In Vitro High-Throughput Genotoxicity Testing Using γH2AX Biomarker, Microscopy and Reproducible Automatic Image Analysis in ImageJ-A Pilot Study with Valinomycin
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37104201
PubMed Central
PMC10146355
DOI
10.3390/toxins15040263
PII: toxins15040263
Knihovny.cz E-resources
- Keywords
- ImageJ, bioimage analysis, genotoxicity, high-throughput, in vitro testing,
- MeSH
- Biomarkers analysis MeSH
- HeLa Cells MeSH
- Humans MeSH
- Microscopy * MeSH
- Pilot Projects MeSH
- DNA Damage * MeSH
- Reproducibility of Results MeSH
- Valinomycin toxicity MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Valinomycin MeSH
(1) Background: The detection of DNA double-strand breaks in vitro using the phosphorylated histone biomarker (γH2AX) is an increasingly popular method of measuring in vitro genotoxicity, as it is sensitive, specific and suitable for high-throughput analysis. The γH2AX response is either detected by flow cytometry or microscopy, the latter being more accessible. However, authors sparsely publish details, data, and workflows from overall fluorescence intensity quantification, which hinders the reproducibility. (2) Methods: We used valinomycin as a model genotoxin, two cell lines (HeLa and CHO-K1) and a commercial kit for γH2AX immunofluorescence detection. Bioimage analysis was performed using the open-source software ImageJ. Mean fluorescent values were measured using segmented nuclei from the DAPI channel and the results were expressed as the area-scaled relative fold change in γH2AX fluorescence over the control. Cytotoxicity is expressed as the relative area of the nuclei. We present the workflows, data, and scripts on GitHub. (3) Results: The outputs obtained by an introduced method are in accordance with expected results, i.e., valinomycin was genotoxic and cytotoxic to both cell lines used after 24 h of incubation. (4) Conclusions: The overall fluorescence intensity of γH2AX obtained from bioimage analysis appears to be a promising alternative to flow cytometry. Workflow, data, and script sharing are crucial for further improvement of the bioimage analysis methods.
See more in PubMed
OECD . Overview on Genetic Toxicology TGs. OECD Publishing; Paris, France: 2017. (OECD Series on Testing and Assessment). DOI
Luan Y., Honma M. Genotoxicity testing and recent advances. Genome Instab. Dis. 2021;3:1–21. doi: 10.1007/s42764-021-00058-7. DOI
Mišík M., Nersesyan A., Ferk F., Holzmann K., Krupitza G., Herrera Morales D., Staudinger M., Wultsch G., Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2022;881:503524. doi: 10.1016/j.mrgentox.2022.503524. PubMed DOI
Richmond J. The 3Rs—Past, Present and Future. Scand. J. Lab. Anim. Sci. 2000;27:84–92. doi: 10.23675/sjlas.v27i2.19. DOI
Mah L.J., El-Osta A., Karagiannis T.C. γH2AX: A sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24:679–686. doi: 10.1038/leu.2010.6. PubMed DOI
Srivastava N., Gochhait S., de Boer P., Bamezai R.N.K. Role of H2AX in DNA damage response and human cancers. Mutat. Res./Rev. Mutat. Res. 2009;681:180–188. doi: 10.1016/j.mrrev.2008.08.003. PubMed DOI
Kuo L.J., Yang L.X. γ-H2AX- A novel biomaker for DNA double-strand breaks. In Vivo. 2008;22:305–310. PubMed
Rahmanian N., Shokrzadeh M., Eskandani M. Recent advances in γH2AX biomarker-based genotoxicity assays: A marker of DNA damage and repair. DNA Repair. 2021;108:103243. doi: 10.1016/j.dnarep.2021.103243. PubMed DOI
Garcia-Canton C., Anadon A., Meredith C. Assessment of the in vitro gammaH2AX assay by High Content Screening as a novel genotoxicity test. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013;757:158–166. doi: 10.1016/j.mrgentox.2013.08.002. PubMed DOI
Reddig A., Roggenbuck D., Reinhold D. Comparison of different immunoassays for γH2AX quantification. J. Lab. Precis. Med. 2018;3:80. doi: 10.21037/jlpm.2018.09.01. DOI
Zhang B., Li F., Shen L., Chen L., Xia Z., Ding J., Li M., Guo L.-H. A cathodic photoelectrochemical immunoassay with dual signal amplification for the ultrasensitive detection of DNA damage biomarkers. Biosens. Bioelectron. 2023;224:115052. doi: 10.1016/j.bios.2022.115052. PubMed DOI
Tolosa L., Gómez-Lechón M.J., Donato M.T. High-content screening technology for studying drug-induced hepatotoxicity in cell models. Arch. Toxicol. 2015;89:1007–1022. doi: 10.1007/s00204-015-1503-z. PubMed DOI
Popp H.D., Brendel S., Hofmann W.-K., Fabarius A. Immunofluorescence Microscopy of γH2AX and 53BP1 for Analyzing the Formation and Repair of DNA Double-strand Breaks. JoVE. 2017;129:e56617. doi: 10.3791/56617. PubMed DOI PMC
Willitzki A., Lorenz S., Hiemann R., Guttek K., Goihl A., Hartig R., Conrad K., Feist E., Sack U., Schierack P., et al. Fully automated analysis of chemically induced γH2AX foci in human peripheral blood mononuclear cells by indirect immunofluorescence. Cytom. A. 2013;83:1017–1026. doi: 10.1002/cyto.a.22350. PubMed DOI
