Evaluation of Leukocytes, B and T Lymphocytes, and expression of CD200 and CD23 on B lymphocytes in Patients with Atopic Dermatitis on Dupilumab Therapy-Pilot Study

. 2023 May ; 13 (5) : 1171-1192. [epub] 20230425

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37097547

Grantová podpora
INDI 207034 Lékařská fakulta Univerzity Karlovy

Odkazy

PubMed 37097547
PubMed Central PMC10149535
DOI 10.1007/s13555-023-00918-y
PII: 10.1007/s13555-023-00918-y
Knihovny.cz E-zdroje

BACKGROUND: There are a lot of studies that describe the change in quantity of T cells in patients with atopic dermatitis (AD) compared with healthy subjects. Other components of lymphocytes such as B cells are not examined as well as T cells. OBJECTIVE: We focus on immunophenotyping of B cells with their subsets (memory, naïve, switched, non-switched) and the expression of CD23 and CD200 markers in patients with AD with and without dupilumab therapy. We also evaluate the count of leukocytes and their subsets, T lymphocytes (CD4+, CD8+), natural killer (NK) cells, and T regulatory cells. METHODS: A total of 45 patients suffering from AD were examined: 32 patients without dupilumab treatment (10 men, 22 women, average age 35 years), 13 patients with dupilumab treatment (7 men, 6 women, average age 43.4 years), and 30 subjects as a control group (10 men, 20 women, average age 44.7 years). Immunophenotype was examined by flow cytometry in which monoclonal antibodies with fluorescent molecules were used. We compared the absolute and relative count of leukocytes and their subsets, T lymphocytes (CD4+ , CD8+), NK cells, T regulatory cells, absolute and relative count of B lymphocytes (memory, naïve, non-switched, switched, transient), and expression of CD23 and CD200 activation markers on B cells and on their subsets in patients with AD and control group. For statistical analysis we used nonparametric Kruskal-Wallis one-factor analysis of variance with post hoc by Dunn's test with Bonferroni modification of significance level. RESULTS: In patients with AD with and without dupilumab therapy we confirmed the significantly higher count of neutrophils, monocytes, and eosinophils; there was no difference in absolute count of B cells, NK cells and transitional B cells compared with control subjects. We confirmed higher expression of activation marker CD23 on total, memory, naïve, non-switched, and switched B lymphocytes and higher expression of CD200 on total B lymphocytes in both groups of patients with AD compared with controls. In patients without dupilumab therapy we confirmed significantly higher count of relative monocytes, relative eosinophils, and higher expression of CD200 on memory, naïve, and non-switched B lymphocytes compared with controls. In patients with dupilumab therapy we confirmed significantly higher expression of CD200 on switched B lymphocytes, higher count of relative CD4+ T lymphocytes, and lower count of absolute CD8+ T lymphocytes compared with controls. CONCLUSION: This pilot study shows higher expression of CD23 on B lymphocytes and on their subsets in patients with AD with and without dupilumab therapy. The higher expression of CD200 on switched B lymphocytes is confirmed only in patients with AD with dupilumab therapy.

Zobrazit více v PubMed

Heratizadeh A. Atopic dermatitis: new evidence on the role of allergic inflammation. Curr Opin Allergy Clin Immunol. 2016;16:458–464. doi: 10.1097/ACI.0000000000000308. PubMed DOI

Werfel T, Allam JP, Biedermann T, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138:336–349. doi: 10.1016/j.jaci.2016.06.010. PubMed DOI

Han H, Roan F, Ziegler SF. The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev. 2017;278(1):116–130. doi: 10.1111/imr.12546. PubMed DOI PMC

Wollenberg A, Oranje A, Deleuran M, et al. ETFAD/EADV eczema task force 2015 position paper on diagnosis and treatment of atopic dermatitis in adult and paediatric patients. J Eur Acad Dermatol Venereol. 2016;30:729–747. doi: 10.1111/jdv.13599. PubMed DOI

Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discov. 2022;21(1):21–40. doi: 10.1038/s41573-021-00266-6. PubMed DOI PMC

Saunders SP, Moran T, Floudas A, Wurlod F, Kaszlikowska A, Salimi M, Quinn EM, Oliphant CJ, Núñez G, McManus R, et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J Allergy Clin Immunol. 2016;137:482–491. doi: 10.1016/j.jaci.2015.06.045. PubMed DOI PMC

Drislane C, Irvine AD. The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy Asthma Immunol. 2020;124(1):36–43. doi: 10.1016/j.anai.2019.10.008. PubMed DOI

