Rapid extraction and analysis of oxidative stress and DNA damage biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine: Application to a study with pregnant women
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37105016
PubMed Central
PMC10186372
DOI
10.1016/j.ijheh.2023.114175
PII: S1438-4639(23)00066-4
Knihovny.cz E-zdroje
- Klíčová slova
- 8-OHdG, Oxidative stress, Placenta, Pregnancy, Urine,
- MeSH
- 8-hydroxy-2'-deoxyguanosin MeSH
- biologické markery moč MeSH
- chromatografie kapalinová metody MeSH
- deoxyguanosin * moč MeSH
- kreatinin moč MeSH
- lidé MeSH
- novorozenec MeSH
- oxidační stres MeSH
- placenta MeSH
- poškození DNA MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- těhotenství MeSH
- těhotné ženy * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 8-hydroxy-2'-deoxyguanosin MeSH
- biologické markery MeSH
- deoxyguanosin * MeSH
- kreatinin MeSH
Oxidative stress is an important toxicity and genotoxicity mechanism of many chronic adverse health outcomes. This study developed a sensitive extraction method for urine matrix (based on lyophilization, without the need for pre-cleaning by solid phase extraction), coupled to LC-MS/MS analysis of the biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG). The methodology was validated in urine samples from a cohort of Spanish pregnant women collected during the first, second and third trimester of pregnancy, and urine samples collected within 24 h after delivery (n = 85). A detection and quantification limit of 0.01 and 0.05 μg/L, respectively, were established. The median 8-OHdG concentration was 2.18 μg/L (range 0.33-7.79); and the corresponding creatinine-adjusted concentrations ranged from 1.04 to 13.12 with median of 4.48 μg 8-OHdG/g creatinine. The concentrations of non-adjusted 8-OHdG significantly decreased (p < 0.05) in the 3rd trimester and post-delivery urine samples when compared to the 1st trimester levels. 8-OHdG concentrations were further studied in placenta samples matching the same urine samples (n = 26), with a median value of 1.3 ng 8-OHdG/g of tissue. Placental 8-OHdG concentrations were correlated with urinary levels of non-adjusted 8-OHdG in the 3rd trimester. Considering the small cohort size, results must be interpreted with caution, however statistical analyses revealed elevated urinary non-adjusted 8-OHdG levels in the 1st trimester of mothers that delivered boys compared to those who delivered girls (p < 0.01). Increased urinary non-adjusted 8-OHdG concentrations at the time of delivery were significantly associated with clinical records (any type of clinical record during pregnancy; p < 0.05). The novel extraction and analytical method for the assessment of 8-OHdG is applicable for sensitive analysis of multiple analytes or biomarkers in urine matrix. This method could also be applied for other matrices such as blood or tissues. Our findings show that 8-OHdG in urine of pregnant women could predict oxidative stress in placenta and can be related to characteristics such as maternal obesity, mode of delivery and newborn sex.
Zobrazit více v PubMed
Al-Saleh I., Al-Rouqi R., Elkhatib R., Abduljabbar M., Al-Rajudi T. Risk assessment of environmental exposure to heavy metals in mothers and their respective infants. Int. J. Hyg Environ. Health. 2017;220:1252–1278. doi: 10.1016/j.ijheh.2017.07.010. PubMed DOI
Al-Saleh I., Alsabbahen A., Shinwari N., Billedo G., Mashhour A., Al-Sarraj Y., Mohamed G.E.D., Rabbah A. Polycyclic aromatic hydrocarbons (PAHs) as determinants of various anthropometric measures of birth outcome. Sci. Total Environ. 2013;444:565–578. doi: 10.1016/j.scitotenv.2012.12.021. PubMed DOI
Anastassiades M., Lehotay S.J., Štajnbaher D., Schenck F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for. J. AOAC Int. 2003;86:412–431. PubMed
Bláhová L., Nováková Z., Večeřa Z., Vrlíková L., Dočekal B., Dumková J., Křůmal K., Mikuška P., Buchtová M., Hampl A., Hilscherová K., Bláha L. The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology. 2020;14:214–231. doi: 10.1080/17435390.2019.1685696. PubMed DOI