Ando M., Yoshikawa K., Iwase Y., Ishiura S. Usefulness of monitoring γ-H2AX and cell cycle arrest in HepG2 cells for estimating genotoxicity using a high-content analysis system. J. Biomol. Screen. 2014;19:1246–1254. doi: 10.1177/1087057114541147. PubMed DOI
Quesnot N., Rondel K., Audebert M., Martinais S., Glaise D., Morel F., Loyer P., Robin M.A. Evaluation of genotoxicity using automated detection of γH2AX in metabolically competent HepaRG cells. Mutagenesis. 2016;31:43–50. doi: 10.1093/mutage/gev059. PubMed DOI
Marková E., Schultz N., Belyaev I.Y. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci: Co-localization, relationship with DSB repair and clonogenic survival. Int. J. Radiat. Biol. 2007;83:319–329. doi: 10.1080/09553000601170469. PubMed DOI
Kim Y.J., Koedrith P., Kim H.S., Yu W.J., Kim J.C., Seo Y.R. Comparative genotoxicity investigation using comet and gammaH2AX assays for screening of genotoxicants in HepG2 human hepatoma cells. Toxicol. Environ. Health Sci. 2016;8:68–78. doi: 10.1007/s13530-016-0263-3. DOI
Liu X.L., Wu R.Y., Sun X.F., Cheng S.F., Zhang R.Q., Zhang T.Y., Zhang X.F., Zhao Y., Shen W., Li L. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro. Int. J. Biol. Sci. 2018;14:294–305. doi: 10.7150/ijbs.23898. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schneider J., Weiss R., Ruhe M., Jung T., Roggenbuck D., Stohwasser R., Schierack P., Rödiger S. Open source bioimage informatics tools for the analysis of DNA damage and associated biomarkers. J. Lab. Precis. Med. 2019;4:21. doi: 10.21037/jlpm.2019.04.05. DOI
Invitrogen. HCS DNA Damage Kit. [(accessed on 21 February 2023)]. Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2Fmp10292.pdf.
Smart D.J., Ahmedi K.P., Harvey J.S., Lynch A.M. Genotoxicity screening via the gammaH2AX by flow assay. Mutat. Res. 2011;715:25–31. doi: 10.1016/j.mrfmmm.2011.07.001. PubMed DOI
Hanahan D., Weinberg R.A. The Hallmarks of Cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. PubMed DOI
Shihan M.H., Novo S.G., Le Marchand S.J., Wang Y., Duncan M.K. A simple method for quantitating confocal fluorescent images. Biochem. Biophys. Rep. 2021;25:100916. doi: 10.1016/j.bbrep.2021.100916. PubMed DOI PMC
Fowler P., Smith K., Young J., Jeffrey L., Kirkland D., Pfuhler S., Carmichael P. Reduction of misleading (“false”) positive results in mammalian cell genotoxicity assays. I. Choice of cell type. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2012;742:11–25. doi: 10.1016/j.mrgentox.2011.10.014. PubMed DOI
Donato M.T., Tolosa L., Gómez-Lechón M.J. Culture and Functional Characterization of Human Hepatoma HepG2 Cells. In: Vinken M., Rogiers V., editors. Protocols in In Vitro Hepatocyte Research. Springer; New York, NY, USA: 2015. pp. 77–93. PubMed
Qu D., Gu Y., Feng L., Han J. High Content Analysis technology for evaluating the joint toxicity of sunset yellow and sodium sulfite in vitro. Food Chem. 2017;233:135–143. doi: 10.1016/j.foodchem.2017.04.102. PubMed DOI
Qu D., Jiang M., Huang D., Zhang H., Feng L., Chen Y., Zhu X., Wang S., Han J. Synergistic Effects of The Enhancements to Mitochondrial ROS, p53 Activation and Apoptosis Generated by Aspartame and Potassium Sorbate in HepG2 Cells. Molecules. 2019;24:457. doi: 10.3390/molecules24030457. PubMed DOI PMC
Rogakou E.P., Nieves-Neira W., Boon C., Pommier Y., Bonner W.M. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J. Biol. Chem. 2000;275:9390–9395. doi: 10.1074/jbc.275.13.9390. PubMed DOI
Duke R.C., Witter R.Z., Nash P.B., Young J.D.-E., Ojcius D.M. Cytolysis mediated by ionophores and pore-forming agents: Role of intracellular calcium in apoptosis. FASEB J. 1994;8:237–246. doi: 10.1096/fasebj.8.2.8119494. PubMed DOI
Su Z., Ran X., Leitch J.J., Schwan A.L., Faragher R., Lipkowski J. How Valinomycin Ionophores Enter and Transport K+ across Model Lipid Bilayer Membranes. Langmuir. 2019;35:16935–16943. doi: 10.1021/acs.langmuir.9b03064. PubMed DOI
Korga A., Ostrowska M., Jozefczyk A., Iwan M., Wojcik R., Zgorka G., Herbet M., Vilarrubla G.G., Dudka J. Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells. BMC Pharmacol. Toxicol. 2019;20:22. doi: 10.1186/s40360-019-0301-2. PubMed DOI PMC
Miura K., Nørrelykke S.F. Reproducible image handling and analysis. EMBO J. 2021;40:e105889. doi: 10.15252/embj.2020105889. PubMed DOI PMC
Levet F., Carpenter A., Eliceiri K., Kreshuk A., Bankhead P., Haase R. Developing open-source software for bioimage analysis: Opportunities and challenges [version 1; peer review: 2 approved] F1000Research. 2021;10:302. doi: 10.12688/f1000research.52531.1. PubMed DOI PMC
Haase R., Jain A., Rigaud S., Vorkel D., Rajasekhar P., Suckert T., Lambert T.J., Nunez-Iglesias J., Poole D.P., Tomancak P., et al. Interactive design of GPU-accelerated Image Data Flow Graphs and cross-platform deployment using multi-lingual code generation. bioRxiv. 2020 doi: 10.1101/2020.11.19.386565. DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC