Patient Self-Inflicted Lung Injury-A Narrative Review of Pathophysiology, Early Recognition, and Management Options
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37108979
PubMed Central
PMC10146629
DOI
10.3390/jpm13040593
PII: jpm13040593
Knihovny.cz E-zdroje
- Klíčová slova
- extracorporeal membranous oxygenation, patient self-inflicted lung injury, respiratory effort, transpulmonary driving pressure, work of breathing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Patient self-inflicted lung injury (P-SILI) is a life-threatening condition arising from excessive respiratory effort and work of breathing in patients with lung injury. The pathophysiology of P-SILI involves factors related to the underlying lung pathology and vigorous respiratory effort. P-SILI might develop both during spontaneous breathing and mechanical ventilation with preserved spontaneous respiratory activity. In spontaneously breathing patients, clinical signs of increased work of breathing and scales developed for early detection of potentially harmful effort might help clinicians prevent unnecessary intubation, while, on the contrary, identifying patients who would benefit from early intubation. In mechanically ventilated patients, several simple non-invasive methods for assessing the inspiratory effort exerted by the respiratory muscles were correlated with respiratory muscle pressure. In patients with signs of injurious respiratory effort, therapy aimed to minimize this problem has been demonstrated to prevent aggravation of lung injury and, therefore, improve the outcome of such patients. In this narrative review, we accumulated the current information on pathophysiology and early detection of vigorous respiratory effort. In addition, we proposed a simple algorithm for prevention and treatment of P-SILI that is easily applicable in clinical practice.
Zobrazit více v PubMed
Tremblay L.N., Slutsky A.S. Ventilator-induced injury: From barotrauma to biotrauma. Proc. Assoc. Am. Physicians. 1998;110:482–488. PubMed
Vincent J.-L., Zambon M. Why Do Patients Who Have Acute Lung Injury/Acute Respiratory Distress Syndrome Die from Multiple Organ Dysfunction Syndrome? Implications for Management. Clin. Chest Med. 2006;27:725–731. doi: 10.1016/j.ccm.2006.06.010. PubMed DOI
Petrucci N., De Feo C. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst. Rev. 2013;2013:CD003844. doi: 10.1002/14651858.CD003844.pub4. PubMed DOI PMC
Cressoni M., Gotti M., Chiurazzi C., Massari D., Algieri I., Amini M., Cammaroto A., Brioni M., Montaruli C., Nikolla K., et al. Mechanical Power and Development of Ventilator-induced Lung Injury. Anesthesiology. 2016;124:1100–1108. doi: 10.1097/ALN.0000000000001056. PubMed DOI
Brochard L., Slutsky A., Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am. J. Respir. Crit. Care Med. 2017;195:438–442. doi: 10.1164/rccm.201605-1081CP. PubMed DOI
Mascheroni D., Kolobow T., Fumagalli R., Moretti M.P., Chen V., Buckhold D. Acute respiratory failure following pharmacologically induced hyperventilation: An experimental animal study. Intensive Care Med. 1988;15:8–14. doi: 10.1007/BF00255628. PubMed DOI
