Continuous Fluorescent Sirtuin Activity Assay Based on Fatty Acylated Lysines

. 2023 Apr 18 ; 24 (8) : . [epub] 20230418

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37108579

Grantová podpora
INST 271/336-1 FUGG Deutsche Forschungsgemeinschaft
RVO: 86652036 Czech Academy of Sciences
21-31806 Czech Science Foundation

Lysine deacetylases, like histone deacetylases (HDACs) and sirtuins (SIRTs), are involved in many regulatory processes such as control of metabolic pathways, DNA repair, and stress responses. Besides robust deacetylase activity, sirtuin isoforms SIRT2 and SIRT3 also show demyristoylase activity. Interestingly, most of the inhibitors described so far for SIRT2 are not active if myristoylated substrates are used. Activity assays with myristoylated substrates are either complex because of coupling to enzymatic reactions or time-consuming because of discontinuous assay formats. Here we describe sirtuin substrates enabling direct recording of fluorescence changes in a continuous format. Fluorescence of the fatty acylated substrate is different when compared to the deacylated peptide product. Additionally, the dynamic range of the assay could be improved by the addition of bovine serum albumin, which binds the fatty acylated substrate and quenches its fluorescence. The main advantage of the developed activity assay is the native myristoyl residue at the lysine side chain avoiding artifacts resulting from the modified fatty acyl residues used so far for direct fluorescence-based assays. Due to the extraordinary kinetic constants of the new substrates (KM values in the low nM range, specificity constants between 175,000 and 697,000 M-1s-1) it was possible to reliably determine the IC50 and Ki values for different inhibitors in the presence of only 50 pM of SIRT2 using different microtiter plate formats.

Zobrazit více v PubMed

Smith B.C., Hallows W.C., Denu J.M. Mechanisms and molecular probes of sirtuins. Chem. Biol. 2008;15:1002–1013. doi: 10.1016/j.chembiol.2008.09.009. PubMed DOI PMC

Schutkowski M., Fischer F., Roessler C., Steegborn C. New assays and approaches for discovery and design of Sirtuin modulators. Expert Opin. Drug Discov. 2014;9:183–199. doi: 10.1517/17460441.2014.875526. PubMed DOI

Zessin M., Meleshin M., Simic Z., Kalbas D., Arbach M., Gebhardt P., Melesina J., Liebscher S., Bordusa F., Sippl W., et al. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)-based fluorescence quencher. Bioorg. Chem. 2021;117:105425. doi: 10.1016/j.bioorg.2021.105425. PubMed DOI

Riester D., Hildmann C., Grünewald S., Beckers T., Schwienhorst A. Factors affecting the substrate specificity of histone deacetylases. Biochem. Biophys. Res. Commun. 2007;357:439–445. doi: 10.1016/j.bbrc.2007.03.158. PubMed DOI

Wegener D., Hildmann C., Riester D., Schober A., Meyer-Almes F.-J., Deubzer H.E., Oehme I., Witt O., Lang S., Jaensch M., et al. Identification of novel small-molecule histone deacetylase inhibitors by medium-throughput screening using a fluorigenic assay. Biochem. J. 2008;413:143–150. doi: 10.1042/BJ20080536. PubMed DOI

Ciossek T., Julius H., Wieland H., Maier T., Beckers T. A homogeneous cellular histone deacetylase assay suitable for compound profiling and robotic screening. Anal. Biochem. 2008;372:72–81. doi: 10.1016/j.ab.2007.07.024. PubMed DOI

Wegener D., Wirsching F., Riester D., Schwienhorst A. A fluorogenic histone deacetylase assay well suited for high-throughput activity screening. Chem. Biol. 2003;10:61–68. doi: 10.1016/S1074-5521(02)00305-8. PubMed DOI

Wegener D., Hildmann C., Riester D., Schwienhorst A. Improved fluorogenic histone deacetylase assay for high-throughput-screening applications. Anal. Biochem. 2003;321:202–208. doi: 10.1016/S0003-2697(03)00426-3. PubMed DOI