De Bruyn CT, Badloe FMS, Ring J, Gutermuth J, Kortekaas KI. Autoreactive T cells and their role in atopic dermatitis. J Autoimmun. 2021;120:102634. doi: 10.1016/j.jaut.2021.102634. PubMed DOI

Bakker DS, van der Wal MM, Heeb LEM, Giovannone B, Asamoah M, Delemarre EM, Drylewicz J, Nierkens S, Boyman O, de Bruin-Weller MS, Thijs JL, van Wijk F. Early and long-term effects of dupilumab treatment on circulating T-cell functions in patients with moderate-to-severe atopic dermatitis. J Invest Dermatol. 2021;141(8):1943–1953.e13. doi: 10.1016/j.jid.2021.01.022. PubMed DOI

Auriemma M, Giovina V, Paolo A, et al. Cytokines and T cells in atopic dermatitis. Eur Cytokine Netw. 2013;24(1):37–44. doi: 10.1684/ecn.2013.0333. PubMed DOI

Piątosa B, Wolska-Kuśnierz B, Pac M, Siewiera K, Gałkowska E, Bernatowska E. B cell subsets in healthy children: reference values for evaluation of B cell maturation process in peripheral blood. Cytometry Part B. 2010;78B:372–381. doi: 10.1002/cyto.b.20536. PubMed DOI

Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–612. doi: 10.1016/j.immuni.2015.04.005. PubMed DOI

Mossalayi MD, Vouldoukis I, Mamani-Matsuda M, et al. CD23 mediates antimycobacterial activity of human macrophages. Infect Immun. 2009;77(12):5537–5542. doi: 10.1128/IAI.01457-08. PubMed DOI PMC

Halpern M, Schwartz S. Regulation of the low affinity IgE Fc receptor (CD23) in atopic dermatitis. Int Arch Allergy Immunol. 1993;100(3):197–200. doi: 10.1159/000236411. PubMed DOI

Liu C, Richard K, Wiggins M, Zhu X, Conrad DH, Song W. CD23 can negatively regulate B-cell receptor signaling. Sci Rep. 2016;6:25629. doi: 10.1038/srep25629. PubMed DOI PMC

Yao Y, Wang N, Chen CL, et al. CD23 expression on switched memory B cells bridges T-B cell interaction in allergic rhinitis. Allergy. 2020;75(10):2599–2612. doi: 10.1111/all.14288. PubMed DOI

Engeroff P, Vogel M. The role of CD23 in the regulation of allergic responses. Allergy. 2021;76(7):1981–1989. doi: 10.1111/all.14724. PubMed DOI PMC

D'Arena G, De Feo V, Pietrantuono G, Seneca E, Mansueto G, Villani O, La Rocca F, D'Auria F, Statuto T, Valvano L, Arruga F, Deaglio S, Efremov DG, Sgambato A, Laurenti L. CD200 and chronic lymphocytic leukemia: biological and clinical relevance. Front Oncol. 2020;26(10):584427. doi: 10.3389/fonc.2020.584427. PubMed DOI PMC

Kotwica-Mojzych K, Jodłowska-Jędrych B, Mojzych M. CD200: CD200R interactions and their importance in immunoregulation. Int J Mol Sci. 2021;22(4):1602. doi: 10.3390/ijms22041602. PubMed DOI PMC

Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M, et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol. 2003;171:3024–3046. doi: 10.4049/jimmunol.171.6.3034. PubMed DOI

Kawasaki BT, Farrar WL. Cancer stem cells, CD200 and immunoevasion. Trends Immunol. 2008;29:464–468. doi: 10.1016/j.it.2008.07.005. PubMed DOI

Gorczynski R, Khatri I, Lee L, Boudakov I. An interaction between CD200 and monoclonal antibody agonists to CD200R2 in development of dendritic cells that preferentially induce populations of CD4+CD25+ T regulatory cells. J Immunol. 2008;180:5946–5955. doi: 10.4049/jimmunol.180.9.5946. PubMed DOI

Gorczynski RM, Lee L, Boudakov I. Augmented induction of CD4+CD25+ Treg using monoclonal antibodies to CD200R. Transplantation. 2005;79:488–491. doi: 10.1097/01.TP.0000152118.51622.F9. PubMed DOI

Zhang S, Cherwinski H, Sedgwick JD, Phillips JH. Molecular mechanisms of CD200 inhibition of mast cell activation. J Immunol. 2004;173:6786–6793. doi: 10.4049/jimmunol.173.11.6786. PubMed DOI

