A global database for metacommunity ecology, integrating species, traits, environment and space

. 2020 Jan 08 ; 7 (1) : 6. [epub] 20200108

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu dataset, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31913312

Grantová podpora
DFG FZT 118 Deutsche Forschungsgemeinschaft (German Research Foundation) - International
DFG FZT 118 Deutsche Forschungsgemeinschaft (German Research Foundation) - International
DFG FZT 118 Deutsche Forschungsgemeinschaft (German Research Foundation) - International
DFG FZT 118 Deutsche Forschungsgemeinschaft (German Research Foundation) - International

Odkazy

PubMed 31913312
PubMed Central PMC6949231
DOI 10.1038/s41597-019-0344-7
PII: 10.1038/s41597-019-0344-7
Knihovny.cz E-zdroje

The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CESTES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology.

Anses Laboratoire de la Santé des Végétaux Unité Entomologie et Plantes Invasives Montferrier sur Lez France

ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD 4811 Australia

Biodiversity Department of Biology Lund University Sölvegatan 37 SE 223 62 Lund Sweden

Biological Dynamics of Forest Fragments Project National Institute for Amazonian Research and Smithsonian Tropical Research Institute 69011 970 Manaus Brazil

Biology Centre CAS Czech Academy of Sciences Institute of Entomology Branisovska 31 370 05 Ceske Budejovice Czech Republic

Biometris Wageningen University and Research Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands

CEFE UMR 5175 CNRS Université de Montpellier Université Paul Valéry Montpellier EPHE 1919 route de Mende F 34293 Montpellier Cedex 5 France

Centre d'Ecologie et des Sciences de la Conservation Muséum National d'Histoire Naturelle CNRS Sorbonne Université Paris France

Centre for Ecology Evolution and Environmental Changes University of Lisbon 1749 016 Lisbon Portugal

Centre for Ecosystems Society and Biosecurity Forest Research Alice Holt Lodge Farnham Surrey GU10 4LH UK

Centro de Biologia Aquática Escola de Ciências Agrárias e Biológicas Pontifícia Universidade Católica de Goiás Campus 2 Av Engler s n Jd Mariliza Goiânia Goiás CEP 74885460 Brazil

CFE Centre for Functional Ecology Science for People and the Planet Department of Life Sciences University of Coimbra 3000 456 Coimbra Portugal

CNRS and Université Paul Sabatier Laboratoire Évolution et Diversité Biologique UMR 5174 Bât 4R1 118 Route de Narbonne F 31062 Toulouse cedex 9 France

corvus Lüchow 2 D 17179 Altkalen Germany

CREAF Cerdanyola del Vallés 08193 Spain UAB Cerdanyola del Vallés 08193 Spain

Departamento de Biologia Universidade Estadual de Goiás Campus Palmeiras de Goiás Palmeiras de Goiás Goiás Brazil

Departamento de Ecología e Hidrología Facultad de Biología Universidad de Murcia 30100 Murcia Spain

Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia

Department of Biology and CESAM University of Aveiro Campus de Santiago 3810 193 Aveiro Portugal

Department of Biology Ecological Synthesis and Biodiversity Conservation Lab Federal Rural University of Pernambuco Rio de Janeiro Brazil

Department of Biology Lund University Sölvegatan 37 SE 223 62 Lund Sweden

Department of Biology The University of Western Ontario London Ontario Canada

Department of Computer Science Martin Luther University Halle Wittenberg 06099 Halle Salle Germany

Department of Ecological Humanities Providence University 200 Sec 7 Taiwan Boulevard Shalu Dist Taichung 43301 Taiwan

Department of Ecology Environment and Evolution and Centre for Future Landscapes La Trobe University Melbourne Victoria 3086 Australia

Department of Ecology Federal University of Rio de Janeiro 21941 902 Rio de Janeiro Brazil

Department of Environmental and Forest Biology State University of New York College of Environmental Science and Forestry 1 Forestry Dr Syracuse New York NY 13210 USA

Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstrasse 190 8057 Zurich Switzerland