Bradner J.E., West N., Grachan M.L., Greenberg E.F., Haggarty S.J., Warnow T., Mazitschek R. Chemical phylogenetics of histone deacetylases. Nat. Chem. Biol. 2010;6:238–243. doi: 10.1038/nchembio.313. PubMed DOI PMC

Lahm A., Paolini C., Pallaoro M., Nardi M.C., Jones P., Neddermann P., Sambucini S., Bottomley M.J., Lo Surdo P., Carfí A., et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl. Acad. Sci. USA. 2007;104:17335–17340. doi: 10.1073/pnas.0706487104. PubMed DOI PMC

Smith B.C., Hallows W.C., Denu J.M. A continuous microplate assay for sirtuins and nicotinamide-producing enzymes. Anal. Biochem. 2009;394:101–109. doi: 10.1016/j.ab.2009.07.019. PubMed DOI PMC

Wei W., Zhang J., Xu Z., Liu Z., Huang C., Cheng K., Meng L., Matsuda Y., Hao Q., Zhang H., et al. Universal Strategy to Develop Fluorogenic Probes for Lysine Deacylase/Demethylase Activity and Application in Discriminating Demethylation States. ACS Sens. 2023;8:28–39. doi: 10.1021/acssensors.2c01345. PubMed DOI

Tan S., Li X. Small-Molecule Fluorescent Probes for Detecting HDAC Activity. Chem. Asian J. 2022;17:e202200835. doi: 10.1002/asia.202200835. PubMed DOI

Hori Y., Kikuchi K. Chemical Tools with Fluorescence Switches for Verifying Epigenetic Modifications. Acc. Chem. Res. 2019;52:2849–2857. doi: 10.1021/acs.accounts.9b00349. PubMed DOI

Fan Y., Scriba G.K.E. Electrophoretically mediated microanalysis assay for sirtuin enzymes. Electrophoresis. 2010;31:3874–3880. doi: 10.1002/elps.201000336. PubMed DOI

Ohla S., Beyreiss R., Scriba G.K.E., Fan Y., Belder D. An integrated on-chip sirtuin assay. Electrophoresis. 2010;31:3263–3267. doi: 10.1002/elps.201000220. PubMed DOI

Liu Y., Gerber R., Wu J., Tsuruda T., McCarter J.D. High-throughput assays for sirtuin enzymes: A microfluidic mobility shift assay and a bioluminescence assay. Anal. Biochem. 2008;378:53–59. doi: 10.1016/j.ab.2008.02.018. PubMed DOI

Blackwell L., Norris J., Suto C.M., Janzen W.P. The use of diversity profiling to characterize chemical modulators of the histone deacetylases. Life Sci. 2008;82:1050–1058. doi: 10.1016/j.lfs.2008.03.004. PubMed DOI

Khan A.N., Lewis P.N. Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases. J. Biol. Chem. 2005;280:36073–36078. doi: 10.1074/jbc.M508247200. PubMed DOI

Jackson M.D., Denu J.M. Structural identification of 2′- and 3′-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. J. Biol. Chem. 2002;277:18535–18544. doi: 10.1074/jbc.M200671200. PubMed DOI

Tanner K.G., Landry J., Sternglanz R., Denu J.M. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. USA. 2000;97:14178–14182. doi: 10.1073/pnas.250422697. PubMed DOI PMC

Marcotte P.A., Richardson P.L., Guo J., Barrett L.W., Xu N., Gunasekera A., Glaser K.B. Fluorescence assay of SIRT protein deacetylases using an acetylated peptide substrate and a secondary trypsin reaction. Anal. Biochem. 2004;332:90–99. doi: 10.1016/j.ab.2004.05.039. PubMed DOI

Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J., Kim J.H., Choi B.H., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334:806–809. doi: 10.1126/science.1207861. PubMed DOI PMC

Khan A.N., Lewis P.N. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases. J. Biol. Chem. 2006;281:11702–11711. doi: 10.1074/jbc.M511482200. PubMed DOI

Borra M.T., Denu J.M. Quantitative assays for characterization of the Sir2 family of NAD(+)-dependent deacetylases. Methods Enzymol. 2004;376:171–187. doi: 10.1016/S0076-6879(03)76011-X. PubMed DOI

