PLAUR splicing pattern in hereditary angioedema patients' monocytes and macrophages
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-05-00330
Ministerstvo Zdravotnictví Ceské Republiky
NU21-05-00438
Ministerstvo Zdravotnictví Ceské Republiky
MUNI/A/1244/2021
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
37086298
DOI
10.1007/s11033-023-08391-8
PII: 10.1007/s11033-023-08391-8
Knihovny.cz E-zdroje
- Klíčová slova
- Differentiation, HAE, Macrophages, Monocyte, PLAUR, uPAR,
- MeSH
- alternativní sestřih genetika MeSH
- hereditární angioedémy * genetika patologie MeSH
- leukocyty MeSH
- lidé MeSH
- makrofágy patologie MeSH
- monocyty * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- PLAUR protein, human MeSH Prohlížeč
BACKGROUND: The PLAUR gene encodes the urokinase-like plasminogen activator receptor (uPAR) and may undergo alternative splicing. Excluding cassette exons 3, 5 and 6 from the transcript results in truncated protein variants whose precise functions have not been elucidated yet. The PLAUR gene is one of several expressed in myeloid cells, where uPAR participates in different cellular processes, including the contact activation system and kallikrein-kinin system, which play an important role in hereditary angioedema (HAE) pathogenesis. A hypothesis about the PLAUR splicing pattern impact on HAE severity was tested. METHODS AND RESULTS: The RT-PCR quantified by capillary electrophoresis was used. Although no significant difference in alternative transcript frequency was observed between healthy volunteers and HAE patients, a significant increase in all cassette exon inclusion variants was revealed during monocyte-to-macrophage differentiation. CONCLUSIONS: PLAUR alternative splicing in monocytes and macrophages neither was different between HAE patients and healthy controls, nor reflected disease severity. However, the results showed an PLAUR splicing pattern was changing during monocyte-to-macrophage differentiation, but the significance of these changes is unknown and awaits future clarification.
Centre of Cardiovascular Surgery and Transplantation Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Pyke C, Eriksen J, Solberg H et al (1993) An alternatively spliced variant of mRNA for the human receptor for urokinase plasminogen activator. FEBS Lett 326:69–74. https://doi.org/10.1016/0014-5793(93)81763-P PubMed DOI
Lv T, Zhao Y, Jiang X et al (2021) UPAR: an essential factor for tumor development. J Cancer 12:7026–7040. https://doi.org/10.7150/jca.62281 PubMed DOI PMC
Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11:23–36. https://doi.org/10.1038/nrm2821 PubMed DOI
Kjaergaard M (2008) Structure and ligand interactions of the urokinase receptor (uPAR). Front Biosci 13:5441–5461. https://doi.org/10.2741/3092 PubMed DOI
Degryse B, Resnati M, Czekay R-P et al (2005) Domain 2 of the Urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity. J Biol Chem 280:24792–24803. https://doi.org/10.1074/jbc.M413954200 PubMed DOI
Ferraris GMS, Schulte C, Buttiglione V et al (2014) The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins. EMBO J 33:2458–2472. https://doi.org/10.15252/embj.201387611 PubMed DOI PMC
Franco P, Vocca I, Carriero MV et al (2006) Activation of urokinase receptor by a novel interaction between the connecting peptide region of urokinase and αvβ5 integrin. J Cell Sci 119:3424–3434. https://doi.org/10.1242/jcs.03067 PubMed DOI
Dumler I, Weis A, Mayboroda OA et al (1998) The Jak/Stat pathway and Urokinase receptor signaling in human aortic vascular smooth muscle cells. J Biol Chem 273:315–321. https://doi.org/10.1074/jbc.273.1.315 PubMed DOI
