The utility of the 'Arable Weeds and Management in Europe' database: Challenges and opportunities of combining weed survey data at a European scale
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37082111
PubMed Central
PMC10108295
DOI
10.1111/wre.12562
PII: WRE12562
Knihovny.cz E-zdroje
- Klíčová slova
- abundance measures, arable plants, cover estimates, data collection, management, nomenclature, plot size, sampling bias, weed community, weeds,
- Publikační typ
- časopisecké články MeSH
Over the last 30 years, many studies have surveyed weed vegetation on arable land. The 'Arable Weeds and Management in Europe' (AWME) database is a collection of 36 of these surveys and the associated management data. Here, we review the challenges associated with combining disparate datasets and explore some of the opportunities for future research that present themselves thanks to the AWME database. We present three case studies repeating previously published national scale analyses with data from a larger spatial extent. The case studies, originally done in France, Germany and the UK, explore various aspects of weed ecology (community composition, management and environmental effects and within-field distributions) and use a range of statistical techniques (canonical correspondence analysis, redundancy analysis and generalised linear mixed models) to demonstrate the utility and versatility of the AWME database. We demonstrate that (i) the standardisation of abundance data to a common measure, before the analysis of the combined dataset, has little impact on the outcome of the analyses, (ii) the increased extent of environmental or management gradients allows for greater confidence in conclusions and (iii) the main conclusions of analyses done at different spatial scales remain consistent. These case studies demonstrate the utility of a Europe-wide weed survey database, for clarifying or extending results obtained from studies at smaller scales. This Europe-wide data collection offers many more opportunities for analysis that could not be addressed in smaller datasets; including questions about the effects of climate change, macro-ecological and biogeographical issues related to weed diversity as well as the dominance or rarity of specific weeds in Europe.
Agroécologie AgroSup Dijon INRAE Université de Bourgogne Franche Comté Dijon Cedex France
Crop Health Faculty of Agricultural and Environmental Sciences University of Rostock Rostock Germany
Department of Agricultural Forest and Food Sciences University of Torino Grugliasco Italy
Faculty of Agricultural and Food Sciences Széchenyi István University Mosonmagyaróvár Hungary
Instituto de Agricultura Sostenible Spanish National Research Council Córdoba Spain
Net Zero and Resilient Farming Rothamsted Research West Common Harpenden Hertfordshire UK
Zobrazit více v PubMed
Adeux, G. , Vieren, E. , Carlesi, S. , Bàrberi, P. , Munier‐Jolain, N. & Cordeau, S. (2019) Mitigating crop yield losses through weed diversity. Nature Sustainability, 2(11), 1018–1026.
Anderson, B.J. , Chiarucci, A. & Williamson, M. (2012) How differences in plant abundance measures produce different species‐abundance distributions. Methods in Ecology and Evolution, 3(5), 783–786. Available from: 10.1111/j.2041-210X.2012.00229.x DOI
Austin, M. & Greig‐Smith, P. (1968) The application of quantitative methods to vegetation survey: II. Some methodological problems of data from rain forest. The Journal of Ecology, 56, 827–844.
Barralis, G. (1976) Méthode d'étude des groupements adventices des cultures annuelles: application à la Côte d'Or. In: Colloque International sur l'Ecologie et la Biologie des Mauvaise Herbes. France: Dijon, pp. 59–68.
Booth, B.D. & Swanton, C.J. (2002) Assembly theory applied to weed communities. Weed Science, 50(1), 2–13.
Bürger, J. , Küzmič, F. , Šilc, U. , Jansen, F. , Bergmeier, E. , Chytrý, M. et al. (2022) Two sides of one medal: arable weed vegetation of Europe in agronomical weed surveys compared to phytosociological data. Applied Vegetation Science, 25(1), e12460.
Bürger, J. , Metcalfe, H. , von Redwitz, C. , Cirujeda, A. , Fogliatto, S. , Fried, G. et al. (2020) Arable Weeds and Management in Europe. Vegetation Classification and Survey, 1, 169–170. Available from: 10.3897/VCS/2020/61419 DOI
Čarni, A. , Juvan, N. , Košir, P. , Marinšek, A. , Paušič, A. & Šilc, U. (2011) Plant communities in gradients. Plant Biosystems‐An International Journal Dealing with all Aspects of Plant Biology, 145(sup1), 54–64.
Chytrý, M. , Hennekens, S.M. , Jiménez‐Alfaro, B. , Knollová, I. , Dengler, J. , Jansen, F. et al. (2016) European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science, 19(1), 173–180. Available from: 10.1111/avsc.12191 DOI
Chytrý, M. & Otýpková, Z. (2003) Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science, 14, 563–570.
de Mol, F. , von Redwitz, C. & Gerowitt, B. (2015) Weed species composition of maize fields in Germany is influenced by site and crop sequence. Weed Research, 55(6), 574–585. Available from: 10.1111/wre.12169 DOI
de Sousa, L.M. , Poggio, L. , Batjes, N.H. , Heuvelink, G.B. , Kempen, B. , Riberio, E. et al. (2020) SoilGrids 2.0: producing quality‐assessed soil information for the globe. Soil Discussions, 2020, 1–37.
Euro+Med . (2006) Euro+Med PlantBase ‐ the information resource for Euro‐Mediterranean plant diversity. Available from: http://ww2.bgbm.org/EuroPlusMed/
Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. Available from: 10.1002/joc.5086 DOI
Fried, G. , Norton, L.R. & Reboud, X. (2008) Environmental and management factors determining weed species composition and diversity in France. Agriculture, Ecosystems & Environment, 128(1–2), 68–76. Available from: 10.1016/j.agee.2008.05.003 DOI
Gaba, S. , Fried, G. , Kazakou, E. , Chauvel, B. & Navas, M.L. (2014) Agroecological weed control using a functional approach: a review of cropping systems diversity. Agronomy for Sustainable Development, 34(1), 103–119. Available from: 10.1007/s13593-013-0166-5 DOI
Gu, C. , Bastiaans, L. , Anten, N.P. , Makowski, D. & van der Werf, W. (2021) Annual intercropping suppresses weeds: a meta‐analysis. Agriculture, Ecosystems & Environment, 322, 107658.