McDonagh T., Hixon J., DiStefano P.S., Curtis R., Napper A.D. Microplate filtration assay for nicotinamide release from NAD using a boronic acid resin. Methods. 2005;36:346–350. doi: 10.1016/j.ymeth.2005.03.005. PubMed DOI

Hoffmann K., Heltweg B., Jung M. Improvement and Validation of the Fluorescence-Based Histone Deacetylase Assay Using an Internal Standard. Arch. Pharm. Pharm. Med. Chem. 2001;334:248–252. doi: 10.1002/1521-4184(200107)334:7<248::AID-ARDP248>3.0.CO;2-K. PubMed DOI

Shao D., Yao C., Kim M.H., Fry J., Cohen R.A., Costello C.E., Matsui R., Seta F., McComb M.E., Bachschmid M.M. Improved mass spectrometry-based activity assay reveals oxidative and metabolic stress as sirtuin-1 regulators. Redox Biol. 2019;22:101150. doi: 10.1016/j.redox.2019.101150. PubMed DOI PMC

Holzhauser S., Freiwald A., Weise C., Multhaup G., Han C.-T., Sauer S. Discovery and characterization of protein-modifying natural products by MALDI mass spectrometry reveal potent SIRT1 and p300 inhibitors. Angew. Chem. Int. Ed. Engl. 2013;52:5171–5174. doi: 10.1002/anie.201207325. PubMed DOI

Rye P.T., Frick L.E., Ozbal C.C., Lamarr W.A. Advances in label-free screening approaches for studying sirtuin-mediated deacetylation. J. Biomol. Screen. 2011;16:1217–1226. doi: 10.1177/1087057111420291. PubMed DOI

Fischer F., Gertz M., Suenkel B., Lakshminarasimhan M., Schutkowski M., Steegborn C. Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition. PLoS ONE. 2012;7:e45098. doi: 10.1371/journal.pone.0045098. PubMed DOI PMC

Machleidt T., Robers M.B., Hermanson S.B., Dudek J.M., Bi K. TR-FRET cellular assays for interrogating posttranslational modifications of histone H3. J. Biomol. Screen. 2011;16:1236–1246. doi: 10.1177/1087057111422943. PubMed DOI

Degorce F., Card A., Soh S., Trinquet E., Knapik G.P., Xie B. HTRF: A technology tailored for drug discovery—A review of theoretical aspects and recent applications. Curr. Chem. Genomics. 2009;3:22–32. doi: 10.2174/1875397300903010022. PubMed DOI PMC

Dudek J.M., Horton R.A. TR-FRET biochemical assays for detecting posttranslational modifications of p53. J. Biomol. Screen. 2010;15:569–575. doi: 10.1177/1087057110365898. PubMed DOI

Robers M.B., Loh C., Carlson C.B., Yang H., Frey E.A., Hermanson S.B., Bi K. Measurement of the cellular deacetylase activity of SIRT1 on p53 via LanthaScreen® technology. Mol. Biosyst. 2011;7:59–66. doi: 10.1039/C0MB00026D. PubMed DOI

Rauh D., Fischer F., Gertz M., Lakshminarasimhan M., Bergbrede T., Aladini F., Kambach C., Becker C.F.W., Zerweck J., Schutkowski M., et al. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nat. Commun. 2013;4:2327. doi: 10.1038/ncomms3327. PubMed DOI

Kutil Z., Skultetyova L., Rauh D., Meleshin M., Snajdr I., Novakova Z., Mikesova J., Pavlicek J., Hadzima M., Baranova P., et al. The unraveling of substrate specificity of histone deacetylase 6 domains using acetylome peptide microarrays and peptide libraries. FASEB J. 2019;33:4035–4045. doi: 10.1096/fj.201801680R. PubMed DOI

Heltweg B., Dequiedt F., Verdin E., Jung M. Nonisotopic substrate for assaying both human zinc and NAD+-dependent histone deacetylases. Anal. Biochem. 2003;319:42–48. doi: 10.1016/S0003-2697(03)00276-8. PubMed DOI

