Quantitative Oculomotor Assessment in Hereditary Ataxia: Systematic Review and Consensus by the Ataxia Global Initiative Working Group on Digital-motor Biomarkers
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu systematický přehled, časopisecké články
PubMed
37117990
PubMed Central
PMC11102387
DOI
10.1007/s12311-023-01559-9
PII: 10.1007/s12311-023-01559-9
Knihovny.cz E-zdroje
- Klíčová slova
- Eye movement recordings, Hereditary ataxia, Oculomotor, Recommendations, Systematic review, Vestibular,
- MeSH
- biologické markery MeSH
- konsensus * MeSH
- lidé MeSH
- pohyby očí fyziologie MeSH
- poruchy hybnosti oka diagnóza patofyziologie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
Oculomotor deficits are common in hereditary ataxia, but disproportionally neglected in clinical ataxia scales and as outcome measures for interventional trials. Quantitative assessment of oculomotor function has become increasingly available and thus applicable in multicenter trials and offers the opportunity to capture severity and progression of oculomotor impairment in a sensitive and reliable manner. In this consensus paper of the Ataxia Global Initiative Working Group On Digital Oculomotor Biomarkers, based on a systematic literature review, we propose harmonized methodology and measurement parameters for the quantitative assessment of oculomotor function in natural-history studies and clinical trials in hereditary ataxia. MEDLINE was searched for articles reporting on oculomotor/vestibular properties in ataxia patients and a study-tailored quality-assessment was performed. One-hundred-and-seventeen articles reporting on subjects with genetically confirmed (n=1134) or suspected hereditary ataxia (n=198), and degenerative ataxias with sporadic presentation (n=480) were included and subject to data extraction. Based on robust discrimination from controls, correlation with disease-severity, sensitivity to change, and feasibility in international multicenter settings as prerequisite for clinical trials, we prioritize a core-set of five eye-movement types: (i) pursuit eye movements, (ii) saccadic eye movements, (iii) fixation, (iv) eccentric gaze holding, and (v) rotational vestibulo-ocular reflex. We provide detailed guidelines for their acquisition, and recommendations on the quantitative parameters to extract. Limitations include low study quality, heterogeneity in patient populations, and lack of longitudinal studies. Standardization of quantitative oculomotor assessments will facilitate their implementation, interpretation, and validation in clinical trials, and ultimately advance our understanding of the evolution of oculomotor network dysfunction in hereditary ataxias.
Departamento de Medicina Interna Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
Department of Neurology Massachusetts General Hospital Harvard Medical School Boston MA USA
Department of Neurology University of Pécs Medical School Pécs Hungary
Faculty of Medicine University of Zurich Zurich Switzerland
German Center for Neurodegenerative Diseases University of Tübingen Tübingen Germany
Institute of Psychiatry and Neurology Warsaw Poland
Neurology Cantonal Hospital of Baden 5404 Baden Switzerland
Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
Oxford Centre for Genomic Medicine Oxford University Hospitals NHS Trust Oxford UK
The Florey Institute of Neuroscience and Mental Health Parkville Melbourne VIC 3052 Australia
University of California Los Angeles Los Angeles California USA
Zobrazit více v PubMed
Paap BK, Roeske S, Durr A, Schols L, Ashizawa T, Boesch S, Bunn LM, Delatycki MB, Giunti P, Lehericy S, Mariotti C, Melegh J, Pandolfo M, Tallaksen CME, Timmann D, Tsuji S, Schulz JB, van de Warrenburg BP, Klockgether T. Standardized assessment of hereditary ataxia patients in clinical studies. Mov Disord Clin Pract. 2016;3:230–240. doi: 10.1002/mdc3.12315. PubMed DOI PMC
Witek N, Hawkins J, Hall D. Genetic ataxias: update on classification and diagnostic approaches. Curr Neurol Neurosci Rep. 2021;21:13. doi: 10.1007/s11910-021-01092-4. PubMed DOI
Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, Marien P, Nowak DA, Schmahmann JD, Serrao M, Steiner KM, Strupp M, Tilikete C, Timmann D, van Dun K. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum (London, England). 2016;15:369–391. doi: 10.1007/s12311-015-0687-3. PubMed DOI PMC
Shemesh AA, Zee DS. Eye movement disorders and the cerebellum. J Clin Neurophysiol. 2019;36:405–414. doi: 10.1097/WNP.0000000000000579. PubMed DOI PMC
Leigh RJ, Zee DS. Appendix C - Tables of ocular motor findings in hereditary ataxia. The neurology of eye movements. 5. New York, USA: Oxford University Press; 2015. pp. 1035–1048.