Yoshida T., Uchiyama A., Matsuura N., Mashimo T., Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model. Crit. Care Med. 2012;40:1578–1585. doi: 10.1097/CCM.0b013e3182451c40. PubMed DOI
Yoshida T., Uchiyama A., Matsuura N., Mashimo T., Fujino Y. The Comparison of Spontaneous Breathing and Muscle Paralysis in Two Different Severities of Experimental Lung Injury*. Crit. Care Med. 2013;41:536–545. doi: 10.1097/CCM.0b013e3182711972. PubMed DOI
Cruces P., Retamal J., Hurtado D.E., Erranz B., Iturrieta P., González C., Díaz F. A physiological approach to understand the role of respiratory effort in the progression of lung injury in SARS-CoV-2 infection. Crit. Care. 2020;24:494. doi: 10.1186/s13054-020-03197-7. PubMed DOI PMC
Jonkman A.H., de Vries H., Heunks L.M.A. Physiology of the Respiratory Drive in ICU Patients: Implications for Diagnosis and Treatment. Crit. Care. 2020;24:104. doi: 10.1186/s13054-020-2776-z. PubMed DOI PMC
Spinelli E., Mauri T., Beitler J.R., Pesenti A., Brodie D. Respiratory drive in the acute respiratory distress syndrome: Pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med. 2020;46:606–618. doi: 10.1007/s00134-020-05942-6. PubMed DOI PMC
Gattinoni L., Carlesso E., Caironi P. Stress and strain within the lung. Curr. Opin. Crit. Care. 2012;18:42–47. doi: 10.1097/MCC.0b013e32834f17d9. PubMed DOI
Gattinoni L., Tonetti T., Quintel M. Regional physiology of ARDS. Crit. Care. 2017;21((Suppl. S3)):312. doi: 10.1186/s13054-017-1905-9. PubMed DOI PMC
Yoshida T., Amato M.B.P., Grieco D.L., Chen L., Lima C.A.S., Roldan R., Morais C.C.A., Gomes S., Costa E.L.V., Cardoso P.F.G., et al. Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury. Am. J. Respir. Crit. Care Med. 2018;197:1018–1026. doi: 10.1164/rccm.201709-1806OC. PubMed DOI
Yoshida T., Torsani V., Gomes S., De Santis R.R., Beraldo M.A., Costa E.L.V., Tucci M.R., Zin W.A., Kavanagh B.P., Amato M.B.P. Spontaneous Effort Causes Occult Pendelluft during Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2013;188:1420–1427. doi: 10.1164/rccm.201303-0539OC. PubMed DOI
Bachmann M.C., Morais C., Bugedo G., Bruhn A., Morales A., Borges J.B., Costa E., Retamal J. Electrical impedance tomography in acute respiratory distress syndrome. Crit. Care. 2018;22:263. doi: 10.1186/s13054-018-2195-6. PubMed DOI PMC
Cornejo R.A., Arellano D.H., Ruiz-Rudolph P., Guiñez D.V., Morais C.C.A., Gajardo A.I.J., Lazo M.T., Brito R.E., Cerda M.A., González S.J., et al. Inflammatory biomarkers and pendelluft magnitude in ards patients transitioning from controlled to partial support ventilation. Sci. Rep. 2022;12:20233. doi: 10.1038/s41598-022-24412-1. PubMed DOI PMC
Bhattacharya M., Kallet R.H., Ware L.B., Matthay M.A. Negative-Pressure Pulmonary Edema. Chest. 2016;150:927–933. doi: 10.1016/j.chest.2016.03.043. PubMed DOI
Goligher E.C., Jonkman A.H., Dianti J., Vaporidi K., Beitler J.R., Patel B.K., Yoshida T., Jaber S., Dres M., Mauri T., et al. Clinical strategies for implementing lung and diaphragm-protective ventilation: Avoiding insufficient and excessive effort. Intensive Care Med. 2020;46:2314–2326. doi: 10.1007/s00134-020-06288-9. PubMed DOI PMC