Department of Geobotany and Plant Ecology University of Lodz Banacha 12 16 90 237 Łódź Poland

Department of Life Sciences Natural History Museum Cromwell Road London SW7 5BD UK

Department of Migration and Immuno ecology Max Planck Institute for Ornithology 78315 Radolfzell Germany

Department of Physical Geography and Ecosystem Science Lund University Sölvegatan 37 SE 223 62 Lund Sweden

Division of Conservation Biology Institute of Ecology and Evolution University of Bern 3012 Bern Switzerland

Dynafor INRA INPT Univ Toulouse Auzeville France

Eawag Swiss Federal Institute of Water Science and Technology Uberlandstrasse 133 8600 Dubendorf Switzerland

Ecology and Conservation Biology Institute for Plant Sciences University of Regensburg D 93040 Regensburg Germany

Ecology and Evolution Research Centre School of Biological Earth and Environmental Sciences UNSW Sydney Sydney New South Wales 2052 Australia

Fenner School of Environment and Society The Australian National University Acton ACT 2601 Australia

Gerencia de Planificación y Gestión Hídrica TRAGSATEC C Valentín Beato 6 28037 Madrid Spain

German Centre for Integrative Biodiversity Research Deutscher Platz 5E 04103 Leipzig Germany

Granollers Museum of Natural Sciences 08402 Granollers Catalonia Spain

Grup de Recerca Freshwater Ecology Hydrology and Management Diagonal 643 08028 Barcelona Catalonia Spain

Institut de recherche en biologie végétale Montréal Québec Canada

Institute of Environmental Protection and Engineering University of Bielsko Biala Willowa 2 43 309 Bielsko Biała Poland

Institute of Environmental Sciences Environmental Biology Department Leiden University Einsteinweg 2 2333 CC Leiden The Netherlands

Institute of Evolutionary Biology Passeig Maritim Barceloneta 37 08003 Barcelona Spain

Institute of Geology Tallinn University of Technology Ehitajate tee 5 19086 Tallinn Estonia

Institute of Parasitology and Institute of Zoology Slovak Acad Sci Loffl erova 10 SK 04001 Kosice Slovakia

Institute of Plant and Animal Ecology Ural Branch Russian Academy of Sciences Eighth March Street 202 Yekaterinburg 620144 Russia

Instituto EPOMEX Universidad Autónoma de Campeche Av Héroe de Nacozari No 480 Campus 6 de Investigación UAC San Francisco de Campeche 24020 Campeche México

Istanbul Technical University Eurasia Institute of Earth Sciences Istanbul 34469 Turkey

Laboratório de Biodiversidade Programa de Pós Graduação em Sociedade Tecnologia e Meio Ambiente UniEVANGÉLICA Avenida Universitária km 3 5 Cidade Universitária Anápolis Goiás CEP 75083 515 Brazil

MARBEC Univ Montpellier CNRS Ifremer IRD Montpellier France

Mitrani Department of Desert Ecology Swiss Institute for Dryland Environmental and Energy Research Jacob Blaustein Institutes for Desert Research Ben Gurion University of the Negev Sede Boqer Campus Midreshet Ben Gurion 8499000 Israel

National Ecological Observatory Network 1685 38th Street Suite 100 Boulder CO 80301 USA

Naturalis Biodiversity Center Marine Biodiversity Vondellaan 55 2332 AA Leiden The Netherlands

OBG Part of Ramboll 400 Andrews St Suite 710 Rochester NY 14604 USA

Programa de Pós Graduação em Ecologia de Ambientes Aquáticos Continentais Núcleo de Pesquisas em Limnologia Ictiologia Universidade Estadual de Maringá Av Colombo 5790 CEP 87020 900 Maringá PR Brazil

Pyrenean Institute of Ecology Avda Montanana 1005 zaragoza Spain

Royal Belgian Institute of Natural Sciences Vautierstraat 29 1000 Brussels Belgium

School of Biological Sciences University of Southampton Highfield Campus Southampton SO17 1BJ UK

School of Environment and Life Sciences University of Salford M5 4WT Salford UK

School of Geography and Environmental Science University of Southampton Highfield Campus Southampton SO17 1BJ UK

The James Hutton Institute Craigiebuckler Aberdeen AB15 8QH UK

The soil conservation service of Iceland Gunnarsholt 851 Hella Iceland

Tropical Island Sustainable Development Research Center National Penghu University of Science and Technology 300 Liu Ho Rd Magong City Penghu 880 Taiwan

UMR 5023 LEHNA Université Lyon 1 Université Lyon Villeurbanne France

Unité Écologie et Modèles pour l'Halieutique IFREMER Rue de l'île d'Yeu B P 21105 44311 Nantes Cedex 03 France

Univ Grenoble Alpes Univ Savoie Mont Blanc CNRS LECA F 38000 Grenoble France

Universidade Estadual de Goiás Campus de Ciências Exatas e Tecnológicas Henrique Santillo BR 153 No 3105 Fazenda Barreiro do Meio 75132400 Anápolis GO Brazil

University of Applied Sciences HTW Dresden Pillnitzer Platz 2 D 01326 Dresden Germany

University of Colorado Department of Ecology and Evolutionary Biology UCB 334 University of Colorado Boulder CO 80309 USA

University of Connecticut 75 N Eagleville Road Unit 3043 Storrs CT 06269 USA

University of Ghent Department of Biology K L Ledeganckstraat 35 9000 Ghent Belgium

University of South Bohemia in Ceske Budejovice Faculty of Science Branisovska 1760 370 05 Ceske Budejovice Czech Republic

Wageningen Environmental Research Wageningen University and Research Droevendaalsesteeg 3 3 A 6708 PB Wageningen The Netherlands

Zoology University of New England Armidale NSW 2351 Australia

Erratum v

PubMed

Zobrazit více v PubMed

Vellend, M. The Theory of Ecological Communities (MPB-57). (Princeton University Press, 2016).

Leibold, M. A. & Chase, J. M. Metacommunity Ecology. (Princeton University Press, 2017). PubMed

Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology. 2011;48:1079–1087. doi: 10.1111/j.1365-2664.2011.02048.x. DOI

Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology. 2002;16:545–556. doi: 10.1046/j.1365-2435.2002.00664.x. DOI

McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution. 2006;21:178–185. doi: 10.1016/j.tree.2006.02.002. PubMed DOI

Cadotte MW, Arnillas CA, Livingstone SW, Yasui S-LE. Predicting communities from functional traits. Trends in Ecology & Evolution. 2015;30:510–511. doi: 10.1016/j.tree.2015.07.001. PubMed DOI

Funk JL, et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews. 2017;92:1156–1173. doi: 10.1111/brv.12275. PubMed DOI

Devictor V, et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters. 2010;13:1030–1040. PubMed

Meynard CN, et al. Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography. 2011;20:893–903. doi: 10.1111/j.1466-8238.2010.00647.x. DOI

Villéger S, Miranda JR, Hernandez DF, Mouillot D. Low Functional β-Diversity Despite High Taxonomic β-Diversity among Tropical Estuarine Fish Communities. Plos One. 2012;7:e40679. doi: 10.1371/journal.pone.0040679. PubMed DOI PMC

Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S. Functional and phylogenetic diversity as predictors of biodiversity—ecosystem-function relationships. Ecology. 2011;92:1573–1581. doi: 10.1890/10-1245.1. PubMed DOI

Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution. 2013;28:167–177. doi: 10.1016/j.tree.2012.10.004. PubMed DOI

Violle C, et al. Let the concept of trait be functional! Oikos. 2007;116:882–892. doi: 10.1111/j.0030-1299.2007.15559.x. DOI

Díaz S, et al. The global spectrum of plant form and function. Nature. 2016;529:167–171. doi: 10.1038/nature16489. PubMed DOI

Dolédec S, Chessel D, ter Braak CJF, Champely S. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics. 1996;3:143–166. doi: 10.1007/BF02427859. DOI

Open Traits Network. Open Traits. Available at: opentraits.org (2018).

Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators53, 271–282, www.freshwaterecology.info (2015).

Trustees of the Natural History Museum, London. The PREDICTS project. PREDICTS, https://www.predicts.org.uk/ (2012).

Newbold T, et al. call for data: PREDICTS: Projecting Responses of Ecological Diversity in Changing Terrestrial Systems. Frontiers of Biogeography. 2012;4:155–156. doi: 10.21425/F54415577. DOI

Kattge J, et al. TRY – a global database of plant traits. Global Change Biology. 2011;17:2905–2935. doi: 10.1111/j.1365-2486.2011.02451.x. PubMed DOI

CESTES coll. CESTES - A global database for metaCommunity Ecology: Species, Traits, Environment and Space. CESTES, https://icestes.github.io/ (2019).

Legendre P, Galzin R, Harmelin-Vivien ML. Relating Behavior to Habitat: Solutions to The fourth-Corner Problem. Ecology. 1997;78:547–562.

Dray S, Legendre P. Testing the Species Traits–Environment Relationships: The Fourth-Corner Problem Revisited. Ecology. 2008;89:3400–3412. doi: 10.1890/08-0349.1. PubMed DOI

Kleyer M, et al. Assessing species and community functional responses to environmental gradients: which multivariate methods? Journal of Vegetation Science. 2012;23:805–821. doi: 10.1111/j.1654-1103.2012.01402.x. DOI

Ovaskainen O, et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters. 2017;20:561–576. doi: 10.1111/ele.12757. PubMed DOI

Brown AM, et al. The fourth-corner solution – using predictive models to understand how species traits interact with the environment. Methods in Ecology and Evolution. 2014;5:344–352. doi: 10.1111/2041-210X.12163. DOI

Broman KW, Woo KH. Data Organization in Spreadsheets. The American Statistician. 2018;72:2–10. doi: 10.1080/00031305.2017.1375989. DOI

Jeliazkov A, 2019. CESTES - A global database for metaCommunity Ecology: Species, Traits, Environment and Space. figshare. PubMed DOI PMC

Jeliazkov A, the CESTES consortium. 2019. A global database for metaCommunity Ecology: Species, Traits, Environment and Space - version 1.0 (CESTES v1.0) iDiv Biodiversity Portal. DOI

Whitlock MC. Data archiving in ecology and evolution: best practices. Trends in Ecology & Evolution. 2011;26:61–65. doi: 10.1016/j.tree.2010.11.006. PubMed DOI

Chevenet F, Dolédec S, Chessel D. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology. 1994;31:295–309. doi: 10.1111/j.1365-2427.1994.tb01742.x. DOI

Bagaria G, Pino J, Rodà F, Guardiola M. Species traits weakly involved in plant responses to landscape properties in Mediterranean grasslands. Journal of Vegetation Science. 2012;23:432–442. doi: 10.1111/j.1654-1103.2011.01363.x. DOI

Barbaro L, Brockerhoff EG, Giffard B, van Halder I. Edge and area effects on avian assemblages and insectivory in fragmented native forests. Landscape Ecology. 2012;27:1451–1463. doi: 10.1007/s10980-012-9800-x. DOI

Barbaro L, et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. Journal of Applied Ecology. 2017;54:500–508. doi: 10.1111/1365-2664.12740. DOI

Barbaro L, van Halder I. Linking bird, carabid beetle and butterfly life‐history traits to habitat fragmentation in mosaic landscapes. Ecography. 2009;32:321–333. doi: 10.1111/j.1600-0587.2008.05546.x. DOI

Bartonova A, Benes J, Fric ZF, Chobot K, Konvicka M. How universal are reserve design rules? A test using butterflies and their life history traits. Ecography. 2016;39:456–464. doi: 10.1111/ecog.01642. DOI

Bonada N, Rieradevall M, Prat N. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia. 2007;589:91–106. doi: 10.1007/s10750-007-0723-5. DOI

