The Aspects of Artificial Intelligence in Different Phases of the Food Value and Supply Chain
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37107449
PubMed Central
PMC10137586
DOI
10.3390/foods12081654
PII: foods12081654
Knihovny.cz E-zdroje
- Klíčová slova
- artificial intelligence, artificial intelligence challenges, food supply chain,
- Publikační typ
- časopisecké články MeSH
The types of artificial intelligence, artificial intelligence integration to the food value and supply chain, other technologies embedded with artificial intelligence, artificial intelligence adoption barriers in the food value and supply chain, and solutions to overcome these barriers were analyzed by the authors. It was demonstrated by the analysis that artificial intelligence can be integrated vertically into the entire food supply and value chain, owing to its wide range of functions. Different phases of the chain are affected by developed technologies such as robotics, drones, and smart machines. Different capabilities are provided for different phases by the interaction of artificial intelligence with other technologies such as big data mining, machine learning, the Internet of services, agribots, industrial robots, sensors and drones, digital platforms, driverless vehicles and machinery, and nanotechnology, as revealed by a systematic literature analysis. However, the application of artificial intelligence is hindered by social, technological, and economic barriers. These barriers can be overcome by developing the financial and digital literacy of farmers and by disseminating good practices among the participants of the food supply and value chain.
Faculty of Economics and Management Czech University of Life Sciences 16500 Prague Czech Republic
Lithuania Business University of Applied Sciences 91249 Klaipeda Lithuania
School of Economics and Business Kaunas University of Technology 44249 Kaunas Lithuania
Zobrazit více v PubMed
Haenlein M., Kaplan A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019;61:5–14. doi: 10.1177/0008125619864925. DOI
Strusani D., Houngbonon G.V. The Role of Artificial Intelligence in Supporting Development in Emerging Markets. [(accessed on 10 November 2021)];EMCompass. 2019 69 Available online: https://openknowledge.worldbank.org/handle/10986/32365.
Olsen T.L., Tomlin B. Tuck School of Business Working Paper No. 3365733, The University of Auckland Business School Research Paper. The University of Auckland Business School; Auckland, New Zealand: 2019. Industry 4.0: Opportunities and Challenges for Operations Management. DOI
Davenport T., Guha A., Grewal D., Bressgott T. How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 2020;48:24–42. doi: 10.1007/s11747-019-00696-0. DOI
Jagtap S., Bader F., Garcia-Garcia G., Trollman H., Fadiji T., Salonitis K. Food Logistics 4.0: Opportunities and Challenges. Logistics. 2021;5:2. doi: 10.3390/logistics5010002. DOI
Duro D.C., Franklin S.E., Dube M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012;118:259–272. doi: 10.1016/j.rse.2011.11.020. DOI
Kamilaris A., Prenafeta-Boldu F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018;147:70–90. doi: 10.1016/j.compag.2018.02.016. DOI
Liakos K.G., Busato P., Moshou D., Pearson S., Bochtis D. Machine learning in agriculture: A review. Sensors. 2018;18:2674. doi: 10.3390/s18082674. PubMed DOI PMC
Carrico G. The EU and artificial intelligence: A human-cent red perspective. Eur. View. 2018;17:29–36. doi: 10.1177/1781685818764821. DOI
Fjelland R. Why general artificial intelligence will not be realized. Humanit. Soc. Sci. Commun. 2020;7:10. doi: 10.1057/s41599-020-0494-4. DOI
Zub M.Y. Transformation of Labor Market Infrastructure under the Influence of Artificial Intelligence. Bizn. Inf. (Multiling. Ed.) 2020;8:146–153. doi: 10.32983/2222-4459-2020-8-146-153. DOI
Aramyan L.H., Lansink A.O., van der Vorst J., van Kooten O. Performance measurement in agri-food supply chains: A case study. Supply Chain. Manag. Int. J. 2007;12:304–315. doi: 10.1108/13598540710759826. DOI
Gladden M., Fortuna P., Modliński A. The Empowerment of Artificial Intelligence in Post-Digital Organizations: Exploring Human Interactions with Supervisory AI. Hum. Technol. 2022;18:98–121. doi: 10.14254/1795-6889.2022.18-2.2. DOI
Salin V. Information technology in agri-food supply chains. Int. Food Agribus. Manag. Rev. 1998;1:329–334. doi: 10.1016/S1096-7508(99)80003-2. DOI
Haenlein M., Kaplan A. Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Bus. Horiz. 2020;63:37–50. doi: 10.1016/j.bushor.2019.09.003. DOI
Modliński A., Gladden M. Applying Ethology to Design Human-Oriented Technology. Experimental Study on the Signalling Role of the Labelling Effect in technology’s Empowerment. Hum. Technol. 2021;17:164–189. doi: 10.14254/1795-6889.2021.17-2.5. DOI
Sułkowski Ł., Kaczorowska-Spychalska D. Determinants of the adoption of AI wearables—Practical implications for marketing. Hum. Technol. 2021;17:294–320. doi: 10.14254/1795-6889.2021.17-3.6. DOI
Kedziora D. Botsourcing, Roboshoring or Virtual Backoffice? Perspectives on Implementing Robotic Process Automation (RPA) and Artificial Intelligence (AI) Hum. Technol. 2022;18:92–97. doi: 10.14254/1795-6889.2022.18-2.1. DOI
Haenlein M., Kaplan A. Siri, siri in my hand, who is the fairest in the land? On the Interpretations, Illustrations and Implications of Artificial Intelligence. Bus. Horiz. 2019;62:15–25.
