Unravelling the Lipids Content and the Fatty Acid Profiles of Eight Recently Described Halophytophthora Species and H. avicennae from the South Coast of Portugal

. 2023 Mar 31 ; 21 (4) : . [epub] 20230331

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37103366

Grantová podpora
UIDB/04326/2020 Fundação para a Ciência e Tecnologia
UIDP/04326/2020 Fundação para a Ciência e Tecnologia
LA/P/0101/2020 Fundação para a Ciência e Tecnologia
SFRH/BD/136277/2018 Fundação para a Ciência e Tecnologia
CEECIND/00425/2017 Fundação para a Ciência e Tecnologia
CZ.02.1.01/0.0/0.0/15_003/0000453 Czech Ministry for Education, Youth and Sports and the European Regional Development Fund

In this study, mycelia of eight recently described species of Halophytophthora and H. avicennae collected in Southern Portugal were analysed for lipids and fatty acids (FA) content to evaluate their possible use as alternative sources of FAs and understand how each species FAs profile relates to their phylogenetic position. All species had a low lipid percentage (0.06% in H. avicennae to 0.28% in H. frigida). Subclade 6b species contained more lipids. All species produced monounsaturated (MUFA), polyunsaturated (PUFA) and saturated (SFA) FAs, the latter being most abundant in all species. H. avicennae had the highest FA variety and was the only producer of γ-linolenic acid, while H. brevisporangia produced the lowest number of FAs. The best producer of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) was H. thermoambigua with 3.89% and 9.09% of total FAs, respectively. In all species, palmitic acid (SFA) was most abundant and among the MUFAs produced oleic acid had the highest relative percentage. Principal component analysis (PCA) showed partial segregation of species by phylogenetic clade and subclade based on their FA profile. H. avicennae (Clade 4) differed from all other Clade 6 species due to the production of γ-linolenic and lauric acids. Our results disclosed interesting FA profiles in the tested species, adequate for energy (biodiesel), pharmaceutical and food industries (bioactive FAs). Despite the low amounts of lipids produced, this can be boosted by manipulating culture growth conditions. The observed interspecific variations in FA production provide preliminary insights into an evolutionary background of its production.

Zobrazit více v PubMed

Fell J.W., Master I.M. Phycomycetes (Phytophthora spp. nov. and Pythium sp. nov.) associated with degrading mangrove (Rhizophora mangle) leaves. Canad. J. Bot. 1975;53:2908–2922. doi: 10.1139/b75-320. DOI

Gerrettson-Cornell L., Simpson J. Three new marine Phytophthora species from New South Wales. Mycotaxon. 1984;19:453–470.

Nakagiri A., Ito T., Manoch L., Tanticharoen M. A new Halophytophthora species, H. porrigovesica, from subtropical and tropical mangroves. Mycoscience. 2001;42:33. doi: 10.1007/BF02463973. DOI

Anastasiou C.J., Churchland L.M. Churchland LM Fungi on decaying leaves in marine habitats. Canad. J. Bot. 1969;47:251–257. doi: 10.1139/b69-035. DOI

Nigrelli L., Thines M. Tropical oomycetes in the German Bight—Climate warming or overlooked diversity? Fungal Ecol. 2013;6:152–160. doi: 10.1016/j.funeco.2012.11.003. DOI

Man in’t Veld W.A., Rosendahl K.C.H.M., van Rijswick P.C.J., Meffert J.P., Boer E., Westenberg M., van der Heide T., Govers L.L. Multiple Halophytophthora spp. and Phytophthora spp. including P. gemini, P. inundata and P. chesapeakensis sp. nov. isolated from the seagrass Zostera marina in the Northern hemisphere. Eur. J. Plant Pathol. 2018;153:341–357. doi: 10.1007/s10658-018-1561-1. DOI

Yang X., Hong C. Halophytophthora fluviatilis sp. nov. from freshwater in Virginia. FEMS Microbiol. Lett. 2014;352:230–237. doi: 10.1111/1574-6968.12391. PubMed DOI

Caballol M., Štraus D., Macia H., Ramis X., Redondo M.Á., Oliva J. Halophytophthora fluviatilis Pathogenicity and Distribution along a Mediterranean-Subalpine Gradient. J. Fungi. 2021;7:112. doi: 10.3390/jof7020112. PubMed DOI PMC

Nakagiri A. Ecology and biodiversity of Halophytophthora species. Fungal Divers. 2000;5:153–164.

Govers L.L., van der Zee E.M., Meffert J.P., van Rijswick P.C.J., Man in’t Veld W.A., Heusinkveld J.H.T., van der Heide T. Copper treatment during storage reduces Phytophthora and Halophytophthora infection of Zostera marina seeds used for restoration. Sci. Rep. 2017;7:43172. doi: 10.1038/srep43172. PubMed DOI PMC

Ho H.H., Jong S.C. Halophytophthora, gen. nov., a new member of the family Pythiaceae. Mycotaxon. 1990;36:377–382.