Toro T.B., Watt T.J. KDAC8 substrate specificity quantified by a biologically relevant, label-free deacetylation assay. Protein Sci. 2015;24:2020–2032. doi: 10.1002/pro.2813. PubMed DOI PMC

Xie Y., Ge J., Lei H., Peng B., Zhang H., Wang D., Pan S., Chen G., Chen L., Wang Y., et al. Fluorescent Probes for Single-Step Detection and Proteomic Profiling of Histone Deacetylases. J. Am. Chem. Soc. 2016;138:15596–15604. doi: 10.1021/jacs.6b07334. PubMed DOI

Baba R., Hori Y., Kikuchi K. Intramolecular long-distance nucleophilic reactions as a rapid fluorogenic switch applicable to the detection of enzymatic activity. Chemistry. 2015;21:4695–4702. doi: 10.1002/chem.201406093. PubMed DOI

Baba R., Hori Y., Mizukami S., Kikuchi K. Development of a fluorogenic probe with a transesterification switch for detection of histone deacetylase activity. J. Am. Chem. Soc. 2012;134:14310–14313. doi: 10.1021/ja306045j. PubMed DOI

Wang C., Du W., Zhang T., Liang G. A Bioluminescent Probe for Simultaneously Imaging Esterase and Histone Deacetylase Activity in a Tumor. Anal. Chem. 2020;92:15275–15279. doi: 10.1021/acs.analchem.0c04227. PubMed DOI

Rooker D.R., Klyubka Y., Gautam R., Tomat E., Buccella D. Peptide-Based Fluorescent Probes for Deacetylase and Decrotonylase Activity: Toward a General Platform for Real-Time Detection of Lysine Deacylation. Chembiochem. 2018;19:496–504. doi: 10.1002/cbic.201700582. PubMed DOI

Rooker D.R., Buccella D. Real-time detection of histone deacetylase activity with a small molecule fluorescent and spectrophotometric probe. Chem. Sci. 2015;6:6456–6461. doi: 10.1039/C5SC02704G. PubMed DOI PMC

Feldman J.L., Baeza J., Denu J.M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 2013;288:31350–31356. doi: 10.1074/jbc.C113.511261. PubMed DOI PMC

Kutil Z., Novakova Z., Meleshin M., Mikesova J., Schutkowski M., Barinka C. Histone Deacetylase 11 Is a Fatty-Acid Deacylase. ACS Chem. Biol. 2018;13:685–693. doi: 10.1021/acschembio.7b00942. PubMed DOI

Moreno-Yruela C., Galleano I., Madsen A.S., Olsen C.A. Histone Deacetylase 11 Is an ε-N-Myristoyllysine Hydrolase. Cell Chem. Biol. 2018;25:849–856. doi: 10.1016/j.chembiol.2018.04.007. PubMed DOI

Cao J., Sun L., Aramsangtienchai P., Spiegelman N.A., Zhang X., Huang W., Seto E., Lin H. HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc. Natl. Acad. Sci. USA. 2019;116:5487–5492. doi: 10.1073/pnas.1815365116. PubMed DOI PMC

Schuster S., Roessler C., Meleshin M., Zimmermann P., Simic Z., Kambach C., Schiene-Fischer C., Steegborn C., Hottiger M.O., Schutkowski M. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions. Sci. Rep. 2016;6:22643. doi: 10.1038/srep22643. PubMed DOI PMC

Kutil Z., Mikešová J., Zessin M., Meleshin M., Nováková Z., Alquicer G., Kozikowski A., Sippl W., Bařinka C., Schutkowski M. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS Omega. 2019;4:19895–19904. doi: 10.1021/acsomega.9b02808. PubMed DOI PMC

Petersson E.J., Goldberg J.M., Wissner R.F. On the use of thioamides as fluorescence quenching probes for tracking protein folding and stability. Phys. Chem. Chem. Phys. 2014;16:6827–6837. doi: 10.1039/C3CP55525A. PubMed DOI