McKinsey . The Promise and Challenge of the Age of Artificial Intelligence. McKinsey Global Institute; New York, NY, USA: 2018.
Kordon A. Artificial Intelligence Based Systems as Competitive Advantage; Proceedings of the 2020 IEEE 10th International Conference on Intelligent Systems (IS); Varna, Bulgaria. 28–30 August 2020; pp. 6–18.
Bačiulienė V., Petrokė I. The impact of artificial intelligence on growth in the agri-food industry: Lithuanian case. Eur. Sci. 2020;2:34–40.
Wang T., Xu X., Wang C., Li Z., Li D. From Smart Farming towards Unmanned Farms: A New Mode of Agricultural Production. Agriculture. 2021;11:145. doi: 10.3390/agriculture11020145. DOI
Jackulin C., Murugavalli S. A comprehensive review on detection of plant disease using machine learning and deep learning approaches. Meas. Sens. 2022;24:100441. doi: 10.1016/j.measen.2022.100441. DOI
Jia X., Cao Y., O’Connor D., Zhu J., Tsang D.C., Zou B., Hou D. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field. Environ. Pollut. 2021;270:116281. doi: 10.1016/j.envpol.2020.116281. PubMed DOI
Jack R. Robotic milking: Technology, farm design, and effects on work flow. J. Dairy Sci. 2017;100:7729–7738. doi: 10.3168/jds.2016-11715. PubMed DOI
EIT Food . Food Foresight: Impact of COVID-19 on the Agri-Food Sector in Central and Eastern Europe. EIT Food; Warsaw, Poland: 2020. [(accessed on 17 September 2021)]. Prieiga per Internet. Available online: https://www.eitfood.eu/projects/food-foresight.
Dhanaraju M., Chenniappan P., Ramalingam K., Pazhanivelan S., Kaliaperumal R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture. 2022;12:1745. doi: 10.3390/agriculture12101745. DOI
Sawant D., Jaiswal A., Singh J., Shah P. AgriBot—An intelligent interactive interface to assist farmers in agricultural activities; Proceedings of the 2019 IEEE Bombay Section Signature Conference (IBSSC); Mumbai, India. 26–28 July 2019; pp. 1–6. DOI
Rejeb A., Rejeb K., Zailani S., Keogh J.G., Appolloni A. Examining the interplay between artificial intelligence and the agri-food industry. Artif. Intell. Agric. 2022;6:111–128. doi: 10.1016/j.aiia.2022.08.002. DOI
Baruchelli P., Botto F., Cimatti A. Overview on Maturity of AI Innovations in Manufacturing. [(accessed on 14 January 2022)];EIT Digit. 2020 Available online: https://eit.europa.eu/sites/default/files/20529-d11_id0026978_overview_on_maturity_of_ai_innovations_in_manufacturing_20529-d11.pdf.
Pesce M., Kirova M., Soma K., Bogaardt M.-J., Poppe K., Thurston C., Monfort Belles C., Wolfert S., Beers G., Urdu D. Research for AGRI Committee—Impacts of the Digital Economy on the Food-Chain and the CAP. European Parliament, Policy Department for Structural and Cohesion Policies; Brussels, Belgium: 2019.
Talaviya T., Shah D., Patel N., Yagnik H., Shah M. Implementation of artificial intelligence in agriculture for optimization of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020;4:58–73.
Columbus L. 10 Ways AI Has the Potential to Improve Agriculture in 2021. Forbes. [(accessed on 17 February 2021)]. Available online: https://www.forbes.com/sites/louiscolumbus/2021/02/17/10-ways-ai-has-the-potential-to-improve-agriculture-in-2021/
Gerrikagoitia J. Digital Manufacturing Platforms in Industry 4.0. Assembly, e-Magazine. [(accessed on 22 August 2022)]. Available online: https://www.assemblymag.com/authors/2286-jon-gerrikagoitia.
