A global database for metacommunity ecology, integrating species, traits, environment and space
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články, práce podpořená grantem
Grantová podpora
DFG FZT 118
Deutsche Forschungsgemeinschaft (German Research Foundation) - International
DFG FZT 118
Deutsche Forschungsgemeinschaft (German Research Foundation) - International
DFG FZT 118
Deutsche Forschungsgemeinschaft (German Research Foundation) - International
DFG FZT 118
Deutsche Forschungsgemeinschaft (German Research Foundation) - International
PubMed
31913312
PubMed Central
PMC6949231
DOI
10.1038/s41597-019-0344-7
PII: 10.1038/s41597-019-0344-7
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- ekologie MeSH
- rostliny MeSH
- společenstvo * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CESTES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology.
ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD 4811 Australia
Biodiversity Department of Biology Lund University Sölvegatan 37 SE 223 62 Lund Sweden
Biometris Wageningen University and Research Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
Centre for Ecology Evolution and Environmental Changes University of Lisbon 1749 016 Lisbon Portugal
corvus Lüchow 2 D 17179 Altkalen Germany
CREAF Cerdanyola del Vallés 08193 Spain UAB Cerdanyola del Vallés 08193 Spain
Departamento de Ecología e Hidrología Facultad de Biología Universidad de Murcia 30100 Murcia Spain
Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
Department of Biology and CESAM University of Aveiro Campus de Santiago 3810 193 Aveiro Portugal
Department of Biology Lund University Sölvegatan 37 SE 223 62 Lund Sweden
Department of Biology The University of Western Ontario London Ontario Canada
Department of Computer Science Martin Luther University Halle Wittenberg 06099 Halle Salle Germany
Department of Ecology Federal University of Rio de Janeiro 21941 902 Rio de Janeiro Brazil
Department of Geobotany and Plant Ecology University of Lodz Banacha 12 16 90 237 Łódź Poland
Department of Life Sciences Natural History Museum Cromwell Road London SW7 5BD UK
Dynafor INRA INPT Univ Toulouse Auzeville France
Fenner School of Environment and Society The Australian National University Acton ACT 2601 Australia
Gerencia de Planificación y Gestión Hídrica TRAGSATEC C Valentín Beato 6 28037 Madrid Spain
German Centre for Integrative Biodiversity Research Deutscher Platz 5E 04103 Leipzig Germany
Granollers Museum of Natural Sciences 08402 Granollers Catalonia Spain
Institut de recherche en biologie végétale Montréal Québec Canada
Institute of Evolutionary Biology Passeig Maritim Barceloneta 37 08003 Barcelona Spain
Institute of Geology Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia
Istanbul Technical University Eurasia Institute of Earth Sciences Istanbul 34469 Turkey
MARBEC Univ Montpellier CNRS Ifremer IRD Montpellier France
National Ecological Observatory Network 1685 38th Street Suite 100 Boulder CO 80301 USA
Naturalis Biodiversity Center Marine Biodiversity Vondellaan 55 2332 AA Leiden The Netherlands
OBG Part of Ramboll 400 Andrews St Suite 710 Rochester NY 14604 USA
Pyrenean Institute of Ecology Avda Montanana 1005 zaragoza Spain
Royal Belgian Institute of Natural Sciences Vautierstraat 29 1000 Brussels Belgium
School of Biological Sciences University of Southampton Highfield Campus Southampton SO17 1BJ UK
School of Environment and Life Sciences University of Salford M5 4WT Salford UK
The James Hutton Institute Craigiebuckler Aberdeen AB15 8QH UK
The soil conservation service of Iceland Gunnarsholt 851 Hella Iceland
UMR 5023 LEHNA Université Lyon 1 Université Lyon Villeurbanne France
Univ Grenoble Alpes Univ Savoie Mont Blanc CNRS LECA F 38000 Grenoble France
University of Applied Sciences HTW Dresden Pillnitzer Platz 2 D 01326 Dresden Germany
University of Connecticut 75 N Eagleville Road Unit 3043 Storrs CT 06269 USA
University of Ghent Department of Biology K L Ledeganckstraat 35 9000 Ghent Belgium
Zoology University of New England Armidale NSW 2351 Australia
Zobrazit více v PubMed
Vellend, M. The Theory of Ecological Communities (MPB-57). (Princeton University Press, 2016).