Zessin M., Kutil Z., Meleshin M., Nováková Z., Ghazy E., Kalbas D., Marek M., Romier C., Sippl W., Bařinka C., et al. One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity. Biochemistry. 2019;58:4777–4789. doi: 10.1021/acs.biochem.9b00786. PubMed DOI

Smith B.C., Denu J.M. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry. 2007;46:14478–14486. doi: 10.1021/bi7013294. PubMed DOI

He B., Hu J., Zhang X., Lin H. Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Org. Biomol. Chem. 2014;12:7498–7502. doi: 10.1039/C4OB00860J. PubMed DOI PMC

Jing H., Hu J., He B., Negrón Abril Y.L., Stupinski J., Weiser K., Carbonaro M., Chiang Y.-L., Southard T., Giannakakou P., et al. A SIRT2-Selective Inhibitor Promotes c-Myc Oncoprotein Degradation and Exhibits Broad Anticancer Activity. Cancer Cell. 2016;29:297–310. doi: 10.1016/j.ccell.2016.02.007. PubMed DOI PMC

Spiegelman N.A., Hong J.Y., Hu J., Jing H., Wang M., Price I.R., Cao J., Yang M., Zhang X., Lin H. A Small-Molecule SIRT2 Inhibitor That Promotes K-Ras4a Lysine Fatty-Acylation. ChemMedChem. 2019;14:744–748. doi: 10.1002/cmdc.201800715. PubMed DOI PMC

Kawaguchi M., Ikegawa S., Ieda N., Nakagawa H. A Fluorescent Probe for Imaging Sirtuin Activity in Living Cells, Based on One-Step Cleavage of the Dabcyl Quencher. Chembiochem. 2016;17:1961–1967. doi: 10.1002/cbic.201600374. PubMed DOI PMC

Nakajima Y., Kawaguchi M., Ieda N., Nakagawa H. A Set of Highly Sensitive Sirtuin Fluorescence Probes for Screening Small-Molecular Sirtuin Defatty-Acylase Inhibitors. ACS Med. Chem. Lett. 2021;12:617–624. doi: 10.1021/acsmedchemlett.1c00010. PubMed DOI PMC

Kannan S., Melesina J., Hauser A.-T., Chakrabarti A., Heimburg T., Schmidtkunz K., Walter A., Marek M., Pierce R.J., Romier C., et al. Discovery of inhibitors of Schistosoma mansoni HDAC8 by combining homology modeling, virtual screening, and in vitro validation. J. Chem. Inf. Model. 2014;54:3005–3019. doi: 10.1021/ci5004653. PubMed DOI

Wu J., Zheng Y.G. Fluorescent reporters of the histone acetyltransferase. Anal. Biochem. 2008;380:106–110. doi: 10.1016/j.ab.2008.05.030. PubMed DOI

Peng C., Lu Z., Xie Z., Cheng Z., Chen Y., Tan M., Luo H., Zhang Y., He W., Yang K., et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteom. 2011;10:M111.012658. doi: 10.1074/mcp.M111.012658. PubMed DOI PMC

Tan M., Peng C., Anderson K.A., Chhoy P., Xie Z., Dai L., Park J., Chen Y., Huang H., Zhang Y., et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014;19:605–617. doi: 10.1016/j.cmet.2014.03.014. PubMed DOI PMC

Spector A.A. Fatty acid binding to plasma albumin. J. Lipid Res. 1975;16:165–179. doi: 10.1016/S0022-2275(20)36723-7. PubMed DOI

Moniot S., Schutkowski M., Steegborn C. Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J. Struct. Biol. 2013;182:136–143. doi: 10.1016/j.jsb.2013.02.012. PubMed DOI

Vogelmann A., Schiedel M., Wössner N., Merz A., Herp D., Hammelmann S., Colcerasa A., Komaniecki G., Hong J.Y., Sum M., et al. Development of a NanoBRET assay to validate inhibitors of Sirt2-mediated lysine deacetylation and defatty-acylation that block prostate cancer cell migration. RSC Chem. Biol. 2022;3:468–485. doi: 10.1039/D1CB00244A. PubMed DOI PMC