Booth B.P., Simon W.C. Analytical method validation. New Drug Dev. Regul. Paradig. Clin. Pharmacol. Biopharm. 2016:138–159. doi: 10.1201/9780203026427-15. DOI
Burton G.J., Sebire N.J., Myatt L., Tannetta D., Wang Y.L., Sadovsky Y., Staff A.C., Redman C.W. Optimising sample collection for placental research. Placenta. 2014;35:9–22. doi: 10.1016/j.placenta.2013.11.005. PubMed DOI
Chen Q., Hu Y., Fang Z., Ye M., Li J., Zhang S., Yuan Y., Guo C. Elevated levels of oxidative nucleic acid modification markers in urine from gastric cancer patients: quantitative analysis by ultra performance liquid chromatography-tandem mass spectrometry. Front. Chem. 2020;8:1–7. doi: 10.3389/fchem.2020.606495. PubMed DOI PMC
Daube H., Scherer G., Riedel K., Ruppert T., Tricker a R., Rosenbaum P., Adlkofer F. DNA adducts in human placenta in relation to tobacco smoke exposure and plasma antioxidant status. J. Cancer Res. Clin. Oncol. 1997;123:141–151. PubMed
Dennery P.A. Oxidative stress in development: nature or nurture? Free Radic. Biol. Med. 2010;49:1147–1151. doi: 10.1016/j.freeradbiomed.2010.07.011. PubMed DOI
Dereziński P., Klupczyńska A., Sawicki W., Kokot Z.J. Creatinine determination in urine by liquid chromatography-electrospray ionization-tandem mass spectrometry method. Acta Pol. Pharm. - Drug Res. 2016;73:303–313. PubMed
Fan R., Wang D., Mao C., Ou S., Lian Z., Huang S., Lin Q., Ding R., She J. Preliminary study of children's exposure to PAHs and its association with 8-hydroxy-2’-deoxyguanosine in Guangzhou, China. Environ. Int. 2012;42:53–58. doi: 10.1016/j.envint.2011.03.021. PubMed DOI
Ferguson K.K., McElrath T.F., Chen Y.H., Mukherjee B., Meeker J.D. Urinary phthalate metabolites and biomarkers of oxidative stress in pregnant women: a repeated measures analysis. Environ. Health Perspect. 2015;123:217–222. doi: 10.1289/ehp.1307996. PubMed DOI PMC
Ferguson K.K., Cantonwine D.E., Rivera-Gonzalez L.O., Loch-Caruso R., Mukherjee B., Anzalota Del Toro L.V., Jimenez-Velez B., Calafat A.M., Ye X., Alshawabkeh A.N., Cordero J.F., Meeker J.D. Urinary phthalate metabolite associations with biomarkers of inflammation and oxidative stress across pregnancy in Puerto Rico. Environ. Sci. Technol. 2014;48:7018–7025. PubMed PMC
Fleming A.M., Alshykhly O., Zhu J., Muller J.G., Burrows C.J. Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products. Chem. Res. Toxicol. 2015;28:1292–1300. doi: 10.1021/acs.chemrestox.5b00096. PubMed DOI PMC
Garde A.H., Hansen Å.M., Kristiansen J., Knudsen L.E. Comparison of uncertainties related to standardization of urine samples with volume and creatinine concentration. Ann. Occup. Hyg. 2004;48:171–179. doi: 10.1093/annhyg/meh019. PubMed DOI
Graille M., Wild P., Sauvain J.J., Hemmendinger M., Canu I.G., Hopf N.B. Urinary 8-OHDG as a biomarker for oxidative stress: a systematic literature review and meta-analysis. Int. J. Mol. Sci. 2020;21:1–24. doi: 10.3390/ijms21113743. PubMed DOI PMC
Guo C., Ding P., Xie C., Ye C., Ye M., Pan C., Cao X., Zhang S., Zheng S. Potential application of the oxidative nucleic acid damage biomarkers in detection of diseases. Oncotarget. 2017;8:75767–75777. doi: 10.18632/oncotarget.20801. PubMed DOI PMC
Halliwell B., Gutteridge J.M. second ed. Elsevier; 1990. Free radicals in biology and medicine. (Trends in Biochemical Sciences). DOI
Hu C.W., Chao M.R., Sie C.H. Urinary analysis of 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction: study of 8-oxo-7,8-dihydroguanine stability. Free Radic. Biol. Med. 2010;48:89–97. doi: 10.1016/j.freeradbiomed.2009.10.029. PubMed DOI
Hu C.W., Wu M.T., Chao M.R., Pan C.H., Wang C.J., Swenberg J.A., Wu K.Y. Comparison of analyses of urinary 8-hydroxy-2′-deoxyguanosine by isotope-dilution liquid chromatography with electrospray tandem mass spectrometry and by enzyme-linked immunosorbent assay. Rapid Commun. Mass Spectrom. 2004;18:505–510. doi: 10.1002/rcm.1367. PubMed DOI