Leibold, M. A. & Chase, J. M. Metacommunity Ecology. (Princeton University Press, 2017). PubMed
Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology. 2011;48:1079–1087. doi: 10.1111/j.1365-2664.2011.02048.x. DOI
Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology. 2002;16:545–556. doi: 10.1046/j.1365-2435.2002.00664.x. DOI
McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution. 2006;21:178–185. doi: 10.1016/j.tree.2006.02.002. PubMed DOI
Cadotte MW, Arnillas CA, Livingstone SW, Yasui S-LE. Predicting communities from functional traits. Trends in Ecology & Evolution. 2015;30:510–511. doi: 10.1016/j.tree.2015.07.001. PubMed DOI
Funk JL, et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews. 2017;92:1156–1173. doi: 10.1111/brv.12275. PubMed DOI
Devictor V, et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters. 2010;13:1030–1040. PubMed
Meynard CN, et al. Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography. 2011;20:893–903. doi: 10.1111/j.1466-8238.2010.00647.x. DOI
Villéger S, Miranda JR, Hernandez DF, Mouillot D. Low Functional β-Diversity Despite High Taxonomic β-Diversity among Tropical Estuarine Fish Communities. Plos One. 2012;7:e40679. doi: 10.1371/journal.pone.0040679. PubMed DOI PMC
Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S. Functional and phylogenetic diversity as predictors of biodiversity—ecosystem-function relationships. Ecology. 2011;92:1573–1581. doi: 10.1890/10-1245.1. PubMed DOI
Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution. 2013;28:167–177. doi: 10.1016/j.tree.2012.10.004. PubMed DOI
Violle C, et al. Let the concept of trait be functional! Oikos. 2007;116:882–892. doi: 10.1111/j.0030-1299.2007.15559.x. DOI
Díaz S, et al. The global spectrum of plant form and function. Nature. 2016;529:167–171. doi: 10.1038/nature16489. PubMed DOI
Dolédec S, Chessel D, ter Braak CJF, Champely S. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics. 1996;3:143–166. doi: 10.1007/BF02427859. DOI
Open Traits Network. Open Traits. Available at: opentraits.org (2018).
Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators53, 271–282, www.freshwaterecology.info (2015).
Trustees of the Natural History Museum, London. The PREDICTS project. PREDICTS, https://www.predicts.org.uk/ (2012).
Newbold T, et al. call for data: PREDICTS: Projecting Responses of Ecological Diversity in Changing Terrestrial Systems. Frontiers of Biogeography. 2012;4:155–156. doi: 10.21425/F54415577. DOI
Kattge J, et al. TRY – a global database of plant traits. Global Change Biology. 2011;17:2905–2935. doi: 10.1111/j.1365-2486.2011.02451.x. PubMed DOI
CESTES coll. CESTES - A global database for metaCommunity Ecology: Species, Traits, Environment and Space. CESTES, https://icestes.github.io/ (2019).
Legendre P, Galzin R, Harmelin-Vivien ML. Relating Behavior to Habitat: Solutions to The fourth-Corner Problem. Ecology. 1997;78:547–562.
Dray S, Legendre P. Testing the Species Traits–Environment Relationships: The Fourth-Corner Problem Revisited. Ecology. 2008;89:3400–3412. doi: 10.1890/08-0349.1. PubMed DOI
Kleyer M, et al. Assessing species and community functional responses to environmental gradients: which multivariate methods? Journal of Vegetation Science. 2012;23:805–821. doi: 10.1111/j.1654-1103.2012.01402.x. DOI
Ovaskainen O, et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters. 2017;20:561–576. doi: 10.1111/ele.12757. PubMed DOI
Brown AM, et al. The fourth-corner solution – using predictive models to understand how species traits interact with the environment. Methods in Ecology and Evolution. 2014;5:344–352. doi: 10.1111/2041-210X.12163. DOI
Broman KW, Woo KH. Data Organization in Spreadsheets. The American Statistician. 2018;72:2–10. doi: 10.1080/00031305.2017.1375989. DOI