Cherwinski HM, Murphy CA, Joyce BL, Bigler ME, Song YS, Zurawski SM, et al. The CD200 receptor is a novel and potent regulator of murine and human mast cell function. J Immunol. 2005;174:1348–1356. doi: 10.4049/jimmunol.174.3.1348. PubMed DOI

Shiratori I, Yamaguchi M, Suzukawa M, Yamamoto K, Lanier LL, Saito T, et al. Down-regulation of basophil function by human CD200 and human herpesvirus-8 CD200. J Immunol. 2005;175:4441–4449. doi: 10.4049/jimmunol.175.7.4441. PubMed DOI

Shao A, Owens DM. The immunoregulatory protein CD200 as a potentially lucrative yet elusive target for cancer therapy. Oncotarget. 2023;4(14):96–103. doi: 10.18632/oncotarget.28354. PubMed DOI PMC

Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200) Science. 2000;290:1768–1771. doi: 10.1126/science.290.5497.1768. PubMed DOI

Patruno C, Potestio L, Napolitano M. Clinical phenotypes of adult atopic dermatitis and related therapies. Curr Opin Allergy Clin Immunol. 2022;22(4):242–249. doi: 10.1097/ACI.0000000000000837. PubMed DOI

Thibodeaux Q, Smith MP, Ly K, Beck K, Liao W, Bhutani T. A review of dupilumab in the treatment of atopic diseases. Hum Vaccin Immunother. 2019;15(9):2129–2139. doi: 10.1080/21645515.2019.1582403. PubMed DOI PMC

Gooderham MJ, Hong HC, Eshtiaghi P, Papp KA. Dupilumab: a review of its use in the treatment of atopic dermatitis. J Am Acad Dermatol. 2018;78(3 Suppl 1):S28–S36. doi: 10.1016/j.jaad.2017.12.022. PubMed DOI

Napolitano M, Maffei M, Patruno C, Leone CA, Di Guida A, Potestio L, Scalvenzi M, Fabbrocini G. Dupilumab effectiveness for the treatment of patients with concomitant atopic dermatitis and chronic rhinosinusitis with nasal polyposis. Dermatol Ther. 2021;34(6):e15120. doi: 10.1111/dth.15120. PubMed DOI

Patruno C, Potestio L, Scalvenzi M, Battista T, Raia F, Picone V, Fabbrocini G, Napolitano M. Dupilumab for the treatment of adult atopic dermatitis in special populations. J Dermatolog Treat. 2022;33(7):3028–3033. doi: 10.1080/09546634.2022.2102121. PubMed DOI

Ming L, Hangrui L, Siyuan Z, Keisuke G. Droplet flow cytometry for single-cell analysis. R Soc Chem. 2021;2021(11):20944–20960. doi: 10.1039/d1ra02636d. PubMed DOI PMC

Sonal M, Prachi S, Anusree N. Flow cytometry: principles, applications and recent advances. Bioanalysis. 2021;2021(13):181–198. PubMed

Tidwell J, Josefph F, Fowler J. T-cell inhibitors for atopic dermatitis. J Am Acad Dermatol. 2018;78(3):A6–A10. doi: 10.1016/5.jaad.2017.12.020. PubMed DOI

Flores-Montero J, Kalina T, Corral-Mateos A, Sanoja-Flores L, Perez-Andres M. Fluorochrome choices for multi-color flow cytometry. J Immunol Methods. 2019;2019(475):112618. doi: 10.1016/j.jim.2019.06.009. PubMed DOI

Yanaba K, Bouaziz JD, Matsushita T, Magro CM, St Clair EW, Tedder TF. B-lymphocyte contributions to human autoimmune disease. Immunol Rev. 2008;223:284–299. doi: 10.1111/j.1600-065X.2008.00646.x. PubMed DOI

Kurt-Jones EA, Liano D, HayGlass KA, Benacerraf B, Sy MS, Abbas AK. The role of antigen-presenting B cells in T cell priming in vivo. Studies of B cell-deficient mice. J Immunol. 1988;140:3773–3778. doi: 10.4049/jimmunol.140.11.3773. PubMed DOI

Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM, Johnson LL, Swain SL, Lund FE. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol. 2000;1:475–482. doi: 10.1038/82717. PubMed DOI

Linton PJ, Bautista B, Biederman E, Bradley ES, Harbertson J, Kondrack RM, Padrick RC, Bradley LM. Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J Exp Med. 2003;197:875–883. doi: 10.1084/jem.20021290. PubMed DOI PMC

Ngwa C, Liu F. CD200-CD200R signaling and diseases: a potential therapeutic target? Int J Physiol Pathophysiol Pharmacol. 2019;11:297. PubMed PMC