Stephen CD, Schmahmann JD. Eye movement abnormalities are ubiquitous in the spinocerebellar ataxias. Cerebellum (London, England). 2019;18:1130–1136. doi: 10.1007/s12311-019-01044-2. PubMed DOI
Leigh RJ, Zee DS. The neurology of eye movements. 5. New York, USA: Oxford University Press; 2015.
Holmqvist K, Örbom SL, Hooge ITC, Niehorster DC, Alexander RG, Andersson R, Benjamins JS, Blignaut P, Brouwer AM, Chuang LL, Dalrymple KA, Drieghe D, Dunn MJ, Ettinger U, Fiedler S, Foulsham T, van der Geest JN, Hansen DW, Hutton SB, Kasneci E, Kingstone A, Knox PC, Kok EM, Lee H, Lee JY, Leppänen JM, Macknik S, Majaranta P, Martinez-Conde S, Nuthmann A, Nyström M, Orquin JL, Otero-Millan J, Park SY, Popelka S, Proudlock F, Renkewitz F, Roorda A, Schulte-Mecklenbeck M, Sharif B, Shic F, Shovman M, Thomas MG, Venrooij W, Zemblys R, Hessels RS. Eye tracking: empirical foundations for a minimal reporting guideline. Behav Res Methods. 2023;55(1):364–416. 10.3758/s13428-021-01762-8. PubMed PMC
Rosini F, Pretegiani E, Battisti C, Dotti MT, Federico A, Rufa A. Eye movement changes in autosomal dominant spinocerebellar ataxias. Neurol Sci. 2020;41:1719–1734. doi: 10.1007/s10072-020-04318-4. PubMed DOI
Zeigelboim BS, Teive HAG, Santos GJB, Severiano MIR, Fonseca VR, Faryniuk JH, Marques JM. Otoneurological findings prevalent in hereditary ataxias. Arq Neuropsiquiatr. 2018;76:131–138. doi: 10.1590/0004-282x20180001. PubMed DOI
Park JY, Joo K, Woo SJ. Ophthalmic manifestations and genetics of the polyglutamine autosomal dominant spinocerebellar ataxias: a review. Front Neurosci. 2020;14:892. doi: 10.3389/fnins.2020.00892. PubMed DOI PMC
Cortese A, Tozza S, Yau WY, Rossi S, Beecroft SJ, Jaunmuktane Z, Dyer Z, Ravenscroft G, Lamont PJ, Mossman S, Chancellor A, Maisonobe T, Pereon Y, Cauquil C, Colnaghi S, Mallucci G, Curro R, Tomaselli PJ, Thomas-Black G, Sullivan R, Efthymiou S, Rossor AM, Laura M, Pipis M, Horga A, Polke J, Kaski D, Horvath R, Chinnery PF, Marques W, Tassorelli C, Devigili G, Leonardis L, Wood NW, Bronstein A, Giunti P, Zuchner S, Stojkovic T, Laing N, Roxburgh RH, Houlden H, Reilly MM. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome due to RFC1 repeat expansion. Brain. 2020;143:480–490. doi: 10.1093/brain/awz418. PubMed DOI PMC
Tarnutzer AA, Straumann D, Salman MS. Neuro-ophthalmologic assessment and investigations in children and adults with cerebellar diseases. Handb Clin Neurol. 2018;154:305–327. doi: 10.1016/B978-0-444-63956-1.00019-9. PubMed DOI
Moscovich M, Okun MS, Favilla C, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez C, Schmahmann J, Paulson H, Shakkottai V, Ying S, Zesiewicz T, Kuo SH, Mazzoni P, Bushara K, Xia G, Ashizawa T, Subramony SH. Clinical evaluation of eye movements in spinocerebellar ataxias: a prospective multicenter study. J Neuroophthalmol. 2015;35:16–21. doi: 10.1097/WNO.0000000000000167. PubMed DOI PMC