Itagaki T. Diaphragm-protective mechanical ventilation in acute respiratory failure. J. Med. Investig. 2022;69:165–172. doi: 10.2152/jmi.69.165. PubMed DOI
Saavedra S.N., Barisich P.V.S., Maldonado J.B.P., Lumini R.B., Gómez-González A., Gallardo A. Asynchronies during invasive mechanical ventilation: Narrative review and update. Acute Crit. Care. 2022;37:491–501. doi: 10.4266/acc.2022.01158. PubMed DOI PMC
Blanch L., Villagra A., Sales B., Montanya J., Lucangelo U., Luján M., García-Esquirol O., Chacón E., Estruga A., Oliva J.C., et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–641. doi: 10.1007/s00134-015-3692-6. PubMed DOI
Kyo M., Shimatani T., Hosokawa K., Taito S., Kataoka Y., Ohshimo S., Shime N. Patient–ventilator asynchrony, impact on clinical outcomes and effectiveness of interventions: A systematic review and meta-analysis. J. Intensive Care. 2021;9:50. doi: 10.1186/s40560-021-00565-5. PubMed DOI PMC
Gattinoni L., Chiumello D., Caironi P., Busana M., Romitti F., Brazzi L., Camporota L. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–1102. doi: 10.1007/s00134-020-06033-2. PubMed DOI PMC
Marini J.J., Dellinger R.P., Brodie D. Integrating the evidence: Confronting the COVID-19 elephant. Intensive Care Med. 2020;46:1904–1907. doi: 10.1007/s00134-020-06195-z. PubMed DOI PMC
Tonelli R., Marchioni A., Tabbì L., Fantini R., Busani S., Castaniere I., Andrisani D., Gozzi F., Bruzzi G., Manicardi L., et al. Spontaneous Breathing and Evolving Phenotypes of Lung Damage in Patients with COVID-19: Review of Current Evidence and Forecast of a New Scenario. J. Clin. Med. 2021;10:975. doi: 10.3390/jcm10050975. PubMed DOI PMC
Busana M., Gasperetti A., Giosa L., Forleo G.B., Schiavone M., Mitacchione G., Bonino C., Villa P., Galli M., Tondo C., et al. Prevalence and outcome of silent hypoxemia in COVID-19. Minerva Anestesiol. 2021;87:325–333. doi: 10.23736/S0375-9393.21.15245-9. PubMed DOI
Porzionato A., Emmi A., Contran M., Stocco E., Riccetti S., Sinigaglia A., Macchi V., Barzon L., De Caro R. Case Report: The Carotid Body in COVID-19: Histopathological and Virological Analyses of an Autopsy Case Series. Front. Immunol. 2021;12:736529. doi: 10.3389/fimmu.2021.736529. PubMed DOI PMC
Lambermont B., Davenne E., Maclot F., Delvenne P. SARS-CoV-2 in carotid body. Intensive Care Med. 2021;47:342–343. doi: 10.1007/s00134-021-06351-z. PubMed DOI PMC
Elabbadi A., Urbina T., Berti E., Contou D., Plantefève G., Soulier Q., Milon A., Carteaux G., Voiriot G., Fartoukh M., et al. Spontaneous pneumomediastinum: A surrogate of P-SILI in critically ill COVID-19 patients. Crit. Care. 2022;26:350. doi: 10.1186/s13054-022-04228-1. PubMed DOI PMC
Shahsavarinia K., Rahvar G., Soleimanpour H., Saadati M., Vahedi L., Mahmoodpoor A. Spontaneous pneumomediastinum, pneumothorax and subcutaneous emphysema in critically ill COVID-19 patients: A systematic review. Pak. J. Med. Sci. 2022;38:730–735. doi: 10.12669/pjms.38.3.5529. PubMed DOI PMC
Melhorn J., Achaiah A., Conway F.M., Thompson E.M.F., Skyllberg E.W., Durrant J., Hasan N.A., Madani Y., Naran P., Vijayakumar B., et al. Pneumomediastinum in COVID-19: A phenotype of severe COVID-19 pneumonitis? The results of the UK POETIC survey. Eur. Respir. J. 2022;60:2102522. doi: 10.1183/13993003.02522-2021. PubMed DOI PMC
