The Aspects of Artificial Intelligence in Different Phases of the Food Value and Supply Chain

. 2023 Apr 15 ; 12 (8) : . [epub] 20230415

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37107449

The types of artificial intelligence, artificial intelligence integration to the food value and supply chain, other technologies embedded with artificial intelligence, artificial intelligence adoption barriers in the food value and supply chain, and solutions to overcome these barriers were analyzed by the authors. It was demonstrated by the analysis that artificial intelligence can be integrated vertically into the entire food supply and value chain, owing to its wide range of functions. Different phases of the chain are affected by developed technologies such as robotics, drones, and smart machines. Different capabilities are provided for different phases by the interaction of artificial intelligence with other technologies such as big data mining, machine learning, the Internet of services, agribots, industrial robots, sensors and drones, digital platforms, driverless vehicles and machinery, and nanotechnology, as revealed by a systematic literature analysis. However, the application of artificial intelligence is hindered by social, technological, and economic barriers. These barriers can be overcome by developing the financial and digital literacy of farmers and by disseminating good practices among the participants of the food supply and value chain.

Zobrazit více v PubMed

Haenlein M., Kaplan A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019;61:5–14. doi: 10.1177/0008125619864925. DOI

Strusani D., Houngbonon G.V. The Role of Artificial Intelligence in Supporting Development in Emerging Markets. [(accessed on 10 November 2021)];EMCompass. 2019 69 Available online: https://openknowledge.worldbank.org/handle/10986/32365.

Olsen T.L., Tomlin B. Tuck School of Business Working Paper No. 3365733, The University of Auckland Business School Research Paper. The University of Auckland Business School; Auckland, New Zealand: 2019. Industry 4.0: Opportunities and Challenges for Operations Management. DOI

Davenport T., Guha A., Grewal D., Bressgott T. How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 2020;48:24–42. doi: 10.1007/s11747-019-00696-0. DOI

Jagtap S., Bader F., Garcia-Garcia G., Trollman H., Fadiji T., Salonitis K. Food Logistics 4.0: Opportunities and Challenges. Logistics. 2021;5:2. doi: 10.3390/logistics5010002. DOI

Duro D.C., Franklin S.E., Dube M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012;118:259–272. doi: 10.1016/j.rse.2011.11.020. DOI

Kamilaris A., Prenafeta-Boldu F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018;147:70–90. doi: 10.1016/j.compag.2018.02.016. DOI

Liakos K.G., Busato P., Moshou D., Pearson S., Bochtis D. Machine learning in agriculture: A review. Sensors. 2018;18:2674. doi: 10.3390/s18082674. PubMed DOI PMC

Carrico G. The EU and artificial intelligence: A human-cent red perspective. Eur. View. 2018;17:29–36. doi: 10.1177/1781685818764821. DOI

Fjelland R. Why general artificial intelligence will not be realized. Humanit. Soc. Sci. Commun. 2020;7:10. doi: 10.1057/s41599-020-0494-4. DOI

Zub M.Y. Transformation of Labor Market Infrastructure under the Influence of Artificial Intelligence. Bizn. Inf. (Multiling. Ed.) 2020;8:146–153. doi: 10.32983/2222-4459-2020-8-146-153. DOI

Aramyan L.H., Lansink A.O., van der Vorst J., van Kooten O. Performance measurement in agri-food supply chains: A case study. Supply Chain. Manag. Int. J. 2007;12:304–315. doi: 10.1108/13598540710759826. DOI

Gladden M., Fortuna P., Modliński A. The Empowerment of Artificial Intelligence in Post-Digital Organizations: Exploring Human Interactions with Supervisory AI. Hum. Technol. 2022;18:98–121. doi: 10.14254/1795-6889.2022.18-2.2. DOI

Salin V. Information technology in agri-food supply chains. Int. Food Agribus. Manag. Rev. 1998;1:329–334. doi: 10.1016/S1096-7508(99)80003-2. DOI

Haenlein M., Kaplan A. Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Bus. Horiz. 2020;63:37–50. doi: 10.1016/j.bushor.2019.09.003. DOI

Modliński A., Gladden M. Applying Ethology to Design Human-Oriented Technology. Experimental Study on the Signalling Role of the Labelling Effect in technology’s Empowerment. Hum. Technol. 2021;17:164–189. doi: 10.14254/1795-6889.2021.17-2.5. DOI

Sułkowski Ł., Kaczorowska-Spychalska D. Determinants of the adoption of AI wearables—Practical implications for marketing. Hum. Technol. 2021;17:294–320. doi: 10.14254/1795-6889.2021.17-3.6. DOI

Kedziora D. Botsourcing, Roboshoring or Virtual Backoffice? Perspectives on Implementing Robotic Process Automation (RPA) and Artificial Intelligence (AI) Hum. Technol. 2022;18:92–97. doi: 10.14254/1795-6889.2022.18-2.1. DOI

Haenlein M., Kaplan A. Siri, siri in my hand, who is the fairest in the land? On the Interpretations, Illustrations and Implications of Artificial Intelligence. Bus. Horiz. 2019;62:15–25.