Ilg W, Branscheidt M, Butala A, Celnik P, de Paola L, Horak FB, Schols L, Teive HAG, Vogel AP, Zee DS, Timmann D. Consensus paper: neurophysiological assessments of ataxias in daily practice. Cerebellum (London, England). 2018;17:628–653. doi: 10.1007/s12311-018-0937-2. PubMed DOI
Klockgether T, Ashizawa T, Brais B, Chuang R, Durr A, Fogel B, Greenfield J, Hagen S, Jardim LB, Jiang H, Onodera O, Pedroso JL, Soong BW, Szmulewicz D, Graessner H, Synofzik M, Ataxia Global I Paving the way toward meaningful trials in ataxias: an Ataxia Global Initiative perspective. Mov Disord. 2022;37:1125–1130. doi: 10.1002/mds.29032. PubMed DOI
Cohen J. A coefficient for agreement for nominal scales. Educ Psychol Meas. 1960;20:37–46. doi: 10.1177/001316446002000104. DOI
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100. doi: 10.1371/journal.pmed.1000100. PubMed DOI PMC
Seifried C, Velázquez-Pérez L, Santos-Falcón N, Abele M, Ziemann U, Almaguer LE, Martínez-Góngora E, Sánchez-Cruz G, Canales N, Pérez-González R, Velázquez-Manresa M, Viebahn B, Stuckrad-Barre S, Klockgether T, Fetter M, Auburger G. Saccade velocity as a surrogate disease marker in spinocerebellar ataxia type 2. Ann N Y Acad Sci. 2005;1039:524–527. doi: 10.1196/annals.1325.059. PubMed DOI
Rodríguez-Labrada R, Velázquez-Pérez L, Auburger G, Ziemann U, Canales-Ochoa N, Medrano-Montero J, Vázquez-Mojena Y, González-Zaldivar Y. Spinocerebellar ataxia type 2: Measures of saccade changes improve power for clinical trials. Mov Disord. 2016;31:570–578. doi: 10.1002/mds.26532. PubMed DOI
Luis L, Costa J, Munoz E, de Carvalho M, Carmona S, Schneider E, Gordon CR, Valls-Sole J. Vestibulo-ocular reflex dynamics with head-impulses discriminates spinocerebellar ataxias types 1, 2 and 3 and Friedreich ataxia. J Vestib Res. 2016;26:327–334. doi: 10.3233/VES-160579. PubMed DOI
Christova P, Anderson JH, Gomez CM. Impaired eye movements in presymptomatic spinocerebellar ataxia type 6. Arch Neurol. 2008;65:530–536. doi: 10.1001/archneur.65.4.530. PubMed DOI
Clausi S, De Luca M, Chiricozzi FR, Tedesco AM, Casali C, Molinari M, Leggio MG. Oculomotor deficits affect neuropsychological performance in oculomotor apraxia type 2. Cortex. 2013;49:691–701. doi: 10.1016/j.cortex.2012.02.007. PubMed DOI
Federighi P, Ramat S, Rosini F, Pretegiani E, Federico A, Rufa A. Characteristic eye movements in ataxia-telangiectasia-like disorder: an explanatory hypothesis. Front Neurol. 2017;8:596. doi: 10.3389/fneur.2017.00596. PubMed DOI PMC
Wu C, Chen DB, Feng L, Zhou XX, Zhang JW, You HJ, Liang XL, Pei Z, Li XH. Oculomotor deficits in spinocerebellar ataxia type 3: potential biomarkers of preclinical detection and disease progression. CNS Neurosci Ther. 2017;23:321–328. doi: 10.1111/cns.12676. PubMed DOI PMC
de Oliveira CM, Leotti VB, Bolzan G, Cappelli AH, Rocha AG, Ecco G, Kersting N, Rieck M, Martins AC, Sena LS, Saraiva-Pereira ML, Jardim LB. Pre-ataxic Changes of Clinical Scales and Eye Movement in Machado-Joseph Disease: BIGPRO Study. Mov Disord. 2021;36(4):985–994. 10.1002/mds.28466. PubMed