Brind’Amour A, Boisclair D, Dray S, Legendre P. Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach. Ecological Applications. 2011;21:363–377. doi: 10.1890/09-2178.1. PubMed DOI

Campos R, et al. Factors affecting the metacommunity structure of periphytic ostracods (Crustacea, Ostracoda): a deconstruction approach based on biological traits. Aquatic Sciences. 2018;80:16. doi: 10.1007/s00027-018-0567-2. DOI

Carvalho RA, Tejerina-Garro FL. The influence of environmental variables on the functional structure of headwater stream fish assemblages: a study of two tropical basins in Central Brazil. Neotropical Ichthyology. 2015;13:349–360. doi: 10.1590/1982-0224-20130148. DOI

Castro H, Lehsten V, Lavorel S, Freitas H. Functional response traits in relation to land use change in the Montado. Agriculture, Ecosystems & Environment. 2010;137:183–191. doi: 10.1016/j.agee.2010.02.002. DOI

Charbonnier YM, et al. Bat and bird diversity along independent gradients of latitude and tree composition in European forests. Oecologia. 2016;182:529–537. doi: 10.1007/s00442-016-3671-9. PubMed DOI

Chmura D, Żarnowiec J, Staniaszek-Kik M. Interactions between plant traits and environmental factors within and among montane forest belts: A study of vascular species colonising decaying logs. Forest Ecology and Management. 2016;379:216–225. doi: 10.1016/j.foreco.2016.08.024. DOI

Choler P. Consistent Shifts in Alpine Plant Traits along a Mesotopographical Gradient. Arctic, Antarctic, and Alpine Research. 2005;37:444–453. doi: 10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2. DOI

Chong-Seng KM, Mannering TD, Pratchett MS, Bellwood DR, Graham NAJ. The Influence of Coral Reef Benthic Condition on Associated Fish Assemblages. Plos One. 2012;7:e42167. doi: 10.1371/journal.pone.0042167. PubMed DOI PMC

Cleary DFR, et al. Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay–Thousand Islands coral reef complex. Marine Pollution Bulletin. 2016;110:701–717. doi: 10.1016/j.marpolbul.2016.04.042. PubMed DOI

Cleary DFR, et al. Bird species and traits associated with logged and unlogged forest in Borneo. Ecological Applications. 2007;17:1184–1197. doi: 10.1890/05-0878. PubMed DOI

Cleary DFR, Renema W. Relating species traits of foraminifera to environmental variables in the Spermonde Archipelago, Indonesia. Marine Ecology Progress Series. 2007;334:73–82. doi: 10.3354/meps334073. DOI

Cornwell WK, Ackerly DD. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs. 2009;79:109–126. doi: 10.1890/07-1134.1. DOI

Drew, J. A. & Amatangelo, K. L. Community assembly of coral reef fishes along the Melanesian biodiversity gradient. Plos One12 (2017). PubMed PMC

Drew JA, Amatangelo KL. 2017. Community assembly of coral reef fishes along the Melanesian biodiversity gradient. figshare. PubMed DOI PMC

Dziock F, et al. Reproducing or dispersing? Using trait based habitat templet models to analyse Orthoptera response to flooding and land use. Agriculture, Ecosystems & Environment. 2011;145:85–94. doi: 10.1016/j.agee.2011.07.015. DOI

Eallonardo AS, Leopold DJ, Fridley JD, Stella JC. Salinity tolerance and the decoupling of resource axis plant traits. Journal of Vegetation Science. 2013;24:365–374. doi: 10.1111/j.1654-1103.2012.01470.x. DOI

Farneda FZ, et al. Trait-related responses to habitat fragmentation in Amazonian bats. Journal of Applied Ecology. 2015;52:1381–1391. doi: 10.1111/1365-2664.12490. DOI

Frenette-Dussault C, Shipley B, Hingrat Y. Linking plant and insect traits to understand multitrophic community structure in arid steppes. Functional Ecology. 2013;27:786–792. doi: 10.1111/1365-2435.12075. DOI