Hung T.H., Chen S.F., Hsieh T.T.A., Lo L.M., Li M.J., Yeh Y.L. The associations between labor and delivery mode and maternal and placental oxidative stress. Reprod. Toxicol. 2011;31:144–150. doi: 10.1016/j.reprotox.2010.11.009. PubMed DOI
Il’yasova D., Scarbrough P., Spasojevic I. Urinary biomarkers of oxidative status. Clin. Chim. Acta. 2012;413:1446–1453. doi: 10.1016/j.cca.2012.06.012. PubMed DOI PMC
Janoš T., Ottenbros I., Bláhová L., Šenk P., Šulc L., Pálešová N., Sheardová J., Vlaanderen J., Čupr P. Effects of pesticide exposure on oxidative stress and DNA methylation urinary biomarkers in Czech adults and children from the CELSPAC-SPECIMEn cohort. Environ. Res. 2023;222 doi: 10.1016/j.envres.2023.115368. PubMed DOI PMC
Jauniaux E., Watson A.L., Hempstock J., Bao Y.P., Skepper J.N., Burton G.J. Onset of maternal arterial blood flow and placental oxidative stress: a possible factor in human early pregnancy failure. Am. J. Pathol. 2000;157:2111–2122. doi: 10.1016/S0002-9440(10)64849-3. PubMed DOI PMC
Kim S.S., Meeker J.D., Keil A.P., Aung M.T., Bommarito P.A., Cantonwine D.E., McElrath T.F., Ferguson K.K. Exposure to 17 trace metals in pregnancy and associations with urinary oxidative stress biomarkers. Environ. Res. 2019;179 doi: 10.1016/j.envres.2019.108854. PubMed DOI PMC
Lee G., Kim S., Park H., Lee J., Lee J.P., Kho Y., Choi G., Park J., Worakhunpiset S., Moon H.B., Choi K. Variability of urinary creatinine, specific gravity, and osmolality over the course of pregnancy: implications in exposure assessment among pregnant women. Environ. Res. 2021;198 doi: 10.1016/j.envres.2020.110473. PubMed DOI
Li Y.S., Kawasaki Y., Watanabe S., Ootsuyama Y., Kasai H., Kawai K. Diurnal and day-to-day variation of urinary oxidative stress marker 8-hydroxy-2’- deoxyguanosine. J. Clin. Biochem. Nutr. 2021;68:18–22. doi: 10.3164/JCBN.19-105. PubMed DOI PMC
Lu C.Y., Ma Y.C., Lin J.M., Chuang C.Y., Sung F.C. Oxidative DNA damage estimated by urinary 8-hydroxydeoxyguanosine and indoor air pollution among non-smoking office employees. Environ. Res. 2007;103:331–337. doi: 10.1016/j.envres.2006.08.009. PubMed DOI
Lu S., Ren L., Fang J., Ji J., Liu G., Zhang J., Zhang H., Luo R., Lin K., Fan R. Trace elements are associated with urinary 8-hydroxy-2′-deoxyguanosine level: a case study of college students in Guangzhou, China. Environ. Sci. Pollut. Res. 2016;23:8484–8491. doi: 10.1007/s11356-016-6104-8. PubMed DOI
Marrocco I., Altieri F., Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid. Med. Cell. Longev. 2017 doi: 10.1155/2017/6501046. 2017. PubMed DOI PMC
Martinez-Moral M.P., Kannan K. How stable is oxidative stress level? An observational study of intra- and inter-individual variability in urinary oxidative stress biomarkers of DNA, proteins, and lipids in healthy individuals. Environ. Int. 2019;123:382–389. doi: 10.1016/j.envint.2018.12.009. PubMed DOI PMC
Myatt L., Cui X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004;122:369–382. doi: 10.1007/s00418-004-0677-x. PubMed DOI
Pan C., Yu J., Yao Q., Lin N., Lu Z., Zhang Y., Zhao S., Wang Z., Lei X., Tian Y., Gao Y. Prenatal neonicotinoid insecticides Exposure, oxidative Stress, and birth outcomes. Environ. Int. 2022;163 PubMed
Potdar N., Singh R., Mistry V., Evans M.D., Farmer P.B., Konje J.C., Cooke M.S. First-trimester increase in oxidative stress and risk of small-for-gestational-age fetus. BJOG An Int. J. Obstet. Gynaecol. 2009;116:637–642. doi: 10.1111/j.1471-0528.2008.02096.x. PubMed DOI
Qian X., Wan Y., Wang A., Xia W., Yang Z., He Z., Xu S. Urinary metabolites of multiple volatile organic compounds among general population in Wuhan, central China: inter-day reproducibility, seasonal difference, and their associations with oxidative stress biomarkers. Environ. Pollut. 2021;289 doi: 10.1016/j.envpol.2021.117913. PubMed DOI
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2021. R: A Language and Environment for Statistical Computing.https://www.R-project.org/ URL.