Jeliazkov A, 2019. CESTES - A global database for metaCommunity Ecology: Species, Traits, Environment and Space. figshare. PubMed DOI PMC
Jeliazkov A, the CESTES consortium. 2019. A global database for metaCommunity Ecology: Species, Traits, Environment and Space - version 1.0 (CESTES v1.0) iDiv Biodiversity Portal. DOI
Whitlock MC. Data archiving in ecology and evolution: best practices. Trends in Ecology & Evolution. 2011;26:61–65. doi: 10.1016/j.tree.2010.11.006. PubMed DOI
Chevenet F, Dolédec S, Chessel D. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology. 1994;31:295–309. doi: 10.1111/j.1365-2427.1994.tb01742.x. DOI
Bagaria G, Pino J, Rodà F, Guardiola M. Species traits weakly involved in plant responses to landscape properties in Mediterranean grasslands. Journal of Vegetation Science. 2012;23:432–442. doi: 10.1111/j.1654-1103.2011.01363.x. DOI
Barbaro L, Brockerhoff EG, Giffard B, van Halder I. Edge and area effects on avian assemblages and insectivory in fragmented native forests. Landscape Ecology. 2012;27:1451–1463. doi: 10.1007/s10980-012-9800-x. DOI
Barbaro L, et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. Journal of Applied Ecology. 2017;54:500–508. doi: 10.1111/1365-2664.12740. DOI
Barbaro L, van Halder I. Linking bird, carabid beetle and butterfly life‐history traits to habitat fragmentation in mosaic landscapes. Ecography. 2009;32:321–333. doi: 10.1111/j.1600-0587.2008.05546.x. DOI
Bartonova A, Benes J, Fric ZF, Chobot K, Konvicka M. How universal are reserve design rules? A test using butterflies and their life history traits. Ecography. 2016;39:456–464. doi: 10.1111/ecog.01642. DOI
Bonada N, Rieradevall M, Prat N. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia. 2007;589:91–106. doi: 10.1007/s10750-007-0723-5. DOI
Brind’Amour A, Boisclair D, Dray S, Legendre P. Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach. Ecological Applications. 2011;21:363–377. doi: 10.1890/09-2178.1. PubMed DOI
Campos R, et al. Factors affecting the metacommunity structure of periphytic ostracods (Crustacea, Ostracoda): a deconstruction approach based on biological traits. Aquatic Sciences. 2018;80:16. doi: 10.1007/s00027-018-0567-2. DOI
Carvalho RA, Tejerina-Garro FL. The influence of environmental variables on the functional structure of headwater stream fish assemblages: a study of two tropical basins in Central Brazil. Neotropical Ichthyology. 2015;13:349–360. doi: 10.1590/1982-0224-20130148. DOI
Castro H, Lehsten V, Lavorel S, Freitas H. Functional response traits in relation to land use change in the Montado. Agriculture, Ecosystems & Environment. 2010;137:183–191. doi: 10.1016/j.agee.2010.02.002. DOI
Charbonnier YM, et al. Bat and bird diversity along independent gradients of latitude and tree composition in European forests. Oecologia. 2016;182:529–537. doi: 10.1007/s00442-016-3671-9. PubMed DOI
Chmura D, Żarnowiec J, Staniaszek-Kik M. Interactions between plant traits and environmental factors within and among montane forest belts: A study of vascular species colonising decaying logs. Forest Ecology and Management. 2016;379:216–225. doi: 10.1016/j.foreco.2016.08.024. DOI
Choler P. Consistent Shifts in Alpine Plant Traits along a Mesotopographical Gradient. Arctic, Antarctic, and Alpine Research. 2005;37:444–453. doi: 10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2. DOI
Chong-Seng KM, Mannering TD, Pratchett MS, Bellwood DR, Graham NAJ. The Influence of Coral Reef Benthic Condition on Associated Fish Assemblages. Plos One. 2012;7:e42167. doi: 10.1371/journal.pone.0042167. PubMed DOI PMC
Cleary DFR, et al. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay–Thousand Islands coral reef complex. Marine Pollution Bulletin. 2016;110:701–717. doi: 10.1016/j.marpolbul.2016.04.042. PubMed DOI
Cleary DFR, et al. Bird species and traits associated with logged and unlogged forest in Borneo. Ecological Applications. 2007;17:1184–1197. doi: 10.1890/05-0878. PubMed DOI