Hallgren, E. , Palmer, M.W. & Milberg, P. (1999) Data diving with cross‐validation: an investigation of broad‐scale gradients in Swedish weed communities. Journal of Ecology, 87(6), 1037–1051.
Hanzlik, K. & Gerowitt, B. (2012) Occurrence and distribution of important weed species in German winter oilseed rape fields. Journal of Plant Diseases and Protection, 119(3), 107–120.
Heard, M.S. , Hawes, C. , Champion, G.T. , Clark, S.J. , Firbank, L.G. , Haughton, A.J. et al. (2003) Weeds in fields with contrasting conventional and genetically modified herbicide–tolerant crops. I. Effects on abundance and diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1439), 1819–1832. PubMed PMC
Hüppe, J. & Hofmeister, H. (1990) Syntaxonomische Fassung und Übersicht über die Ackerunkrautgesellschaften der Bundesrepublik Deutschland. Berichte der Reinhold‐Tüxen‐Gesellschaft, 2, 61–81.
Hyvönen, T. & Salonen, J. (2002) Weed species diversity and community composition in cropping practices at two intensity levels–a six‐year experiment. Plant Ecology, 159(1), 73–81.
Jeliazkov, A. , Mijatovic, D. , Chantepie, S. , Andrew, N. , Arlettaz, R. , Barbaro, L. et al. (2020) A global database for metacommunity ecology, integrating species, traits, environment and space. Scientific Data, 7(1), 6. Available from: 10.1038/s41597-019-0344-7 PubMed DOI PMC
Kenward, M.G. & Roger, J.H. (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997. PubMed
Kolářová, M. , Tyšer, L. & Soukup, J. (2013) Impact of site conditions and farming practices on the occurrence of rare and endangered weeds on arable land in The Czech Republic. Weed Research, 53(6), 489–498.
Küzmič, F. , Šilc, U. , Lososová, Z. , Mucina, L. , Chytrý, M. , Knollová, I. et al. (2020) European Weed Vegetation Database – a gap‐focused vegetation‐plot database. Phytocoenologia, 50(1), 93–100. Available from: 10.1127/phyto/2019/0337 DOI
Legendre, P. (2008) Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. JPECOL, 1(1), 3–8. Available from: 10.1093/jpe/rtm001 DOI
Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280. PubMed
Lososová, Z. , Chytrý, M. , Cimalová, S. , Kropáč, Z. , Otýpková, Z. , Pyšek, P. et al. (2004) Weed vegetation of arable land in Central Europe: gradients of diversity and species composition. Journal of Vegetation Science, 15(3), 415–422. Available from: 10.1111/j.1654-1103.2004.tb02279.x DOI
Metcalfe, H. , Hassall, K.L. , Boinot, S. & Storkey, J. (2019) The contribution of spatial mass effects to plant diversity in arable fields. Journal of Applied Ecology, 56(7), 1560–1574. PubMed PMC
Oksanen, J. , Simpson, G. , Blanchet, F. , Kindt, R. , Legendre, P. , Minchin, P. et al. (2022) vegan: Community Ecology Package. R package version 2.6‐2. Available from: https://CRAN.R-project.org/package=vegan
Orgiazzi, A. , Ballabio, C. , Panagos, P. , Jones, A. & Fernández‐Ugalde, O. (2018) LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140–153. Available from: 10.1111/ejss.12499 DOI
Otypková, Z. & Chytry, M. (2006) Effects of plot size on the ordination of vegetation samples. Journal of Vegetation Science, 17(4), 465–472. Available from: 10.1111/j.1654-1103.2006.tb02467.x DOI
Payne, R.W. (Ed.). (2013) The guide to GenStat release 16—part 2: statistics. Hemel Hempstead, UK: VSN International.
Peterka, T. , Syrovátka, V. , Dítě, D. , Hájková, P. , Hrubanová, M. , Jiroušek, M. et al. (2020) Is variable plot size a serious constraint in broad‐scale vegetation studies? A case study on fens. Journal of Vegetation Science, 31(4), 594–605. Available from: 10.1111/jvs.12885 DOI
Pinke, G. , Karácsony, P. , Czúcz, B. , Botta‐Dukát, Z. & Lengyel, A. (2012) The influence of environment, management and site context on species composition of summer arable weed vegetation in Hungary. Applied Vegetation Science, 15, 136–144. Available from: 10.1111/j.1654-109X.2011.01158.x DOI
Pinke, G. , Pál, R. & Botta‐Dukát, Z. (2010) Effects of environmental factors on weed species composition of cereal and stubble fields in western Hungary. Central European Journal of Biology, 5(2), 283–292.
R Core Team . (2022) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.R-project.org/
Richner, N. , Holderegger, R. , Linder, H.P. & Walter, T. (2015) Reviewing change in the arable flora of Europe: a meta‐analysis. Weed Research, 55(1), 1–13. Available from: 10.1111/wre.12123 DOI
Sagarin, R.D. & Gaines, S.D. (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecology Letters, 5(1), 137–147. Available from: 10.1046/j.1461-0248.2002.00297.x DOI
Šilc, U. & Čarni, A. (2007) Formalized classification of the weed vegetation of arable land in Slovenia. Preslia, 79, 283–302.
ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167–1179. Available from: 10.2307/1938672 DOI