Yacovino DA, Zanotti E, Hain TC. Is Cerebellar Ataxia, Neuropathy, and Vestibular Areflexia Syndrome (CANVAS) a vestibular ganglionopathy? J Int Adv Otol. 2019;15:304–308. doi: 10.5152/iao.2019.7068. PubMed DOI PMC
Bremova T, Krafczyk S, Bardins S, Reinke J, Strupp M. Vestibular function in patients with Niemann-Pick type C disease. J Neurol. 2016;263:2260–2270. doi: 10.1007/s00415-016-8247-4. PubMed DOI
Bremova T, Malinova V, Amraoui Y, Mengel E, Reinke J, Kolnikova M, Strupp M. Acetyl-dl-leucine in Niemann-Pick type C: a case series. Neurology. 2015;85:1368–1375. doi: 10.1212/WNL.0000000000002041. PubMed DOI
Brokalaki C, Kararizou E, Dimitrakopoulos A, Evdokimidis I, Anagnostou E. Square-wave ocular oscillation and ataxia in an anti-GAD-positive individual with hypothyroidism. J Neuroophthalmol. 2015;35:390–395. doi: 10.1097/wno.0000000000000275. PubMed DOI
Coin JT, Vance JM. Gabapentin Relieves Vertigo of Periodic Vestibulocerebellar Ataxia: 3 Cases and Possible Mechanism. Mov Disord. 2021;36(5):1264–1267. 10.1002/mds.28491. PubMed
Kalla R, Spiegel R, Claassen J, Bardins S, Hahn A, Schneider E, Rettinger N, Glasauer S, Brandt T, Strupp M. Comparison of 10-mg doses of 4-aminopyridine and 3,4-diaminopyridine for the treatment of downbeat nystagmus. J Neuroophthalmol. 2011;31:320–325. doi: 10.1097/WNO.0b013e3182258086. PubMed DOI
Ribaï P, Pousset F, Tanguy ML, Rivaud-Pechoux S, Le Ber I, Gasparini F, Charles P, Béraud AS, Schmitt M, Koenig M, Mallet A, Brice A, Dürr A. Neurological, cardiological, and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch Neurol. 2007;64:558–564. doi: 10.1001/archneur.64.4.558. PubMed DOI
Rodríguez-Díaz JC, Velázquez-Pérez L, Rodríguez Labrada R, Aguilera Rodríguez R, Laffita Pérez D, Canales Ochoa N, Medrano Montero J, Estupiñán Rodríguez A, Osorio Borjas M, Góngora Marrero M, Reynaldo Cejas L, González Zaldivar Y, Almaguer GD. Neurorehabilitation therapy in spinocerebellar ataxia type 2: a 24-week, rater-blinded, randomized, controlled trial. Mov Disord. 2018;33:1481–1487. doi: 10.1002/mds.27437. PubMed DOI
Rosini F, Federighi P, Pretegiani E, Piu P, Leigh RJ, Serra A, Federico A, Rufa A. Ocular-motor profile and effects of memantine in a familial form of adult cerebellar ataxia with slow saccades and square wave saccadic intrusions. PloS one. 2013;8:e69522. doi: 10.1371/journal.pone.0069522. PubMed DOI PMC
Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO. Zee DS, Straumann D. Effects of 4-aminopyridine on nystagmus and vestibulo-ocular reflex in ataxia-telangiectasia. J Neurol. 2013;260:2728–2735. doi: 10.1007/s00415-013-7046-4. PubMed DOI
Tilikete C, Vighetto A, Trouillas P, Honnorat J. Anti-GAD antibodies and periodic alternating nystagmus. Arch Neurol. 2005;62:1300–1303. doi: 10.1001/archneur.62.8.1300. PubMed DOI