Woo W., Kipkorir V., Marza A.M., Hamouri S., Albawaih O., Dhali A., Kim W., Udwadia Z.F., Nashwan A.J., Shaikh N., et al. Prognosis of Spontaneous Pneumothorax/Pneumomediastinum in Coronavirus Disease 2019: The CoBiF Score. J. Clin. Med. 2022;11:7132. doi: 10.3390/jcm11237132. PubMed DOI PMC
Tobin M.J. Why Physiology Is Critical to the Practice of Medicine. Clin. Chest Med. 2019;40:243–257. doi: 10.1016/j.ccm.2019.02.012. PubMed DOI
Apigo M., Schechtman J., Dhliwayo N., Al Tameemi M., Gazmuri R.J. Development of a work of breathing scale and monitoring need of intubation in COVID-19 pneumonia. Crit. Care. 2020;24:477. doi: 10.1186/s13054-020-03176-y. PubMed DOI PMC
Roca O., Messika J., Caralt B., García-De-Acilu M., Sztrymf B., Ricard J.-D., Masclans J.R. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: The utility of the ROX index. J. Crit. Care. 2016;35:200–205. doi: 10.1016/j.jcrc.2016.05.022. PubMed DOI
Prakash J., Bhattacharya P.K., Yadav A.K., Kumar A., Tudu L.C., Prasad K. ROX index as a good predictor of high flow nasal cannula failure in COVID-19 patients with acute hypoxemic respiratory failure: A systematic review and meta-analysis. J. Crit. Care. 2021;66:102–108. doi: 10.1016/j.jcrc.2021.08.012. PubMed DOI PMC
Zhou X., Liu J., Pan J., Xu Z., Xu J. The ROX index as a predictor of high-flow nasal cannula outcome in pneumonia patients with acute hypoxemic respiratory failure: A systematic review and meta-analysis. BMC Pulm. Med. 2022;22:121. doi: 10.1186/s12890-022-01914-2. PubMed DOI PMC
Duan J., Han X., Bai L., Zhou L., Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017;43:192–199. doi: 10.1007/s00134-016-4601-3. PubMed DOI
Bai L., Ding F., Xiong W., Shu W., Jiang L., Liu Y., Duan J. Early assessment of the efficacy of noninvasive ventilation tested by HACOR score to avoid delayed intubation in patients with moderate to severe ARDS. Ther. Adv. Respir. Dis. 2022;16:17534666221081042. doi: 10.1177/17534666221081042. PubMed DOI PMC
Grasso S., Stripoli T. Transpulmonary Pressure–based Mechanical Ventilation in Acute Respiratory Distress Syndrome. From Theory to Practice? Am. J. Respir. Crit. Care Med. 2018;197:977–978. doi: 10.1164/rccm.201801-0132ED. PubMed DOI
Mietto C., Malbrain M.L., Chiumello D. Transpulmonary pressure monitoring during mechanical ventilation: A bench-to-bedside review. Anaesthesiol. Intensive Ther. 2015;47:27–37. doi: 10.5603/AIT.a2015.0065. PubMed DOI
Tonelli R., Cortegiani A., Marchioni A., Fantini R., Tabbì L., Castaniere I., Biagioni E., Busani S., Nani C., Cerbone C., et al. Nasal pressure swings as the measure of inspiratory effort in spontaneously breathing patients with de novo acute respiratory failure. Crit. Care. 2022;26:70. doi: 10.1186/s13054-022-03938-w. PubMed DOI PMC
Telias I., Junhasavasdikul D., Rittayamai N., Piquilloud L., Chen L., Ferguson N., Goligher E.C., Brochard L. Airway Occlusion Pressure As an Estimate of Respiratory Drive and Inspiratory Effort during Assisted Ventilation. Am. J. Respir. Crit. Care Med. 2020;201:1086–1098. doi: 10.1164/rccm.201907-1425OC. PubMed DOI