McKinsey . The Promise and Challenge of the Age of Artificial Intelligence. McKinsey Global Institute; New York, NY, USA: 2018.

Kordon A. Artificial Intelligence Based Systems as Competitive Advantage; Proceedings of the 2020 IEEE 10th International Conference on Intelligent Systems (IS); Varna, Bulgaria. 28–30 August 2020; pp. 6–18.

Bačiulienė V., Petrokė I. The impact of artificial intelligence on growth in the agri-food industry: Lithuanian case. Eur. Sci. 2020;2:34–40.

Wang T., Xu X., Wang C., Li Z., Li D. From Smart Farming towards Unmanned Farms: A New Mode of Agricultural Production. Agriculture. 2021;11:145. doi: 10.3390/agriculture11020145. DOI

Jackulin C., Murugavalli S. A comprehensive review on detection of plant disease using machine learning and deep learning approaches. Meas. Sens. 2022;24:100441. doi: 10.1016/j.measen.2022.100441. DOI

Jia X., Cao Y., O’Connor D., Zhu J., Tsang D.C., Zou B., Hou D. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field. Environ. Pollut. 2021;270:116281. doi: 10.1016/j.envpol.2020.116281. PubMed DOI

Jack R. Robotic milking: Technology, farm design, and effects on work flow. J. Dairy Sci. 2017;100:7729–7738. doi: 10.3168/jds.2016-11715. PubMed DOI

EIT Food . Food Foresight: Impact of COVID-19 on the Agri-Food Sector in Central and Eastern Europe. EIT Food; Warsaw, Poland: 2020. [(accessed on 17 September 2021)]. Prieiga per Internet. Available online: https://www.eitfood.eu/projects/food-foresight.

Dhanaraju M., Chenniappan P., Ramalingam K., Pazhanivelan S., Kaliaperumal R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture. 2022;12:1745. doi: 10.3390/agriculture12101745. DOI

Sawant D., Jaiswal A., Singh J., Shah P. AgriBot—An intelligent interactive interface to assist farmers in agricultural activities; Proceedings of the 2019 IEEE Bombay Section Signature Conference (IBSSC); Mumbai, India. 26–28 July 2019; pp. 1–6. DOI

Rejeb A., Rejeb K., Zailani S., Keogh J.G., Appolloni A. Examining the interplay between artificial intelligence and the agri-food industry. Artif. Intell. Agric. 2022;6:111–128. doi: 10.1016/j.aiia.2022.08.002. DOI

Baruchelli P., Botto F., Cimatti A. Overview on Maturity of AI Innovations in Manufacturing. [(accessed on 14 January 2022)];EIT Digit. 2020 Available online: https://eit.europa.eu/sites/default/files/20529-d11_id0026978_overview_on_maturity_of_ai_innovations_in_manufacturing_20529-d11.pdf.

Pesce M., Kirova M., Soma K., Bogaardt M.-J., Poppe K., Thurston C., Monfort Belles C., Wolfert S., Beers G., Urdu D. Research for AGRI Committee—Impacts of the Digital Economy on the Food-Chain and the CAP. European Parliament, Policy Department for Structural and Cohesion Policies; Brussels, Belgium: 2019.

Talaviya T., Shah D., Patel N., Yagnik H., Shah M. Implementation of artificial intelligence in agriculture for optimization of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020;4:58–73.

Columbus L. 10 Ways AI Has the Potential to Improve Agriculture in 2021. Forbes. [(accessed on 17 February 2021)]. Available online: https://www.forbes.com/sites/louiscolumbus/2021/02/17/10-ways-ai-has-the-potential-to-improve-agriculture-in-2021/

Gerrikagoitia J. Digital Manufacturing Platforms in Industry 4.0. Assembly, e-Magazine. [(accessed on 22 August 2022)]. Available online: https://www.assemblymag.com/authors/2286-jon-gerrikagoitia.