Vaine CA, Soberman RJ. The CD200–CD200R1 inhibitory signaling pathway: immune regulation and host-pathogen interactions. Adv Immunol. 2014;2014:121–191. doi: 10.1016/B978-0-12-800100-4.00005-2. PubMed DOI PMC

Hatherley D, Lea SM, Johnson S, Barclay AN. Structures of CD200/CD200 receptor family and implications for topology, regulation, and evolution. Structure. 2013;21:820–832. doi: 10.1016/j.str.2013.03.008. PubMed DOI PMC

Baban B, Chandler PR, Sharma MD, Pihkala J, Koni PA, Munn DH, Mellor AL. IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol. 2009;183:2475–2483. doi: 10.4049/jimmunol.0900986. PubMed DOI PMC

Coles SJ, Wang EC, Man S, Hills RK, Burnett AK, Tonks A, Darley RL. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia. 2011;25:792–799. doi: 10.1038/leu.2011.1. PubMed DOI PMC

Payet M, Conrad DH. IgE regulation in CD23 knockout and transgenic mice. Allergy Eur J Allergy Clin Immunol. 1999;54(11):1125–1129. PubMed

Payet-Jamroz M, Helm SLT, Wu J, et al. Suppression of IgE responses in CD23-transgenic animals is due to expression of CD23 on nonlymphoid cells. J Immunol. 2001;166(8):4863.LP–4869.LP. doi: 10.4049/jimmunol.166.8.4863. PubMed DOI

Yu P, Kosco-Vilbois M, Richards M, Köhler G, Lamers MC. Negative feedback regulation of IgE synthesis by murine CD23. Nature. 1994;369(6483):753–756. doi: 10.1038/369753a0. PubMed DOI

Flores-Romo L, Shields J, Humbert Y, et al. Inhibition of an in vivo antigen-specific IgE response by antibodies to CD23. Science (80-) 1993;261(5124):1038.LP–1041.LP. doi: 10.1126/science.8351517. PubMed DOI

Fellmann M, Buschor P, Röthlisberger S, et al. High affinity targeting of CD23 inhibits IgE synthesis in human B cells. Immunity Inflamm Dis. 2015;3(4):339–349. doi: 10.1002/iid3.72. PubMed DOI PMC

Schulz O, Sutton BJ, Beavil RL, et al. Cleavage of the low-affinity receptor for human IgE (CD23) by a mite cysteine protease: nature of the cleaved fragment in relation to the structure and function of CD23. Eur J Immunol. 1997;27(3):584–588. doi: 10.1002/eji.1830270303. PubMed DOI

Engeroff P, Caviezel F, Mueller D, Thoms F, Bachmann MF, Vogel M. CD23 provides a noninflammatory pathway for IgE-allergen complexes. J Allergy Clin Immunol. 2020;145(1):301. doi: 10.1016/j.jaci.2019.07.045. PubMed DOI

Cheng LE, Wang Z-E, Locksley RM. Murine B cells regulate serum IgE levels in a CD23-dependent manner. J Immunol. 2010;185(9):5040–5047. doi: 10.4049/jimmunol.1001900. PubMed DOI PMC

Jabs F, Plum M, Laursen NS, et al. Trapping IgE in a closed conformation by mimicking CD23 binding prevents and disrupts FcϵRI interaction. Nat Commun. 2018;9(1):7. doi: 10.1038/s41467-017-02312-7. PubMed DOI PMC

Czarnowicki T, Gonzalez J, Bonifacio KM, Shemer A, Xiangyu P, Kunjravia N, Malajian D, Fuentes-Duculan J, Esaki H, Noda S, Estrada Y, Xu H, Zheng X, Krueger JG, Guttman-Yassky E. Diverse activation and differentiation of multiple B-cell subsets in patients with atopic dermatitis but not in patients with psoriasis. J Allergy Clin Immunol. 2016;137(1):118–129.e5. doi: 10.1016/j.jaci.2015.08.027. PubMed DOI

Czarnowicki T, Esaki H, Gonzalez J, Renert-Yuval Y, Brunner P, Oliva M, Estrada Y, Xu H, Zheng X, Talasila S, Haugh I, Huynh T, Lyon S, Tran G, Sampson H, Suárez-Fariñas M, Krueger JG, Guttman-Yassky E, Paller AS. Alterations in B-cell subsets in pediatric patients with early atopic dermatitis. J Allergy Clin Immunol. 2017;140(1):134–144. doi: 10.1016/j.jaci.2016.09.060. PubMed DOI