Velázquez-Pérez L, Rodríguez-Chanfrau J, García-Rodríguez JC, Sánchez-Cruz G, Aguilera-Rodríguez R, Rodríguez-Labrada R, Rodríguez-Díaz JC, Canales-Ochoa N, Gotay DA, Almaguer Mederos LE, Laffita Mesa JM, Porto-Verdecia M, Triana CG, Pupo NR, Batista IH, López-Hernandez OD, Polanco ID, Novas AJ. Oral zinc sulphate supplementation for six months in SCA2 patients: a randomized, double-blind, placebo-controlled trial. Neurochem Res. 2011;36:1793–1800. doi: 10.1007/s11064-011-0496-0. PubMed DOI
Velázquez-Pérez L, Rodríguez-Labrada R, Álvarez-González L, Aguilera-Rodríguez R, Álvarez Sánchez M, Canales-Ochoa N, Galicia Polo L, Haro-Valencia R, Medrano-Montero J, Vázquez-Mojena Y, Peña-Acosta A, Estupiñán-Rodríguez A, Rodríguez PN. Lisuride reduces involuntary periodic leg movements in spinocerebellar ataxia type 2 patients. Cerebellum (London, England). 2012;11:1051–1056. doi: 10.1007/s12311-012-0382-6. PubMed DOI
Deacon MA, Gibson F. Strabismus measurements using the alternating and simultaneous prism cover tests: a comparative study. J Pediatr Ophthalmol Strabismus. 2001;38:267–272. doi: 10.3928/0191-3913-20010901-06. PubMed DOI
Morrison M, Kerkeni H, Korda A, Rass S, Caversaccio MD, Abegg M, Schneider E, Mantokoudis G. Automated alternate cover test for 'HINTS' assessment: a validation study. Eur Arch Otorhinolaryngol. 2022;279:2873–2879. doi: 10.1007/s00405-021-06998-w. PubMed DOI PMC
Andersson R, Nyström M, Holmqvist K. Sampling frequency and eye-tracking measures: how speed affects durations, latencies, and more. J Eye Mov Res. 2010;3:1–12.
Antoniades C, Ettinger U, Gaymard B, Gilchrist I, Kristjansson A, Kennard C, John Leigh R, Noorani I, Pouget P, Smyrnis N, Tarnowski A, Zee DS, Carpenter RH. An internationally standardised antisaccade protocol. Vision Res. 2013;84:1–5. doi: 10.1016/j.visres.2013.02.007. PubMed DOI
Rosengren W, Nystrom M, Hammar B, Stridh M. A robust method for calibration of eye tracking data recorded during nystagmus. Behav Res Methods. 2020;52:36–50. doi: 10.3758/s13428-019-01199-0. PubMed DOI PMC
Dalrymple KA, Manner MD, Harmelink KA, Teska EP, Elison JT. An examination of recording accuracy and precision from eye tracking data from toddlerhood to adulthood. Front Psychol. 2018;9:803. doi: 10.3389/fpsyg.2018.00803. PubMed DOI PMC
Garces P, Antoniades CA, Sobanska A, Kovacs N, Ying SH, Gupta AS, Perlman S, Szmulewicz DJ, Pane C, Nemeth AH, Jardim LB, Coarelli G, Dankova M, Traschutz A, Tarnutzer AA. Quantitative oculomotor assessment in hereditary ataxia: discriminatory power, correlation with severity measures, and recommended parameters for specific genotypes. Cerebellum (London, England). 2023; 10.1007/s12311-023-01514-8. PubMed PMC
Joyce CA, Gorodnitsky IF, King JW, Kutas M. Tracking eye fixations with electroocular and electroencephalographic recordings. Psychophysiology. 2002;39:607–618. doi: 10.1111/1469-8986.3950607. PubMed DOI
Leigh RJ, Zee DS. Appendix B - a summary of methods for measuring eye movements. The neurology of eye movements. 5. New York, USA: Oxford University Press; 2015. pp. 1029–1034.