Liu Y, Pan YF, Xue Y et al (2018) uPAR promotes tumor-like biologic behaviors of fibroblast-like synoviocytes through PI3K/Akt signaling pathway in patients with rheumatoid arthritis. Cell Mol Immunol 15:171–181. https://doi.org/10.1038/cmi.2016.60 PubMed DOI
Breuss JM, Uhrin P (2012) VEGF-initiated angiogenesis and the uPA/uPAR system. Cell Adh Migr 6:535–615. https://doi.org/10.4161/cam.22243 PubMed DOI PMC
Stewart CE, Sayers I (2009) Characterisation of urokinase plasminogen activator receptor variants in human airway and peripheral cells. BMC Mol Biol 10:75. https://doi.org/10.1186/1471-2199-10-75 PubMed DOI PMC
Mahdi F, Shariat-Madar Z, Kuo A et al (2004) Mapping the interaction between high molecular mass Kininogen and the Urokinase Plasminogen activator receptor. J Biol Chem 279:16621–16628. https://doi.org/10.1074/jbc.M313850200 PubMed DOI
Li Y, Lawrence DA, Zhang L (2003) Sequences within domain II of the Urokinase receptor critical for differential ligand recognition. Journal of Biological Chemistryv 278:29925–29932. https://doi.org/10.1074/jbc.M300751200 DOI
Bdeir K, Kuo A, Mazar A et al (2000) A region in domain II of the Urokinase receptor required for Urokinase binding. J Biol Chem 275:28532–28538. https://doi.org/10.1074/jbc.M001595200 PubMed DOI
Mazar AP (2008) Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin Cancer Res 14:5649–5655. https://doi.org/10.1158/1078-0432.CCR-07-4863 PubMed DOI
Leth JM, PlougM, (2021) Targeting the Urokinase-type plasminogen activator Receptor (uPAR) in human diseases with a view to non-invasive imaging and therapeutic intervention. Front Cell Develop Biol. https://doi.org/10.3389/fcell.2021.732015 DOI
Stewart CE, Nijmeh HS, Brightling CE et al (2012) UPAR regulates bronchial epithelial repair in vitro and is elevated in asthmatic epithelium. Thorax 67:477–487. https://doi.org/10.1136/thoraxjnl-2011-200508 PubMed DOI
Bindke G, Gehring M, Wieczorek D et al (2022) Identification of novel biomarkers to distinguish bradykinin-mediated angioedema from mast cell-/histamine-mediated angioedema. Allergy 77:946–955. https://doi.org/10.1111/all.15013 PubMed DOI
Castellano G, Divella C, Sallustio F et al (2018) A transcriptomics study of hereditary angioedema attacks. J Allergy Clin Immunol 142:883–891. https://doi.org/10.1016/j.jaci.2018.03.016 PubMed DOI
Mahdi F, Shariat-Madar Z, Todd RF et al (2001) Expression and colocalization of cytokeratin 1 and urokinase plasminogen activator receptor on endothelial cells. Blood 97:2342–2350. https://doi.org/10.1182/blood.V97.8.2342 PubMed DOI
Mahdi F, Shariat-Madar Z, Figueroa CD et al (2002) Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood 99:3585–3596. https://doi.org/10.1182/blood.V99.10.3585 PubMed DOI
Shariat-Madar Z, Mahdi F, Schmaier AH (2002) Assembly and activation of the plasma kallikrein/kinin system: a new interpretation. Int Immunopharmacol 2:1841–1849. https://doi.org/10.1016/S1567-5769(02)00178-9 PubMed DOI
Schmaier AH (2016) The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 14:28–39. https://doi.org/10.1111/jth.13194 PubMed DOI
Kanse SM, Chavakis T, Al-Fakhri N et al (2004) Reciprocal Regulation of Urokinase Receptor (CD87)-mediated Cell Adhesion by Plasminogen Activator inhibitor-1 and Protease nexin-1. J Cell Sci 117:477–485. https://doi.org/10.1242/jcs.00861 PubMed DOI
Dong C, Zhao Z, M, et al (2013) RNA sequencing and transcriptomal analysis of human monocyte to macrophage differentiation. Gene 519:279–287. https://doi.org/10.1016/j.gene.2013.02.015 PubMed DOI PMC
Luther T, Kotzsch M, Meye A et al (2003) Identification of a novel urokinase receptor splice variant and its prognostic relevance in breast cancer. Thromb Haemost 89:705–717. https://doi.org/10.1055/s-0037-1613577 PubMed DOI