Thines M. Phylogeny and evolution of plant pathogenic oomycetes—A global overview. Eur. J. Plant Pathol. 2014;38:431–447. doi: 10.1007/s10658-013-0366-5. DOI

Li G.J., Hyde K.D., Zhao R.L., Hongsanan S., Abdel-Aziz F.A., Abdel-Wahab M.A., Alvarado P., Alves-Silva G., Ammirati J.F., Ariyawansa H.A., et al. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;78:1–237. doi: 10.1007/s13225-016-0366-9. DOI

Bennett R.M., Cock A.W.A.M., Lévesque A., Thines M. Calycofera gen. nov., an estuarine sister taxon to Phytopythium, Peronosporaceae. Mycol. Prog. 2017;16:947–954. doi: 10.1007/s11557-017-1326-9. DOI

Bennet R.M., Thines M. Revisiting Salisapiliaceae. Fungal Syst. Evol. 2019;3:171–184. doi: 10.3114/fuse.2019.03.10. PubMed DOI PMC

Jesus A.L., Marano A.V., Gonçalves D.R., Jerônimo G.H., Pires-Zotarelli C.L.A. Two new species of Halophytophthora from Brazil. Mycol. Prog. 2019;18:1411–1421. doi: 10.1007/s11557-019-01523-0. DOI

Su C.J., Hsieh S.Y., Chiang M.W.L., Pang K.L. Salinity, pH and temperature growth ranges of Halophytophthora isolates suggest their physiological adaptations to mangrove environments. Mycology. 2020;11:256–262. doi: 10.1080/21501203.2020.1714768. PubMed DOI PMC

Maia C., Horta Jung M., Carella G., Milenković I., Janoušek J., Tomšovský M., Mosca S., Schena L., Cravador A., Moricca S., et al. Eight new Halophytophthora species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus. Persoonia. 2022;48:54–90. doi: 10.3767/persoonia.2022.48.02. PubMed DOI PMC

Wang Q., Sen B., Liu X., He Y., Xie Y., Wang G. Enhanced saturated fatty acids accumulation in cultures of newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. for large-scale biodiesel production. Sci. Total Environ. 2018;631–632:994–1004. doi: 10.1016/j.scitotenv.2018.03.078. PubMed DOI

Acheampong M., Ertemb F.C., Kappler B., Neubauer P. In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable? Renew. Sustain. Energ. Rev. 2017;75:927–937. doi: 10.1016/j.rser.2016.11.074. DOI

Abedi E., Sahari M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014;2:443–463. doi: 10.1002/fsn3.121. PubMed DOI PMC

Adarme-Vega T.C., Thomas-Hall S.R., Schenk P.M. Towards sustainable sources for omega-3 fattu acids production. Curr. Opin. Biotechnol. 2014;26:14–18. doi: 10.1016/j.copbio.2013.08.003. PubMed DOI

Tallima H., Ridi R.E. Arachidonic acid: Physiological roles and potential health benefits—A review. J. Adv. Res. 2018;11:33–41. doi: 10.1016/j.jare.2017.11.004. PubMed DOI PMC

Spencer L., Mann C., Metcalfe M., Webb M., Pollard C., Spencer D., Berry D., Steward W., Dennison A. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur. J. Cancer. 2009;45:2077–2086. doi: 10.1016/j.ejca.2009.04.026. PubMed DOI

Horrocks L.A., Yeo Y.K. Health benefits of docosahexaenoic acid (DHA) Pharmacol. Res. 1999;40:211–225. doi: 10.1006/phrs.1999.0495. PubMed DOI

Adarme-Vega T.C., Lim K.Y.D., Timmins M., Vernen F., Li Y., Schenk P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Factories. 2012;11:96. doi: 10.1186/1475-2859-11-96. PubMed DOI PMC

Kobayashi T., Sakaguchi K., Matsuda T., Abe E., Hama Y., Hayashi M., Honda D., Okita Y., Sugimoto S., Okino N., et al. Increase of eicosapentaenoic acid in thraustochytrids through thraustochytrid ubiquitin promoter-driven expression of a fatty acid Δ5 desaturase gene. Appl. Environ. Microbiol. 2011;77:3870–3876. doi: 10.1128/AEM.02664-10. PubMed DOI PMC

Marchan L.F., Chang K.J.L., Nichols P.D., Mitchell W.J., Polglase J.L., Gutierrez T. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol. Adv. 2018;36:26–46. doi: 10.1016/j.biotechadv.2017.09.003. PubMed DOI

Stredansky M., Conti E., Salaris A. Production of polyunsaturated fatty acids by Pythium ultimum in solid-state cultivation. Enzyme Microb. Technol. 2000;26:304–307. doi: 10.1016/S0141-0229(99)00146-5. PubMed DOI

Duan C.H., Riley M.B., Jeffers S.N. Effects of growth medium, incubation temperature, and mycelium age on production of five major fatty acids by six species of Phytophthora. Arch. Phytopathol Plant Prot. 2011;44:142–157. doi: 10.1080/03235400902952145. DOI