Cleary DFR, Renema W. Relating species traits of foraminifera to environmental variables in the Spermonde Archipelago, Indonesia. Marine Ecology Progress Series. 2007;334:73–82. doi: 10.3354/meps334073. DOI
Cornwell WK, Ackerly DD. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs. 2009;79:109–126. doi: 10.1890/07-1134.1. DOI
Drew, J. A. & Amatangelo, K. L. Community assembly of coral reef fishes along the Melanesian biodiversity gradient. Plos One12 (2017). PubMed PMC
Drew JA, Amatangelo KL. 2017. Community assembly of coral reef fishes along the Melanesian biodiversity gradient. figshare. PubMed DOI PMC
Dziock F, et al. Reproducing or dispersing? Using trait based habitat templet models to analyse Orthoptera response to flooding and land use. Agriculture, Ecosystems & Environment. 2011;145:85–94. doi: 10.1016/j.agee.2011.07.015. DOI
Eallonardo AS, Leopold DJ, Fridley JD, Stella JC. Salinity tolerance and the decoupling of resource axis plant traits. Journal of Vegetation Science. 2013;24:365–374. doi: 10.1111/j.1654-1103.2012.01470.x. DOI
Farneda FZ, et al. Trait-related responses to habitat fragmentation in Amazonian bats. Journal of Applied Ecology. 2015;52:1381–1391. doi: 10.1111/1365-2664.12490. DOI
Frenette-Dussault C, Shipley B, Hingrat Y. Linking plant and insect traits to understand multitrophic community structure in arid steppes. Functional Ecology. 2013;27:786–792. doi: 10.1111/1365-2435.12075. DOI
Frenette-Dussault C, Shipley B, Léger J-F, Meziane D, Hingrat Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. Journal of Vegetation Science. 2012;23:208–222. doi: 10.1111/j.1654-1103.2011.01350.x. DOI
Fried G, Kazakou E, Gaba S. Trajectories of weed communities explained by traits associated with species’ response to management practices. Agriculture, Ecosystems & Environment. 2012;158:147–155. doi: 10.1016/j.agee.2012.06.005. DOI
Gallardo B, Gascon S, Garcia M, Comin FA. Testing the response of macroinvertebrate functional structure and biodiversity to flooding and confinement. Journal of limnology. 2009;68:315–326. doi: 10.4081/jlimnol.2009.315. DOI
Gibb H, et al. Responses of foliage-living spider assemblage composition and traits to a climatic gradient in Themeda grasslands: Spider Traits and Climatic Gradients. Austral Ecology. 2015;40:225–237. doi: 10.1111/aec.12195. DOI
Gonçalves-Souza T, Brescovit AD, de C. Rossa-Feres D, Romero GQ. Bromeliads as biodiversity amplifiers and habitat segregation of spider communities in a Neotropical rainforest. The Journal of Arachnology. 2010;38:270–279. doi: 10.1636/P09-58.1. DOI
Gonçalves-Souza T, Romero GQ, Cottenie K. Metacommunity versus Biogeography: A Case Study of Two Groups of Neotropical Vegetation-Dwelling Arthropods. Plos One. 2014;9:e115137. doi: 10.1371/journal.pone.0115137. PubMed DOI PMC
Jamil T, Ozinga WA, Kleyer M, ter Braak CJF. Selecting traits that explain species-environment relationships: a generalized linear mixed model approach. Journal of Vegetation Science. 2013;24:988–1000. doi: 10.1111/j.1654-1103.2012.12036.x. DOI
Jeliazkov, A. Scale-effects in agriculture-environment-biodiversity relationships. (Université Pierre et Marie Curie, 2013).
Jeliazkov A, et al. Level-dependence of the relationships between amphibian biodiversity and environment in pond systems within an intensive agricultural landscape. Hydrobiologia. 2014;723:7–23. doi: 10.1007/s10750-013-1503-z. DOI
Kadlec T, Benes J, Jarosik V, Konvicka M. Revisiting urban refuges: Changes of butterfly and burnet fauna in Prague reserves over three decades. Landscape and Urban Planning. 2008;85:1–11. doi: 10.1016/j.landurbplan.2007.07.007. DOI
Klaiber, J. et al. Fauna Indicativa. (Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL, CH-Birmensdorf, 2017).