Telias I., Spadaro S. Techniques to monitor respiratory drive and inspiratory effort. Curr. Opin. Crit. Care. 2020;26:3–10. doi: 10.1097/MCC.0000000000000680. PubMed DOI
Bertoni M., Telias I., Urner M., Long M., Del Sorbo L., Fan E., Sinderby C., Beck J., Liu L., Qiu H., et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit. Care. 2019;23:346. doi: 10.1186/s13054-019-2617-0. PubMed DOI PMC
Roesthuis L., Berg M.V.D., van der Hoeven H. Non-invasive method to detect high respiratory effort and transpulmonary driving pressures in COVID-19 patients during mechanical ventilation. Ann. Intensive Care. 2021;11:26. doi: 10.1186/s13613-021-00821-9. PubMed DOI PMC
Albani F., Fusina F., Ciabatti G., Pisani L., Lippolis V., Franceschetti M.E., Giovannini A., di Mussi R., Murgolo F., Rosano A., et al. Flow Index accurately identifies breaths with low or high inspiratory effort during pressure support ventilation. Crit. Care. 2021;25:427. doi: 10.1186/s13054-021-03855-4. PubMed DOI PMC
Miao M.-Y., Chen W., Zhou Y.-M., Gao R., Song D.-J., Wang S.-P., Yang Y.-L., Zhang L., Zhou J.-X. Validation of the flow index to detect low inspiratory effort during pressure support ventilation. Ann. Intensive Care. 2022;12:89. doi: 10.1186/s13613-022-01063-z. PubMed DOI PMC
Bellani G., Mauri T., Coppadoro A., Grasselli G., Patroniti N., Spadaro S., Sala V., Foti G., Pesenti A. Estimation of Patient’s Inspiratory Effort From the Electrical Activity of the Diaphragm*. Crit. Care Med. 2013;41:1483–1491. doi: 10.1097/CCM.0b013e31827caba0. PubMed DOI
Coppadoro A., Rona R., Bellani G., Foti G. A brief airway occlusion is sufficient to measure the patient’s inspiratory effort/electrical activity of the diaphragm index (PEI) J. Clin. Monit. Comput. 2021;35:183–188. doi: 10.1007/s10877-020-00459-1. PubMed DOI PMC
Graßhoff J., Petersen E., Farquharson F., Kustermann M., Kabitz H.-J., Rostalski P., Walterspacher S. Surface EMG-based quantification of inspiratory effort: A quantitative comparison with Pes. Crit. Care. 2021;25:441. doi: 10.1186/s13054-021-03833-w. PubMed DOI PMC
Bellani G., Bronco A., Marocco S.A., Pozzi M., Sala V., Eronia N., Villa G., Foti G., Tagliabue G., Eger M., et al. Measurement of Diaphragmatic Electrical Activity by Surface Electromyography in Intubated Subjects and Its Relationship With Inspiratory Effort. Respir. Care. 2018;63:1341–1349. doi: 10.4187/respcare.06176. PubMed DOI
Jimenez J.V., Weirauch A.J., Culter C.A., Choi P.J., Hyzy R.C. Electrical Impedance Tomography in Acute Respiratory Distress Syndrome Management. Crit. Care Med. 2022;50:1210–1223. doi: 10.1097/CCM.0000000000005582. PubMed DOI
Musso G., Taliano C., Molinaro F., Fonti C., Veliaj D., Torti D., Paschetta E., Castagna E., Carbone G., Laudari L., et al. Early prolonged prone position in noninvasively ventilated patients with SARS-CoV-2-related moderate-to-severe hypoxemic respiratory failure: Clinical outcomes and mechanisms for treatment response in the PRO-NIV study. Crit. Care. 2022;26:118. doi: 10.1186/s13054-022-03937-x. PubMed DOI PMC