Pang K.L., Lin H.J., Lin H.Y., Huang Y.F., Chen Y.M. Production of arachidonic and eicosapentaenoic acids by the marine oomycete Halophytophthora. Mar. Biotechnol. 2015;17:121–129. doi: 10.1007/s10126-014-9600-1. PubMed DOI

Say E.K.P., Yabut A.T.V., Cinco N.E.T., Caguimbal N.A.L.E., Devadanera M.K.P., Bennett R.M., Arafiles K.H.V., Aki T., Dedeles G.R. Growth and fatty acid production of Halophytophthora S13005YL1-1.3 under different salinity and pH levels. Philipp. Agric. Sci. 2017;100:6–11.

Caguimbal N.A.L.E., Devadanera M.K.P., Bennett R.M., Arafiles K.H.V., Watanabe K., Aki T., Dedeles G.R. Growth and fatty acid profiles of Halophytophthora vesicula and Salispina spinosa from Philippine mangrove leaves. Lett. Appl. Microbiol. 2019;69:221–228. doi: 10.1111/lam.13199. PubMed DOI

Devanadera M.K.P., Bennett R.M., Watanabe K., Santiago M.R., Ramos M.C., Aki T., Dedeles G.R. Marine Oomycetes (Halophytophthora and Salispina): A potential source of fatty acids with cytotoxic activity against breast adenocarcinoma cells (MCF7) J. Oleo Sci. 2019;68:1163–1174. doi: 10.5650/jos.ess19033. PubMed DOI

Su C.J., Ju W.T., Chen Y.M., Chiang M.W.L., Hsieh S.Y., Lin H.J., Gareth Jones E., Pang K.L. Palmitic acid and long-chain polyunsaturated fatty acids dominate in mycelia of mangrove Halophytophthora and Salispina species in Taiwan. Botanica Marina. 2021;64:503–518. doi: 10.1515/bot-2021-0030. DOI

Bartnicki-Garcia S. Chemistry of hyphal walls of Phytophthora. J. Gen. Microbiol. 1966;42:57–69. doi: 10.1099/00221287-42-1-57. PubMed DOI

Lippman E., Erwin D.C., Bartnicki-Garcia S. Isolation and chemical composition of oospore-oogonium walls of Phytophthora megasperma var. sojae. J. Gen. Microbiol. 1974;80:131–141. doi: 10.1099/00221287-80-1-131. DOI

Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. APS Press; St. Paul, MN, USA: 1996.

Mulgund A. Increasing lipid accumulation in microalgae through environmental manipulation, metabolic and genetic engineering: A review in the energy NEXUS framework. Energy Nexus. 2022;5:100054. doi: 10.1016/j.nexus.2022.100054. DOI

Piligaev A.V., Sorokina K.N., Samoylova Y.V., Parmon V.N. Production of Microalgal Biomass with High Lipid Content and Their Catalytic Processing Into Biodiesel: A Review. Catal. Ind. 2019;11:349–359. doi: 10.1134/S207005041904007X. DOI

Narayan B., Miyashita K., Hosakawa M. Physiological effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA)—A review. Food Rev. Int. 2006;22:291–307. doi: 10.1080/87559120600694622. DOI

Lee Chang K.J., Rye L., Dunstan G.A., Grant T., Koutoulis A., Nichols P.D., Blackburn S.I. Life cycle assessment: Heterotrophic cultivation of thraustochytrids for biodiesel production. J. Appl. Phycol. 2015;27:639–647. doi: 10.1007/s10811-014-0364-9. DOI

Patel A., Matsakas L., Pruthi P.A., Pruthi V. Potential of aquatic oomycete as a novel feedstock for microbial oil grown on waste sugarcane bagasse. Environ. Sci. Pollut. Res. 2018;25:33443–33454. doi: 10.1007/s11356-018-3183-8. PubMed DOI PMC

Leaño E.M., Gapasin R.S.J., Polohan B., Vrijmoed L.L.P. Growth and fatty acid production of thraustochytrids from Panay mangroves, Philippines. Fungal Divers. 2003;12:111–122.

Scanu B., Hunter G.C., Linaldeddu B.T., Franceschini A., Maddau L., Jung T., Denman S. A taxonomic re-evaluation reveals that Phytophthora cinnamomi and P. cinnamomic var parvispora are separate species. For. Pathol. 2014;44:1–20. doi: 10.1111/efp.12064. DOI

Jung T., Chang T.T., Bakony J., Seress D., Perez-Sierra A., Yang X., Hong C., Scanu B., Fu C.H., Hsueh K.L., et al. Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptoms. Plant Pathol. 2017;66:194–211. doi: 10.1111/ppa.12564. DOI

Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/y59-099. PubMed DOI

Lepage G., Roy C.C. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 1984;25:1391–1396. doi: 10.1016/S0022-2275(20)34457-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...