Konvicka M, Kadlec T. How to increase the value of urban areas for butterfly conservation? A lesson from Prague nature reserves and parks. European Journal of Entomology. 2011;108:219–229. doi: 10.14411/eje.2011.030. DOI
Krasnov BR, et al. Assembly rules of ectoparasite communities across scales: combining patterns of abiotic factors, host composition, geographic space, phylogeny and traits. Ecography. 2015;38:184–197. doi: 10.1111/ecog.00915. DOI
Lowe EC, Threlfall CG, Wilder SM, Hochuli DF. Environmental drivers of spider community composition at multiple scales along an urban gradient. Biodiversity Conservation. 2018;27:829–852. doi: 10.1007/s10531-017-1466-x. DOI
Marteinsdóttir B, Eriksson O. Plant community assembly in semi-natural grasslands and ex-arable fields: a trait-based approach. Journal of Vegetation Science. 2014;25:77–87. doi: 10.1111/jvs.12058. DOI
Meffert PJ, Dziock F. The influence of urbanisation on diversity and trait composition of birds. Landscape Ecology. 2013;28:943–957. doi: 10.1007/s10980-013-9867-z. DOI
Mellado-Diaz A, Luisa Suarez Alonso M, Rosario Vidal-Abarca Gutierrez M. Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshwater Biology. 2008;53:1–21.
Ossola A, Nash MA, Christie FJ, Hahs AK, Livesley SJ. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants. PeerJ. 2015;3:e1356. doi: 10.7717/peerj.1356. PubMed DOI PMC
Pakeman RJ. Multivariate identification of plant functional response and effect traits in an agricultural landscape. Ecology. 2011;92:1353–1365. doi: 10.1890/10-1728.1. PubMed DOI
Pavoine S, Vela E, Gachet S, de Bélair G, Bonsall MB. Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly: Multiple data in community organization. Journal of Ecology. 2011;99:165–175. doi: 10.1111/j.1365-2745.2010.01743.x. DOI
Pekin BK, Wittkuhn RS, Boer MM, Macfarlane C, Grierson PF. Plant functional traits along environmental gradients in seasonally dry and fire-prone ecosystem. Journal of Vegetation Science. 2011;22:1009–1020. doi: 10.1111/j.1654-1103.2011.01323.x. DOI
Pomati F, et al. Individual Cell Based Traits Obtained by Scanning Flow-Cytometry Show Selection by Biotic and Abiotic Environmental Factors during a Phytoplankton Spring Bloom. Plos One. 2013;8:e71677. doi: 10.1371/journal.pone.0071677. PubMed DOI PMC
Purschke O, Sykes MT, Reitalu T, Poschlod P, Prentice HC. Linking landscape history and dispersal traits in grassland plant communities. Oecologia. 2012;168:773–783. doi: 10.1007/s00442-011-2142-6. PubMed DOI
Rachello-Dolmen PG, Cleary DFR. Relating coral species traits to environmental conditions in the Jakarta Bay/Pulau Seribu reef system, Indonesia. Estuarine, Coastal and Shelf Science. 2007;73:816–826. doi: 10.1016/j.ecss.2007.03.017. DOI
Raevel V, Violle C, Munoz F. Mechanisms of ecological succession: insights from plant functional strategies. Oikos. 2012;121:1761–1770. doi: 10.1111/j.1600-0706.2012.20261.x. DOI
Ribera I, Dolédec S, Downie IS, Foster GN. Effect of Land Disturbance and Stress on Species Traits of Ground Beetle Assemblages. Ecology. 2001;82:1112–1129. doi: 10.1890/0012-9658(2001)082[1112:EOLDAS]2.0.CO;2. DOI
Robinson N, Kadlec T, Bowers MD, Guralnick RP. Integrating species traits and habitat characteristics into models of butterfly diversity in a fragmented ecosystem. Ecological Modelling. 2014;281:15–25. doi: 10.1016/j.ecolmodel.2014.01.022. DOI
Robroek BJM, et al. Taxonomic and functional turnover are decoupled in European peat bogs. Nature Communications. 2017;8:1161. doi: 10.1038/s41467-017-01350-5. PubMed DOI PMC
Robroek B. 2017. Data from: Taxonomic and functional turnover are decoupled in European peat bogs. Dryad Digitial Repository. PubMed DOI PMC
Shieh S-H, Wang L-K, Hsiao W-F. Shifts in Functional Traits of Aquatic Insects along a Subtropical Stream in Taiwan. Zoological Studies. 2012;51:1051–1065.