Chiumello D., Chiodaroli E., Coppola S., Borlino S.C., Granata C., Pitimada M., Garcia P.D.W. Awake prone position reduces work of breathing in patients with COVID-19 ARDS supported by CPAP. Ann. Intensive Care. 2021;11:179. doi: 10.1186/s13613-021-00967-6. PubMed DOI PMC
Fazzini B., Page A., Pearse R., Puthucheary Z. Prone positioning for non-intubated spontaneously breathing patients with acute hypoxaemic respiratory failure: A systematic review and meta-analysis. Br. J. Anaesth. 2022;128:352–362. doi: 10.1016/j.bja.2021.09.031. PubMed DOI PMC
Reddy M.P., Subramaniam A.F., Afroz A., Billah B., Lim Z.J., Zubarev A.M., Blecher G.F., Tiruvoipati R.F., Ramanathan K.M., Wong S.N.M., et al. Prone Positioning of Nonintubated Patients with Coronavirus Disease 2019—A Systematic Review and Meta-Analysis. Crit. Care Med. 2021;49:e1001–e1014. doi: 10.1097/CCM.0000000000005086. PubMed DOI PMC
Landoni G., Belloni O., Russo G., Bonaccorso A., Carà G., Jabaudon M. Inhaled Sedation for Invasively Ventilated COVID-19 Patients: A Systematic Review. J. Clin. Med. 2022;11:2500. doi: 10.3390/jcm11092500. PubMed DOI PMC
Dzierba A.L., Khalil A.M., Derry K.L., Madahar P.M., Beitler J.R.M. Discordance Between Respiratory Drive and Sedation Depth in Critically Ill Patients Receiving Mechanical Ventilation. Crit. Care Med. 2021;49:2090–2101. doi: 10.1097/CCM.0000000000005113. PubMed DOI PMC
Kassis E.B., Beitler J.R., Talmor D. Lung-protective sedation: Moving toward a new paradigm of precision sedation. Intensive Care Med. 2023;49:91–94. doi: 10.1007/s00134-022-06901-z. PubMed DOI
Dianti J., Fard S., Wong J., Chan T.C.Y., Del Sorbo L., Fan E., Amato M.B.P., Granton J., Burry L., Reid W.D., et al. Strategies for lung- and diaphragm-protective ventilation in acute hypoxemic respiratory failure: A physiological trial. Crit. Care. 2022;26:259. doi: 10.1186/s13054-022-04123-9. PubMed DOI PMC
Jabaudon M., Boucher P., Imhoff E., Chabanne R., Faure J.-S., Roszyk L., Thibault S., Blondonnet R., Clairefond G., Guérin R., et al. Sevoflurane for Sedation in Acute Respiratory Distress Syndrome. A Randomized Controlled Pilot Study. Am. J. Respir. Crit. Care Med. 2017;195:792–800. doi: 10.1164/rccm.201604-0686OC. PubMed DOI
Jerath A., Slessarev M. The impact of the coronavirus pandemic on sedation in critical care: Volatile anesthetics in the ICU. Curr. Opin. Crit. Care. 2023;29:14–18. doi: 10.1097/MCC.0000000000001011. PubMed DOI PMC
Doorduin J., Nollet J.L., Roesthuis L.H., Van Hees H.W.H., Brochard L.J., Sinderby C.A., Van Der Hoeven J.G., Heunks L.M.A. Partial Neuromuscular Blockade during Partial Ventilatory Support in Sedated Patients with High Tidal Volumes. Am. J. Respir. Crit. Care Med. 2017;195:1033–1042. doi: 10.1164/rccm.201605-1016OC. PubMed DOI
Somhorst P., Groot M.W., Gommers D. Partial neuromuscular blockage to promote weaning from mechanical ventilation in severe ARDS: A case report. Respir. Med. Case Rep. 2018;25:225–227. doi: 10.1016/j.rmcr.2018.09.008. PubMed DOI PMC
Hurtado D.E., Erranz B., Lillo F., Sarabia-Vallejos M., Iturrieta P., Morales F., Blaha K., Medina T., Diaz F., Cruces P. Progression of regional lung strain and heterogeneity in lung injury: Assessing the evolution under spontaneous breathing and mechanical ventilation. Ann. Intensive Care. 2020;10:107. doi: 10.1186/s13613-020-00725-0. PubMed DOI PMC