Abioye E.A., Hensel O., Esau T.J., Elijah O., Abidin M.S.Z., Ayobami A.S., Yerima O., Nasirahmadi A. Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering. 2022;4:70–103. doi: 10.3390/agriengineering4010006. DOI

Huszka P., Karácsony P., Juhász T. The coronavirus’s effect on the decisions and habits of food purchases in Hungary. J. Int. Stud. 2022;15:149–167. doi: 10.14254/2071-8330.2022/15-1/10. DOI

Holotová M., Nagyová Ľ., Holota T. The impact of environmental responsibility on changing consumer behaviour—Sustainable market in Slovakia. Econ. Sociol. 2020;13:84–96. doi: 10.14254/2071-789X.2020/13-3/6. DOI

Sharma R., Kamble S.S., Gunasekaran A., Kumar V., Kumar A. A systematic literature review on machine learning application of sustainable agriculture supply chain perdormance. Comput. Oper. Res. 2020;119:104926. doi: 10.1016/j.cor.2020.104926. DOI

Violi A., Lagana D., Paradiso R. The inventory routing problem under uncertainty with perishable products: An application in the agri-food supply chain. Soft Comput. 2020;24:13725–13740. doi: 10.1007/s00500-019-04497-z. DOI

Bini D., Pamela D., Prince S. Machine Vision and Machine Learning for Intelligent Agrobots: A review; Proceedings of the 2020 5th International Conference on Devices, Circuits and Systems (ICDCS); Coimbatore, India. 5–6 March 2020; pp. 12–16.

Pournader M., Ghaderi H., Hassanzadegan A., Fahimnia B. Artificial intelligence applications in supply chain management. Int. J. Prod. Econ. 2021;241:108250. doi: 10.1016/j.ijpe.2021.108250. DOI

Matthews A. Implications of the European Green Deal for Agri-Food Trade with Developing Countries. European Landowners’ Organization; Rue de Treves, Brussels: 2022.

Tzachor A. Artificial intelligence for agricultural supply chain risk management: Constraints and potentials. CGIAR Big Data Platf. 2020

Komínková A., Vavřina J., Polák J. Breaking food safety and quality standards in the EU: Financial aspects within poultry products manufacturers in Visegrad 4 countries. J. Int. Stud. 2020;13:195–215. doi: 10.14254/2071-8330.2020/13-3/13. DOI

Christopher M. Logistics and Supply Chain Management: Creating Value-Added Networks. Pearson Education; London, UK: 2005.

Cohen M., Hutter M. Asymptotically Unambitious Artificial General Intelligence. Proc. AAAI. 2020;34:2467–2476. doi: 10.1609/aaai.v34i03.5628. DOI

Moruzzi C. Artificial Creativity and General Intelligence. J. Sci. Technol. Arts. 2020;12:84–99.

Aly H. Digital transformation, development and productivity in developing countries: Is artificial intelligence a cure or a blessing? Rev. Econ. Political Sci. 2020;7:238–256. doi: 10.1108/REPS-11-2019-0145. DOI

Goyache F., Bahamonde A., Alonso J., López S., del Coz J.J., Quevedo J.R., Ranilla J., Luaces O., Alvarez I., Royo L., et al. The usefulness of Artificial Intelligence techniques to assess subjective quality of products in the food industry. Trends Food Sci. Technol. 2001;12:370–381. doi: 10.1016/S0924-2244(02)00010-9. DOI

Bičkauskė D., Šermukšnytė-Alešiūnienė K., Simanavičienė Ž., Kowalska K. Challenges of Digital Transformation in the Agri-Food Sector. Sociálno-Ekon. Rev. 2020;2:12–19.

Lezoche M., Hernandez J., Alemany-Diaz M., Panetto H., Kacprzyk J. Agri-food 4.0: A survey of supply chains and technologies for the future agriculture. Comput. Ind. 2020;117:103187. doi: 10.1016/j.compind.2020.103187. DOI

Liu Y., Ma X., Shu L., Hancke G.P., Abu-Mahfouz A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2021;17:4322–4334. doi: 10.1109/TII.2020.3003910. DOI

Cubric M. Drives, barriers and social considerations for AI adoption in business and management: A tertiary study. Technol. Sočiety. 2020;62:101257.

Annosi C.M., Brunetta F., Capo F., Heideveld L. Digitalization in the agri-food industry: The relationship between technology and sustainable development. Manag. Decis. 2020;58:1737–1757. doi: 10.1108/MD-09-2019-1328. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...