Ravanat J.L., Duretz B., Guiller A., Douki T., Cadet J. Isotope dilution high-performance liquid chromatography-electrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2’-deoxyguanosine in biological samples. J. Chromatogr. B Biomed. Appl. 1998;715:349–356. doi: 10.1016/S0378-4347(98)00259-X. PubMed DOI
Ren L., Fang J., Liu G., Zhang J., Zhu Z., Liu H., Lin K., Zhang H., Lu S. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2′-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal. Bioanal. Chem. 2016;408:2621–2629. doi: 10.1007/s00216-016-9372-8. PubMed DOI
Sabatini L., Barbieri A., Tosi M., Roda A., Violante T.S. A method for routine quantitation of urinary 8-hydroxy-2′-deoxyguanosine based on solid-phase extraction and micro-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. RCM (Rapid Commun. Mass Spectrom.) 2004;19/2:147–152. doi: 10.1002/rcm.1763. PubMed DOI
Song M.F., Li Y.S., Ootsuyama Y., Kasai H., Kawai K., Ohta M., Eguchi Y., Yamato H., Matsumoto Y., Yoshida R., Ogawa Y. Urea, the most abundant component in urine, cross-reacts with a commercial 8-OH-dG ELISA kit and contributes to overestimation of urinary 8-OH-dG. Free Radic. Biol. Med. 2009;47:41–46. doi: 10.1016/j.freeradbiomed.2009.02.017. PubMed DOI
Steffensen I.L., Dirven H., Couderq S., David A., D’cruz S.C., Fernández M.F., Mustieles V., Rodríguez-Carillo A., Hofer T. Bisphenols and oxidative stress biomarkers— associations found in human studies, evaluation of methods used, and strengths and weaknesses of the biomarkers. Int. J. Environ. Res. Publ. Health. 2020;17 doi: 10.3390/ijerph17103609. PubMed DOI PMC
Topic A. Liquid chromatography-mass spectrometric methods fo quantitative analysis of oxidatively damaged DNA in biological fluids. Oxidatively modif. DNA lesions syst. Repar. Sources. Clin. Significance Methods Anal. 2014:1–15.
Valavanidis A., Vlachogianni T., Fiotakis C. 8-hydroxy-2’ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009;27:120–139. doi: 10.1080/10590500902885684. PubMed DOI
Ventura C., Gomes B.C., Oberemm A., Louro H., Huuskonen P., Mustieles V., Fernández M.F., Ndaw S., Mengelers M., Luijten M., Gundacker C., Silva M.J. Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008–2020. Environ. Res. 2021;197 doi: 10.1016/j.envres.2021.110998. PubMed DOI
Waits A., Chen H.C., Kuo P.L., Wang C.W., Huang H. Bin, Chang W.H., Shih S.F., Huang P.C. Urinary phthalate metabolites are associated with biomarkers of DNA damage and lipid peroxidation in pregnant women – Tainan Birth Cohort Study (TBCS) Environ. Res. 2020;188 doi: 10.1016/j.envres.2020.109863. PubMed DOI
Wang C.C., Chen W.L., Lin C.M., Lai C.H., Loh C.H., Chen H.I., Liou S.H. The relationship between plasma and urinary 8-hydroxy-2-deoxyguanosine biomarkers measured by liquid chromatography tandem mass spectrometry. Environ. Sci. Pollut. Res. 2016;23:17496–17502. doi: 10.1007/s11356-016-6898-4. PubMed DOI
WHO . World Health Organization; Geneva: 1996. Biological Monitoring of Chemical Exposure in the Workplace - Guidelines.
Wu L.L., Chiou C.C., Chang P.Y., Wu J.T. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta. 2004;339:1–9. doi: 10.1016/j.cccn.2003.09.010. PubMed DOI
Zhang Y.J., Wu L.H., Wang F., Liu L.Y., Zeng E.Y., Guo Y. DNA oxidative damage in pregnant women upon exposure to conventional and alternative phthalates. Environ. Int. 2021;156 doi: 10.1016/j.envint.2021.106743. PubMed DOI