Frenette-Dussault C, Shipley B, Léger J-F, Meziane D, Hingrat Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. Journal of Vegetation Science. 2012;23:208–222. doi: 10.1111/j.1654-1103.2011.01350.x. DOI

Fried G, Kazakou E, Gaba S. Trajectories of weed communities explained by traits associated with species’ response to management practices. Agriculture, Ecosystems & Environment. 2012;158:147–155. doi: 10.1016/j.agee.2012.06.005. DOI

Gallardo B, Gascon S, Garcia M, Comin FA. Testing the response of macroinvertebrate functional structure and biodiversity to flooding and confinement. Journal of limnology. 2009;68:315–326. doi: 10.4081/jlimnol.2009.315. DOI

Gibb H, et al. Responses of foliage-living spider assemblage composition and traits to a climatic gradient in Themeda grasslands: Spider Traits and Climatic Gradients. Austral Ecology. 2015;40:225–237. doi: 10.1111/aec.12195. DOI

Gonçalves-Souza T, Brescovit AD, de C. Rossa-Feres D, Romero GQ. Bromeliads as biodiversity amplifiers and habitat segregation of spider communities in a Neotropical rainforest. The Journal of Arachnology. 2010;38:270–279. doi: 10.1636/P09-58.1. DOI

Gonçalves-Souza T, Romero GQ, Cottenie K. Metacommunity versus Biogeography: A Case Study of Two Groups of Neotropical Vegetation-Dwelling Arthropods. Plos One. 2014;9:e115137. doi: 10.1371/journal.pone.0115137. PubMed DOI PMC

Jamil T, Ozinga WA, Kleyer M, ter Braak CJF. Selecting traits that explain species-environment relationships: a generalized linear mixed model approach. Journal of Vegetation Science. 2013;24:988–1000. doi: 10.1111/j.1654-1103.2012.12036.x. DOI

Jeliazkov, A. Scale-effects in agriculture-environment-biodiversity relationships. (Université Pierre et Marie Curie, 2013).

Jeliazkov A, et al. Level-dependence of the relationships between amphibian biodiversity and environment in pond systems within an intensive agricultural landscape. Hydrobiologia. 2014;723:7–23. doi: 10.1007/s10750-013-1503-z. DOI

Kadlec T, Benes J, Jarosik V, Konvicka M. Revisiting urban refuges: Changes of butterfly and burnet fauna in Prague reserves over three decades. Landscape and Urban Planning. 2008;85:1–11. doi: 10.1016/j.landurbplan.2007.07.007. DOI

Klaiber, J. et al. Fauna Indicativa. (Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL, CH-Birmensdorf, 2017).

Konvicka M, Kadlec T. How to increase the value of urban areas for butterfly conservation? A lesson from Prague nature reserves and parks. European Journal of Entomology. 2011;108:219–229. doi: 10.14411/eje.2011.030. DOI

Krasnov BR, et al. Assembly rules of ectoparasite communities across scales: combining patterns of abiotic factors, host composition, geographic space, phylogeny and traits. Ecography. 2015;38:184–197. doi: 10.1111/ecog.00915. DOI

Lowe EC, Threlfall CG, Wilder SM, Hochuli DF. Environmental drivers of spider community composition at multiple scales along an urban gradient. Biodiversity Conservation. 2018;27:829–852. doi: 10.1007/s10531-017-1466-x. DOI

Marteinsdóttir B, Eriksson O. Plant community assembly in semi-natural grasslands and ex-arable fields: a trait-based approach. Journal of Vegetation Science. 2014;25:77–87. doi: 10.1111/jvs.12058. DOI

Meffert PJ, Dziock F. The influence of urbanisation on diversity and trait composition of birds. Landscape Ecology. 2013;28:943–957. doi: 10.1007/s10980-013-9867-z. DOI

Mellado-Diaz A, Luisa Suarez Alonso M, Rosario Vidal-Abarca Gutierrez M. Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshwater Biology. 2008;53:1–21.

Ossola A, Nash MA, Christie FJ, Hahs AK, Livesley SJ. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants. PeerJ. 2015;3:e1356. doi: 10.7717/peerj.1356. PubMed DOI PMC

Pakeman RJ. Multivariate identification of plant functional response and effect traits in an agricultural landscape. Ecology. 2011;92:1353–1365. doi: 10.1890/10-1728.1. PubMed DOI

Pavoine S, Vela E, Gachet S, de Bélair G, Bonsall MB. Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly: Multiple data in community organization. Journal of Ecology. 2011;99:165–175. doi: 10.1111/j.1365-2745.2010.01743.x. DOI

Pekin BK, Wittkuhn RS, Boer MM, Macfarlane C, Grierson PF. Plant functional traits along environmental gradients in seasonally dry and fire-prone ecosystem. Journal of Vegetation Science. 2011;22:1009–1020. doi: 10.1111/j.1654-1103.2011.01323.x. DOI

Pomati F, et al. Individual Cell Based Traits Obtained by Scanning Flow-Cytometry Show Selection by Biotic and Abiotic Environmental Factors during a Phytoplankton Spring Bloom. Plos One. 2013;8:e71677. doi: 10.1371/journal.pone.0071677. PubMed DOI PMC

Purschke O, Sykes MT, Reitalu T, Poschlod P, Prentice HC. Linking landscape history and dispersal traits in grassland plant communities. Oecologia. 2012;168:773–783. doi: 10.1007/s00442-011-2142-6. PubMed DOI

Rachello-Dolmen PG, Cleary DFR. Relating coral species traits to environmental conditions in the Jakarta Bay/Pulau Seribu reef system, Indonesia. Estuarine, Coastal and Shelf Science. 2007;73:816–826. doi: 10.1016/j.ecss.2007.03.017. DOI

Raevel V, Violle C, Munoz F. Mechanisms of ecological succession: insights from plant functional strategies. Oikos. 2012;121:1761–1770. doi: 10.1111/j.1600-0706.2012.20261.x. DOI

Ribera I, Dolédec S, Downie IS, Foster GN. Effect of Land Disturbance and Stress on Species Traits of Ground Beetle Assemblages. Ecology. 2001;82:1112–1129. doi: 10.1890/0012-9658(2001)082[1112:EOLDAS]2.0.CO;2. DOI

Robinson N, Kadlec T, Bowers MD, Guralnick RP. Integrating species traits and habitat characteristics into models of butterfly diversity in a fragmented ecosystem. Ecological Modelling. 2014;281:15–25. doi: 10.1016/j.ecolmodel.2014.01.022. DOI

Robroek BJM, et al. Taxonomic and functional turnover are decoupled in European peat bogs. Nature Communications. 2017;8:1161. doi: 10.1038/s41467-017-01350-5. PubMed DOI PMC

Robroek B. 2017. Data from: Taxonomic and functional turnover are decoupled in European peat bogs. Dryad Digitial Repository. PubMed DOI PMC

Shieh S-H, Wang L-K, Hsiao W-F. Shifts in Functional Traits of Aquatic Insects along a Subtropical Stream in Taiwan. Zoological Studies. 2012;51:1051–1065.

Spake R, Barsoum N, Newton AC, Doncaster CP. Drivers of the composition and diversity of carabid functional traits in UK coniferous plantations. Forest Ecology and Management. 2016;359:300–308. doi: 10.1016/j.foreco.2015.10.008. PubMed DOI PMC

Urban MC. Disturbance heterogeneity determines freshwater metacommunity structure. Ecology. 2004;85:2971–2978. doi: 10.1890/03-0631. DOI

van Klink R, et al. No detrimental effects of delayed mowing or uncut grass refuges on plant and bryophyte community structure and phytomass production in low-intensity hay meadows. Basic and Applied Ecology. 2017;20:1–9. doi: 10.1016/j.baae.2017.02.003. DOI

van Klink, R. et al. Larval and phenological traits predict invertebrate community response to mowing regime manipulations. Ecological Applications, e01900 (2019). PubMed

Westgate MJ, Driscoll DA, Lindenmayer DB. Can the intermediate disturbance hypothesis and information on species traits predict anuran responses to fire? Oikos. 2012;121:1516–1524. doi: 10.1111/j.1600-0706.2011.19863.x. DOI

Yates ML, Andrew NR, Binns M, Gibb H. Morphological traits: predictable responses to macrohabitats across a 300 km scale. PeerJ. 2014;2:e271. doi: 10.7717/peerj.271. PubMed DOI PMC

De Bélair G, Bencheikh-Lehocine M. Composition et déterminisme de la végétation d’une plaine côtière marécageuse: La Mafragh (Annaba, Algérie) Bulletin d’Ecologie. 1987;18:393–407.

Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 1–20 (2007).

Cleary DFR. 2016. Bird species and traits associated with logged and unlogged forest in Borneo. figshare. PubMed DOI

Belskaya EA, Zolotarev MP. Changes in the size structure of carabid communities in forest ecosystems under technogenic transformation. Russian Journal of Ecology. 2017;48:152–160. doi: 10.1134/S1067413617010040. DOI

Cleary DFR, et al. Variation in the diversity and composition of benthic taxa as a function of distance offshore, depth and exposure in the Spermonde Archipelago, Indonesia. Estuarine, Coastal and Shelf Science. 2005;65:557–570. doi: 10.1016/j.ecss.2005.06.025. DOI

Cormont A, Vos C, van Turnhout C, Foppen R, ter Braak C. Using life-history traits to explain bird population responses to changing weather variability. Climate Research. 2011;49:59–71. doi: 10.3354/cr01007. DOI

de Voogd NJ, Cleary DFR. Relating species traits to environmental variables in Indonesian coral reef sponge assemblages. Marine and Freshwater Research. 2007;58:240–249. doi: 10.1071/MF06125. DOI

Huebner K, Lindo Z, Lechowicz MJ. Post-fire succession of collembolan communities in a northern hardwood forest. European Journal of Soil Biology. 2012;48:59–65. doi: 10.1016/j.ejsobi.2011.10.004. DOI

Jamil T, Kruk C, ter Braak CJF. A unimodal species response model relating traits to environment with application to phytoplankton communities. Plos One. 2014;9:e97583. doi: 10.1371/journal.pone.0097583. PubMed DOI PMC

Jamil T, Opdekamp W, van Diggelen R, ter Braak CJF. Trait-Environment Relationships and Tiered Forward Model Selection in Linear Mixed Models. International Journal of Ecology. 2012;2012:1–12. doi: 10.1155/2012/947103. DOI

Palozzi JE, Lindo Z. Boreal peat properties link to plant functional traits of ecosystem engineers. Plant Soil. 2017;418:277–291. doi: 10.1007/s11104-017-3291-0. DOI

Meyer C, Weigelt P, Kreft H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters. 2016;19:992–1006. doi: 10.1111/ele.12624. PubMed DOI

Engemann K, et al. A plant growth form dataset for the New World. Ecology. 2016;97:3243–3243. doi: 10.1002/ecy.1569. PubMed DOI

Messier J, McGill BJ, Lechowicz MJ. How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters. 2010;13:838–848. doi: 10.1111/j.1461-0248.2010.01476.x. PubMed DOI

Violle C, et al. The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution. 2012;27:244–252. doi: 10.1016/j.tree.2011.11.014. PubMed DOI

Rosbakh S, Bernhardt-Römermann M, Poschlod P. Elevation matters: contrasting effects of climate change on the vegetation development at different elevations in the Bavarian Alps. Alpine Botany. 2014;124:143–154. doi: 10.1007/s00035-014-0139-6. DOI

Gianuca AT, et al. Integrating trait and phylogenetic distances to assess scale-dependent community assembly processes. Ecography. 2017;40:742–752. doi: 10.1111/ecog.02263. DOI

R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...