Yamauchi T, Sasaki S, Lee ES, Tamura T, Seki M, Miwa T, Kobayashi K, Saruta Y, Kitami Y, Sueki H, Watanabe H. Dupilumab treatment ameliorates clinical and hematological symptoms, including blood eosinophilia, in patients with atopic dermatitis. Int J Dermatol. 2021;60(2):190–195. doi: 10.1111/ijd.15183. PubMed DOI

Wechsler ME, Klion AD, Paggiaro P, Nair P, Staumont-Salle D, Radwan A, Johnson RR, Kapoor U, Khokhar FA, Daizadeh N, Chen Z, Laws E, Ortiz B, Jacob-Nara JA, Mannent LP, Rowe PJ, Deniz Y. Effect of dupilumab on blood eosinophil counts in patients with asthma, chronic rhinosinusitis with nasal polyps, atopic dermatitis, or eosinophilic esophagitis. J Allergy Clin Immunol Pract. 2022;10(10):2695–2709. doi: 10.1016/j.jaip.2022.05.019. PubMed DOI

Szymanski L, Cioa A, Ciepielak M, et al. Cytokines and apoptosis in atopic dermatitis. Adv Dermatol Allergol. 2021;38(1):1–13. doi: 10.5114/ada.2019.88394. PubMed DOI PMC

Bakker DS, van der Wal MM, Heeb LEM, Giovannone B, Asamoah M, Delemarre EM, Drylewicz J, Nierkens S, Boyman O, de Bruin-Weller MS, Thijs JL, van Wijk F. Early and long-term effects of dupilumab treatment on circulating T-cell functions in patients with moderate-to-severe atopic dermatitis. J Invest Dermatol. 2021;141(8):1943–1953.e13. doi: 10.1016/j.jid.2021.01.022. PubMed DOI

Looman KIM, van Meel ER, Grosserichter-Wagener C, Vissers FJM, Klingenberg JH, de Jong NW, de Jongste JC, Pasmans SGMA, Duijts L, van Zelm MC, Moll HA. Associations of Th2, Th17, treg cells, and IgA+ memory B cells with atopic disease in children: the generation R study. Allergy. 2020;75(1):178–187. doi: 10.1111/all.14010. PubMed DOI

Heeringa JJ, Fieten KB, Bruins FM, van Hoffen E, Knol EF, Pasmans SGMA, van Zelm MC. Treatment for moderate to severe atopic dermatitis in alpine and moderate maritime climates differentially affects helper T cells and memory B cells in children. Clin Exp Allergy. 2018;48(6):679–690. doi: 10.1111/cea.13136. PubMed DOI

Mizutani N, Kangsanant S, Sagara A, Miyazaki M, Nabe T. CD8+ T cells regulated by CD4+CD25+ regulatory T cells in the early stage exacerbate the development of dermatophagoides farinae-induced skin lesions via increasing mast cell infiltration in mice. Eur J Pharmacol. 2020;868:172843. doi: 10.1016/j.ejphar.2019.172843. PubMed DOI

Czarnowicki T, He H, Canter T, Han J, Lefferdink R, Erickson T, Rangel S, Kameyama N, Kim HJ, Pavel AB, Estrada Y, Krueger JG, Paller AS, Guttman-Yassky E. Evolution of pathologic T-cell subsets in patients with atopic dermatitis from infancy to adulthood. J Allergy Clin Immunol. 2020;145(1):215–228. doi: 10.1016/j.jaci.2019.09.031. PubMed DOI PMC

Yanaba K, Kamata M, Asano Y, Tada Y, Sugaya M, Kadono T, Tedder TF, Sato S. CD19 expression in B cells regulates atopic dermatitis in a mouse model. Am J Pathol. 2013;182(6):2214–2222. doi: 10.1016/j.ajpath.2013.02.042. PubMed DOI PMC

Agrawal R, Wisniewski JA, Woodfolk JA. The role of regulatory T cells in atopic dermatitis. Curr Probl Dermatol. 2011;41:112–124. doi: 10.1159/000323305. PubMed DOI PMC

Wang AX, Xu LN. New insights into T cells and their signature cytokines in atopic dermatitis. IUBMB Life. 2015;67(8):601–610. doi: 10.1002/iub.1405. PubMed DOI

Szegedi K, Kremer AE, Kezic S, Teunissen MB, Bos JD, Luiten RM, Res PC, Middelkamp-Hup MA. Increased frequencies of IL-31-producing T cells are found in chronic atopic dermatitis skin. Exp Dermatol. 2012;21(6):431–436. doi: 10.1111/j.1600-0625.2012.01487.x. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...