Spake R, Barsoum N, Newton AC, Doncaster CP. Drivers of the composition and diversity of carabid functional traits in UK coniferous plantations. Forest Ecology and Management. 2016;359:300–308. doi: 10.1016/j.foreco.2015.10.008. PubMed DOI PMC
Urban MC. Disturbance heterogeneity determines freshwater metacommunity structure. Ecology. 2004;85:2971–2978. doi: 10.1890/03-0631. DOI
van Klink R, et al. No detrimental effects of delayed mowing or uncut grass refuges on plant and bryophyte community structure and phytomass production in low-intensity hay meadows. Basic and Applied Ecology. 2017;20:1–9. doi: 10.1016/j.baae.2017.02.003. DOI
van Klink, R. et al. Larval and phenological traits predict invertebrate community response to mowing regime manipulations. Ecological Applications, e01900 (2019). PubMed
Westgate MJ, Driscoll DA, Lindenmayer DB. Can the intermediate disturbance hypothesis and information on species traits predict anuran responses to fire? Oikos. 2012;121:1516–1524. doi: 10.1111/j.1600-0706.2011.19863.x. DOI
Yates ML, Andrew NR, Binns M, Gibb H. Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ. 2014;2:e271. doi: 10.7717/peerj.271. PubMed DOI PMC
De Bélair G, Bencheikh-Lehocine M. Composition et déterminisme de la végétation d’une plaine côtière marécageuse: La Mafragh (Annaba, Algérie) Bulletin d’Ecologie. 1987;18:393–407.
Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 1–20 (2007).
Cleary DFR. 2016. Bird species and traits associated with logged and unlogged forest in Borneo. figshare. PubMed DOI
Belskaya EA, Zolotarev MP. Changes in the size structure of carabid communities in forest ecosystems under technogenic transformation. Russian Journal of Ecology. 2017;48:152–160. doi: 10.1134/S1067413617010040. DOI
Cleary DFR, et al. Variation in the diversity and composition of benthic taxa as a function of distance offshore, depth and exposure in the Spermonde Archipelago, Indonesia. Estuarine, Coastal and Shelf Science. 2005;65:557–570. doi: 10.1016/j.ecss.2005.06.025. DOI
Cormont A, Vos C, van Turnhout C, Foppen R, ter Braak C. Using life-history traits to explain bird population responses to changing weather variability. Climate Research. 2011;49:59–71. doi: 10.3354/cr01007. DOI
de Voogd NJ, Cleary DFR. Relating species traits to environmental variables in Indonesian coral reef sponge assemblages. Marine and Freshwater Research. 2007;58:240–249. doi: 10.1071/MF06125. DOI
Huebner K, Lindo Z, Lechowicz MJ. Post-fire succession of collembolan communities in a northern hardwood forest. European Journal of Soil Biology. 2012;48:59–65. doi: 10.1016/j.ejsobi.2011.10.004. DOI
Jamil T, Kruk C, ter Braak CJF. A unimodal species response model relating traits to environment with application to phytoplankton communities. Plos One. 2014;9:e97583. doi: 10.1371/journal.pone.0097583. PubMed DOI PMC
Jamil T, Opdekamp W, van Diggelen R, ter Braak CJF. Trait-Environment Relationships and Tiered Forward Model Selection in Linear Mixed Models. International Journal of Ecology. 2012;2012:1–12. doi: 10.1155/2012/947103. DOI
Palozzi JE, Lindo Z. Boreal peat properties link to plant functional traits of ecosystem engineers. Plant Soil. 2017;418:277–291. doi: 10.1007/s11104-017-3291-0. DOI
Meyer C, Weigelt P, Kreft H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters. 2016;19:992–1006. doi: 10.1111/ele.12624. PubMed DOI
Engemann K, et al. A plant growth form dataset for the New World. Ecology. 2016;97:3243–3243. doi: 10.1002/ecy.1569. PubMed DOI
Messier J, McGill BJ, Lechowicz MJ. How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters. 2010;13:838–848. doi: 10.1111/j.1461-0248.2010.01476.x. PubMed DOI
Violle C, et al. The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution. 2012;27:244–252. doi: 10.1016/j.tree.2011.11.014. PubMed DOI
Rosbakh S, Bernhardt-Römermann M, Poschlod P. Elevation matters: contrasting effects of climate change on the vegetation development at different elevations in the Bavarian Alps. Alpine Botany. 2014;124:143–154. doi: 10.1007/s00035-014-0139-6. DOI
Gianuca AT, et al. Integrating trait and phylogenetic distances to assess scale-dependent community assembly processes. Ecography. 2017;40:742–752. doi: 10.1111/ecog.02263. DOI
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).
A global database for metacommunity ecology, integrating species, traits, environment and space