Abioye E.A., Hensel O., Esau T.J., Elijah O., Abidin M.S.Z., Ayobami A.S., Yerima O., Nasirahmadi A. Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering. 2022;4:70–103. doi: 10.3390/agriengineering4010006. DOI
Huszka P., Karácsony P., Juhász T. The coronavirus’s effect on the decisions and habits of food purchases in Hungary. J. Int. Stud. 2022;15:149–167. doi: 10.14254/2071-8330.2022/15-1/10. DOI
Holotová M., Nagyová Ľ., Holota T. The impact of environmental responsibility on changing consumer behaviour—Sustainable market in Slovakia. Econ. Sociol. 2020;13:84–96. doi: 10.14254/2071-789X.2020/13-3/6. DOI
Sharma R., Kamble S.S., Gunasekaran A., Kumar V., Kumar A. A systematic literature review on machine learning application of sustainable agriculture supply chain perdormance. Comput. Oper. Res. 2020;119:104926. doi: 10.1016/j.cor.2020.104926. DOI
Violi A., Lagana D., Paradiso R. The inventory routing problem under uncertainty with perishable products: An application in the agri-food supply chain. Soft Comput. 2020;24:13725–13740. doi: 10.1007/s00500-019-04497-z. DOI
Bini D., Pamela D., Prince S. Machine Vision and Machine Learning for Intelligent Agrobots: A review; Proceedings of the 2020 5th International Conference on Devices, Circuits and Systems (ICDCS); Coimbatore, India. 5–6 March 2020; pp. 12–16.
Pournader M., Ghaderi H., Hassanzadegan A., Fahimnia B. Artificial intelligence applications in supply chain management. Int. J. Prod. Econ. 2021;241:108250. doi: 10.1016/j.ijpe.2021.108250. DOI
Matthews A. Implications of the European Green Deal for Agri-Food Trade with Developing Countries. European Landowners’ Organization; Rue de Treves, Brussels: 2022.
Tzachor A. Artificial intelligence for agricultural supply chain risk management: Constraints and potentials. CGIAR Big Data Platf. 2020
Komínková A., Vavřina J., Polák J. Breaking food safety and quality standards in the EU: Financial aspects within poultry products manufacturers in Visegrad 4 countries. J. Int. Stud. 2020;13:195–215. doi: 10.14254/2071-8330.2020/13-3/13. DOI
Christopher M. Logistics and Supply Chain Management: Creating Value-Added Networks. Pearson Education; London, UK: 2005.
Cohen M., Hutter M. Asymptotically Unambitious Artificial General Intelligence. Proc. AAAI. 2020;34:2467–2476. doi: 10.1609/aaai.v34i03.5628. DOI
Moruzzi C. Artificial Creativity and General Intelligence. J. Sci. Technol. Arts. 2020;12:84–99.
Aly H. Digital transformation, development and productivity in developing countries: Is artificial intelligence a cure or a blessing? Rev. Econ. Political Sci. 2020;7:238–256. doi: 10.1108/REPS-11-2019-0145. DOI
Goyache F., Bahamonde A., Alonso J., López S., del Coz J.J., Quevedo J.R., Ranilla J., Luaces O., Alvarez I., Royo L., et al. The usefulness of Artificial Intelligence techniques to assess subjective quality of products in the food industry. Trends Food Sci. Technol. 2001;12:370–381. doi: 10.1016/S0924-2244(02)00010-9. DOI
Bičkauskė D., Šermukšnytė-Alešiūnienė K., Simanavičienė Ž., Kowalska K. Challenges of Digital Transformation in the Agri-Food Sector. Sociálno-Ekon. Rev. 2020;2:12–19.
Lezoche M., Hernandez J., Alemany-Diaz M., Panetto H., Kacprzyk J. Agri-food 4.0: A survey of supply chains and technologies for the future agriculture. Comput. Ind. 2020;117:103187. doi: 10.1016/j.compind.2020.103187. DOI
Liu Y., Ma X., Shu L., Hancke G.P., Abu-Mahfouz A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2021;17:4322–4334. doi: 10.1109/TII.2020.3003910. DOI
Cubric M. Drives, barriers and social considerations for AI adoption in business and management: A tertiary study. Technol. Sočiety. 2020;62:101257.
Annosi C.M., Brunetta F., Capo F., Heideveld L. Digitalization in the agri-food industry: The relationship between technology and sustainable development. Manag. Decis. 2020;58:1737–1757. doi: 10.1108/MD-09-2019-1328. DOI