–317.

Pringle EG, Adams RI, Broadbent E, Busby PE, Donatti CI, Kurten EL, Renton K, Dirzo R. Distinct leaf-trait syndromes of evergreen and deciduous trees in a seasonally dry tropical forest. Biotropica. 2011;43(3):299–308. doi: 10.1111/j.1744-7429.2010.00697.x. DOI

Prokop J, Fikáček M. Early Oligocene insect fauna from Seifhennersdorf (Saxony, Germany) Fossil Imprint/Acta Musei Nationalis Pragae, Series B—Historia Naturalis. 2007;63:205–213.

QGIS Development Team . QGIS geographic information system. Delaware: Open Source Geospatial Foundation; 2020.

R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.

Read J, Stokes A. Plant biomechanics in an ecological context. American Journal of Botany. 2006;93(10):1546–1565. doi: 10.3732/ajb.93.10.1546. PubMed DOI

Reich PB, Uhl C, Walters MB, Ellsworth DS. Leaf lifespan as a determinant of leaf structure and function among 23 amazonian tree species. Oecologia. 1991;86(1):16–24. doi: 10.1007/BF00317383. PubMed DOI

Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(25):13730–13734. doi: 10.1073/pnas.94.25.13730. PubMed DOI PMC

Roth-Nebelsick A, Grein M, Traiser C, Kunzmann L, Kvaček J, Wypich J, Kovar-Eder J. Taxon-specific variability of leaf traits in three long-ranging fossil-species of the Paleogene and Neogene: responses to climate? Palaeontologia Electronica. 2021;24:a04. doi: 10.26879/1114. DOI

Roth-Nebelsick A, Grein M, Traiser C, Moraweck K, Kunzmann L, Kovar-Eder J, Kvaček J, Stiller S, Neinhuis C. Functional leaf traits and leaf economics in the Paleogene—a case study for Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017;472(3):1–14. doi: 10.1016/j.palaeo.2017.02.008. DOI

Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H. Evolution and function of leaf venation architecture: a review. Annals of Botany. 2001;87(5):553–566. doi: 10.1006/anbo.2001.1391. DOI

Royer DL, Peppe DJ, Wheeler EA, Niinemets U. Roles of climate and functional traits in controlling toothed vs. untoothed leaf margins. American Journal of Botany. 2012;99(5):915–922. doi: 10.3732/ajb.1100428. PubMed DOI

Royer DL, Sack L, Wilf P, Lusk CH, Jordan GJ, Niinemets Ü, Wright IJ, Westoby M, Cariglino B, Coley PD, Cutter AD, Johnson KR, Labandeira CC, Moles AT, Palmer MB, Valladares F. Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology. 2007;33(4):574–589. doi: 10.1666/07001.1. DOI

Santos AA, Xiao L, Labandeira CC, Néraudeau D, Dépré É, Moreau JD, Perrichot V, Wappler T. Plant-insect interactions from the mid-Cretaceous at Puy-Puy (Aquitaine Basin, western France) indicates preferential herbivory for angiosperms amid a forest of ferns, gymnosperms, and angiosperms. Botany Letters. 2022;169(4):1–20. doi: 10.1080/23818107.2022.2092772. DOI

Schachat SR, Labandeira CC, Maccracken SA. The importance of sampling standardization for comparisons of insect herbivory in deep time: a case study from the late Palaeozoic. Royal Society Open Science. 2018;5(3):171991. doi: 10.1098/rsos.171991. PubMed DOI PMC

Schachat SR, Maccracken SA, Labandeira CC. Sampling fossil floras for the study of insect herbivory: how many leaves is enough? Fossil Record. 2020;23(1):15–32. doi: 10.5194/fr-23-15-2020. DOI

Schachat SR, Payne JL, Boyce CK. Generating and testing hypotheses about the fossil record of insect herbivory with a theoretical ecospace. Review of Palaeobotany and Palynology. 2021;297:104564. doi: 10.1016/j.revpalbo.2021.104564. DOI

Schiller W. Siliceous microfossils from the Oligocene tripoli-deposit of Seifhennersdorf. Fossil Imprint/Acta Musei Nationalis Pragae, Series B—Historia Naturalis. 2007;63:195–204.

Schoonhoven LM, van Loon JJA, Dicke M. Insect-plant biology. Oxford: Oxford University Press; 2005.

Scriber JM, Slansky F. The nutritional ecology of immature insects. Annual Review of Entomology. 1981;26(1):183–211. doi: 10.1146/annurev.en.26.010181.001151. DOI

Segrestin J, Sartori K, Navas ML, Kattge J, Díaz S, Garnier E. PhenoSpace: a Shiny application to visualize trait data in the phenotypic space of the global spectrum of plant form and function. Ecology and Evolution. 2021;11(4):1526–1534. doi: 10.1002/ece3.6928. PubMed DOI PMC

Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas VDL, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Bagousse-Pinguet YL, Li Y, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters. 2015;18(12):1406–1419. doi: 10.1111/ele.12508. PubMed DOI

Silva JO, Espírito-Santo MM, Morais HC. Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest. Basic and Applied Ecology. 2015;16(3):210–219. doi: 10.1016/j.baae.2015.02.005. DOI