Rumpf T., Schiedel M., Karaman B., Roessler C., North B.J., Lehotzky A., Oláh J., Ladwein K.I., Schmidtkunz K., Gajer M., et al. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat. Commun. 2015;6:6263. doi: 10.1038/ncomms7263. PubMed DOI PMC

Spiegelman N.A., Price I.R., Jing H., Wang M., Yang M., Cao J., Hong J.Y., Zhang X., Aramsangtienchai P., Sadhukhan S., et al. Direct Comparison of SIRT2 Inhibitors: Potency, Specificity, Activity-Dependent Inhibition, and On-Target Anticancer Activities. ChemMedChem. 2018;13:1890–1894. doi: 10.1002/cmdc.201800391. PubMed DOI PMC

Outeiro T.F., Kontopoulos E., Altmann S.M., Kufareva I., Strathearn K.E., Amore A.M., Volk C.B., Maxwell M.M., Rochet J.-C., McLean P.J., et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science. 2007;317:516–519. doi: 10.1126/science.1143780. PubMed DOI

Kalbas D., Meleshin M., Liebscher S., Zessin M., Melesina J., Schiene-Fischer C., Bülbül E.F., Bordusa F., Sippl W., Schutkowski M. Small Changes Make the Difference for SIRT2: Two Different Binding Modes for 3-Arylmercapto-Acylated Lysine Derivatives. Biochemistry. 2022;61:1705–1722. doi: 10.1021/acs.biochem.2c00211. PubMed DOI

Yamagata K., Goto Y., Nishimasu H., Morimoto J., Ishitani R., Dohmae N., Takeda N., Nagai R., Komuro I., Suga H., et al. Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change. Structure. 2014;22:345–352. doi: 10.1016/j.str.2013.12.001. PubMed DOI

Suenkel B., Fischer F., Steegborn C. Inhibition of the human deacylase Sirtuin 5 by the indole GW5074. Bioorg. Med. Chem. Lett. 2013;23:143–146. doi: 10.1016/j.bmcl.2012.10.136. PubMed DOI

Dose A., Jost J.O., Spieß A.C., Henklein P., Beyermann M., Schwarzer D. Facile synthesis of colorimetric histone deacetylase substrates. Chem. Commun. 2012;48:9525–9527. doi: 10.1039/c2cc34422j. PubMed DOI

Halley F., Reinshagen J., Ellinger B., Wolf M., Niles A.L., Evans N.J., Kirkland T.A., Wagner J.M., Jung M., Gribbon P., et al. A bioluminogenic HDAC activity assay: Validation and screening. J. Biomol. Screen. 2011;16:1227–1235. doi: 10.1177/1087057111416004. PubMed DOI

Milne J.C., Lambert P.D., Schenk S., Carney D.P., Smith J.J., Gagne D.J., Jin L., Boss O., Perni R.B., Vu C.B., et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450:712–716. doi: 10.1038/nature06261. PubMed DOI PMC

Roessler C., Tüting C., Meleshin M., Steegborn C., Schutkowski M. A Novel Continuous Assay for the Deacylase Sirtuin 5 and Other Deacetylases. J. Med. Chem. 2015;58:7217–7223. doi: 10.1021/acs.jmedchem.5b00293. PubMed DOI

Galleano I., Schiedel M., Jung M., Madsen A.S., Olsen C.A. A Continuous, Fluorogenic Sirtuin 2 Deacylase Assay: Substrate Screening and Inhibitor Evaluation. J. Med. Chem. 2016;59:1021–1031. doi: 10.1021/acs.jmedchem.5b01532. PubMed DOI

Xuan W., Yao A., Schultz P.G. Genetically Encoded Fluorescent Probe for Detecting Sirtuins in Living Cells. J. Am. Chem. Soc. 2017;139:12350–12353. doi: 10.1021/jacs.7b05725. PubMed DOI PMC

Spinck M., Ecke M., Sievers S., Neumann H. Highly Sensitive Lysine Deacetylase Assay Based on Acetylated Firefly Luciferase. Biochemistry. 2018;57:3552–3555. doi: 10.1021/acs.biochem.8b00483. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...