Caiolfa VR, Zamai M, Malengo G et al (2007) Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies. J Cell Biol 179:1067–1082. https://doi.org/10.1083/jcb.200702151 PubMed DOI PMC
Madsen CD, Ferraris GMS, Andolfo A et al (2007) UPAR-induced cell adhesion and migration: vitronectin provides the key. J Cell Biol 177:927–939. https://doi.org/10.1083/jcb.200612058 PubMed DOI PMC
Ferraris GMS, Schulte C, Buttiglione V et al (2014) The interaction between uPAR and vitronectin triggers ligand‐independent adhesion signalling by integrins. The EMBO Journal 33:2458–2472. https://doi.org/10.15252/embj.201387611
Plesner T, Behrendt N, Ploug M (1997) Structure, function and expression on blood and bone marrow cells of the Urokinase-Type Plasminogen Activator Receptor, uPAR. Stem Cells 15:398–408. https://doi.org/10.1002/stem.150398 PubMed DOI
Reuning U, Sperl S, Kopitz C et al (2003) Urokinase-type Plasminogen Activator (uPA) and its Receptor (uPAR): Development of Antagonists of uPA / uPAR Interaction and their Effects In Vitro and In Vivo. Curr Pharm Des 9:1529–1543. https://doi.org/10.2174/1381612033454612 PubMed DOI
Larusch GA, Mahdi F, Shariat-Madar Z et al (2010) Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis. Blood 115:5111–5120. https://doi.org/10.1182/blood-2009-08-236430 PubMed DOI PMC
Andreasen PA, Kjøller L, Christensen L et al (1998) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72:1–22. https://doi.org/10.1002/(SICI)1097-0215(19970703)72:13.0.CO;2-Z DOI
Kaplan AP, Austen KF (1971) A prealbumin activator of prekallikrein. II. Derivation of activators of prekallikrein from active Hageman factor by digestion with plasmin. J Exp Med 133:696–712. https://doi.org/10.1084/jem.133.4.696 PubMed DOI PMC
Larusch GA, Merkulova A, Mahdi F et al (2013) Domain 2 of uPAR regulates single-chain urokinase-mediated angiogenesis through β 1 -integrin and VEGFR2. Am J Physiol-Heart Circulatory Physiol 305:305–320. https://doi.org/10.1152/ajpheart.00110.2013 DOI
Gyetko MR, Todd RF, Wilkinson CC et al (1994) The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Investig 93:1380–1387. https://doi.org/10.1172/JCI117114 PubMed DOI PMC
Liu H, Lorenzini PA, Zhang F et al (2018) Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res 46:6069–6086. https://doi.org/10.1093/nar/gky401 PubMed DOI PMC
Nusrat AR, Chapman HA (1991) An autocrine role for urokinase in phorbol ester-mediated differentiation of myeloid cell lines. J Clin Investig 87:1091–1097. https://doi.org/10.1172/JCI115070 PubMed DOI PMC
Paland N, Aharoni S, Fuhrman B (2013) Urokinase-type plasminogen activator (uPA) modulates monocyte-to-macrophage differentiation and prevents Ox-LDL-induced macrophage apoptosis. Atherosclerosis 231:29–38. https://doi.org/10.1016/j.atherosclerosis.2013.08.016 PubMed DOI
Yang A, Dai J, Xie Z et al (2014) High molecular weight kininogen binds phosphatidylserine and opsonizes Urokinase Plasminogen Activator Receptor-mediated efferocytosis. J Immunol 192:4398–4408. https://doi.org/10.4049/jimmunol.1302590 PubMed DOI
Khan MM, Bradford HN, Isordia-Salas I et al (2006) High-Molecular-Weight Kininogen Fragments Stimulate the Secretion of Cytokines and Chemokines through uPAR, Mac-1, and gC1qR in monocytes. Arterioscler Thromb Vasc Biol 26:2260–2266. https://doi.org/10.1161/01.ATV.0000240290.70852.c0 PubMed DOI PMC
Arcoleo F, Lo Pizzo M, Misiano G et al (2018) The complex alteration in the network of IL-17-type cytokines in patients with hereditary angioedema. Clin Exp Med 18:355–361. https://doi.org/10.1007/s10238-018-0499-0 PubMed DOI
GrymovaT VM, Soucek P et al (2019) Neutrophils are dysregulated in patients with hereditary angioedema types I and II in a symptom-free period. Mediators Inflamm 2019:9515628. https://doi.org/10.1155/2019/9515628 DOI