Sinclair RJ, Hughes L. Incidence of leaf mining in different vegetation types across rainfall, canopy cover and latitudinal gradients. Austral Ecology. 2008;33(3):353–360. doi: 10.1111/j.1442-9993.2007.01825.x. DOI

Southwood TRE, Brown VK, Reader PM. Leaf palatability, life expectancy and herbivore damage. Oecologia. 1986;70(4):544–548. doi: 10.1007/BF00379901. PubMed DOI

Stiling P, Cornelissen T. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology. 2007;13(9):1823–1842. doi: 10.1111/j.1365-2486.2007.01392.x. DOI

Swain A, Maccracken SA, Fagan WF, Labandeira CC. Understanding the ecology of host plant-insect herbivore interactions in the fossil record through bipartite networks. Paleobiology. 2021;48(2):1–22. doi: 10.1017/pab.2021.20. DOI

Teodoridis V, Kvaček Z. Palaeoenvironmental evaluation of Cainozoic plant assemblages from the Bohemian Massif (Czech Republic) and adjacent Germany. Bulletin of Geosciences. 2015;90:695–720. doi: 10.3140/bull.geosci.1553. DOI

Tietz O, Berner T, Mätting E. Insekten aus dem Unteroligozän von Seifhennersdorf in der Oberlausitz. Abhandlungen und Berichte des Naturkundemuseums Görlitz. 1998;70:139–154.

Traiser C, Roth-Nebelsick A, Grein M, Kovar-Eder J, Kunzmann L, Moraweck K, Lange J, Kvaček J, Neinhuis C, Folie A, De Franceschi D, Kroh A, Prestianni C, Poschmann M, Wuttke M. MORPHYLL: a database of fossil leaves and their morphological traits. Palaeontologia Electronica. 2018;21:1–17. doi: 10.26879/773. DOI

Van Buuren S, Groothuis-Oudshoorn K. mice: multivariate imputation by chained equations in R. Journal of Statistical Software. 2011;45(3):1–67. doi: 10.18637/jss.v045.i03. DOI

Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. Let the concept of trait be functional! Oikos. 2007;116(5):882–892. doi: 10.1111/j.0030-1299.2007.15559.x. DOI

Walls RL. Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set. American Journal of Botany. 2011;98(2):244–253. doi: 10.3732/ajb.1000154. PubMed DOI

Walther H. Vulkanische Floren aus dem höheren Paläogen (Oligozän) Zentraleuropas. Abhandlungen der Naturwissenschaftlichen Gesellschaft ISIS Dresden. 2004;1997/2003:191–261.

Walther H, Kvaček Z. Early oligocene flora of Seifhennersdorf (Saxony) Fossil Imprint/Acta Musei Nationalis Pragae, Series B—Historia Naturalis. 2007;63:85–174.

Wappler T, Labandeira CC, Rust J, Frankenhäuser H, Wilde V. Testing for the effects and consequences of mid paleogene climate change on insect herbivory. PLOS ONE. 2012;7(7):e40744. doi: 10.1371/journal.pone.0040744. PubMed DOI PMC

War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior. 2012;7(10):1306–1320. doi: 10.4161/psb.21663. PubMed DOI PMC

Wedmann S, Wappler T, Engel MS. Direct and indirect fossil records of megachilid bees from the Paleogene of Central Europe (Hymenoptera: Megachilidae) Naturwissenschaften. 2009;96(6):703–712. doi: 10.1007/s00114-009-0525-x. PubMed DOI

Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics. 2002;33(1):125–159. doi: 10.1146/annurev.ecolsys.33.010802.150452. DOI

Wilf P, Labandeira CC, Johnson KR, Coley PD, Cutter AD. Insect herbivory, plant defense, and early Cenozoic climate change. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(11):6221–6226. doi: 10.1073/pnas.111069498. PubMed DOI PMC

Wilf P, Labandeira CC, Johnson KR, Ellis B. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science. 2006;313(5790):1112–1115. doi: 10.1126/science.1129569. PubMed DOI

Wilf P, Labandeira CC, Kress WJ, Staines CL, Windsor DM, Allen AL, Johnson KR. Timing the radiations of leaf beetles: hispines on gingers from latest cretaceous to recent. Science. 2000;289(5477):291–294. doi: 10.1126/science.289.5477.291. PubMed DOI

Winkler IS, Labandeira CC, Wappler T, Wilf P. Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: new taxa from the Paleogene of North America and Germany and their evolutionary implications. Journal of Paleontology. 2010;84(5):935–954. doi: 10.1666/09-163.1. DOI

Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P. Global climatic drivers of leaf size. Science. 2017;357(6354):917–921. doi: 10.1126/science.aal4760. PubMed DOI

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ülo, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum. Nature. 2004;428(6985):821–827. doi: 10.1038/nature02403. PubMed DOI

Wright IJ, Westoby M. Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. The New Phytologist. 2002;155(3):403–416. doi: 10.1046/j.1469-8137.2002.00479.x. PubMed DOI

Ziegler PA. European Cenozoic rift system. Tectonophysics. 1992;208(1–3):91–111. doi: 10.1016/0040-1951(92)90338-7. DOI

Ziegler PA. Cenozoic rift system of western and central Europe: an overview. Geologie en Mijnbouw. 1994;73:99–127.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...