Bachmann M.C., Cruces P., Díaz F., Oviedo V., Goich M., Fuenzalida J., Damiani L.F., Basoalto R., Jalil Y., Carpio D., et al. Spontaneous breathing promotes lung injury in an experimental model of alveolar collapse. Sci. Rep. 2022;12:12648. doi: 10.1038/s41598-022-16446-2. PubMed DOI PMC
Gattinoni L., Gattarello S., Steinberg I., Busana M., Palermo P., Lazzari S., Romitti F., Quintel M., Meissner K., Marini J.J., et al. COVID-19 pneumonia: Pathophysiology and management. Eur. Respir. Rev. 2021;30:210138. doi: 10.1183/16000617.0138-2021. PubMed DOI PMC
Van Haren F., Pham T., Brochard L., Bellani G., Laffey J., Dres M., Fan E., Goligher E., Heunks L., Lynch J., et al. Spontaneous Breathing in Early Acute Respiratory Distress Syndrome. Crit. Care Med. 2019;47:229–238. doi: 10.1097/CCM.0000000000003519. PubMed DOI PMC
Güldner A., Pelosi P., De Abreu M.G. Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr. Opin. Crit. Care. 2014;20:69–76. doi: 10.1097/MCC.0000000000000055. PubMed DOI
Papazian L., Aubron C., Brochard L., Chiche J.-D., Combes A., Dreyfuss D., Forel J.M., Guérin C., Jaber S., Mekontso-Dessap A., et al. Formal guidelines: Management of acute respiratory distress syndrome. Ann. Intensive Care. 2019;9:69. doi: 10.1186/s13613-019-0540-9. PubMed DOI PMC
Hohmann F., Wedekind L., Grundeis F., Dickel S., Frank J., Golinski M., Griesel M., Grimm C., Herchenhahn C., Kramer A., et al. Early spontaneous breathing for acute respiratory distress syndrome in individuals with COVID-19. Cochrane Database Syst. Rev. 2022;6:CD015077. doi: 10.1002/14651858.cd015077. PubMed DOI PMC
Crotti S., Bottino N., Spinelli E. Spontaneous breathing during veno-venous extracorporeal membrane oxygenation. J. Thorac. Dis. 2018;10((Suppl. S5)):S661–S669. doi: 10.21037/jtd.2017.10.27. PubMed DOI PMC
Langer T., Vecchi V., Belenkiy S.M., Cannon J.W., Chung K.K., Cancio L.C., Gattinoni L., Batchinsky A.I. Extracorporeal Gas Exchange and Spontaneous Breathing for the Treatment of Acute Respiratory Distress Syndrome. Crit. Care Med. 2014;42:e211–e220. doi: 10.1097/CCM.0000000000000121. PubMed DOI
Paternoster G., Bertini P., Belletti A., Landoni G., Gallotta S., Palumbo D., Isirdi A., Guarracino F. Venovenous Extracorporeal Membrane Oxygenation in Awake Non-Intubated Patients with COVID-19 ARDS at High Risk for Barotrauma. J. Cardiothorac. Vasc. Anesth. 2022;36:2975–2982. doi: 10.1053/j.jvca.2022.03.011. PubMed DOI PMC
Umlauf J., Eilenberger S., Spring O. Successful Treatment of a Patient with COVID-19-Induced Severe ARDS, Pneumothorax, and Pneumomediastinum with Awake vv-ECMO Implantation. Case Rep. Crit. Care. 2022;2022:6559385. doi: 10.1155/2022/6559385. PubMed DOI PMC
Soroksky A., Tocut M., Rosman Z., Dekel H. Awake extracorporeal membrane oxygenation in a patient with COVID-19 pneumonia and severe hypoxemic respiratory failure. Eur. Rev. Med. Pharmacol. Sci. 2022;26:1761–1764. doi: 10.26355/eurrev_202203_28246. PubMed DOI
Long-Term Outcomes of Extracorporeal Life Support in Respiratory Failure