Aalling M, Skals RK, Abrahamsen ER, Hougaard DD. Comparison of test results from two separate video head impulse test systems in a cohort of patients diagnosed with a unilateral vestibular schwannoma. Eur Arch Otorhinolaryngol. 2020;277:3185–3193. doi: 10.1007/s00405-020-06116-2. PubMed DOI
Abrahamsen ER, Christensen AE, Hougaard DD. Intra- and interexaminer variability of two separate video head impulse test systems assessing all six semicircular canals. Otol Neurotol. 2018;39:e113–ee22. doi: 10.1097/MAO.0000000000001665. PubMed DOI
Administration USFD. Patient-focused drug development: selecting, developing, or modifying fit-for-purpose clinical outcome assessments. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-focused-drug-development-selecting-developing-or-modifying-fit-purpose-clinical-outcome. Accessed September 9th 2022.
Szmulewicz DJ, Waterston JA, MacDougall HG, Mossman S, Chancellor AM, McLean CA, Merchant S, Patrikios P, Halmagyi GM, Storey E. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS): a review of the clinical features and video-oculographic diagnosis. Ann N Y Acad Sci. 2011;1233:139–147. doi: 10.1111/j.1749-6632.2011.06158.x. PubMed DOI
Oh AJ, Chen T, Shariati MA, Jehangir N, Hwang TN, Liao YJ. A simple saccadic reading test to assess ocular motor function in cerebellar ataxia. PloS One. 2018;13:e0203924. doi: 10.1371/journal.pone.0203924. PubMed DOI PMC
Helmchen C, Kirchhoff JB, Göttlich M, Sprenger A. Postural ataxia in cerebellar downbeat nystagmus: its relation to visual, proprioceptive and vestibular signals and cerebellar atrophy. PloS one. 2017;12:e0168808. doi: 10.1371/journal.pone.0168808. PubMed DOI PMC
Moreno-Ajona D, Álvarez-Gómez L, Manrique-Huarte R, Rivas E, Martínez-Vila E, Pérez-Fernández N. VEMPs and dysautonomia assessment in definite Cerebellar Ataxia, Neuropathy, Vestibular Areflexia Syndrome (CANVAS): a case series study. Cerebellum (London, England). 2019:717–23. 10.1007/s12311-019-01061-1. PubMed
Rey-Martinez J, Batuecas-Caletrio A, Matino E, Trinidad-Ruiz G, Altuna X, Perez-Fernandez N. Mathematical methods for measuring the visually enhanced vestibulo-ocular reflex and preliminary results from healthy subjects and patient groups. Front Neurol. 2018;9:69. doi: 10.3389/fneur.2018.00069. PubMed DOI PMC
Tarnutzer AA, Bockisch CJ, Buffone E, Weiler S, Bachmann LM, Weber KP. Disease-specific sparing of the anterior semicircular canals in bilateral vestibulopathy. Clin Neurophysiol. 2016;127:2791–2801. doi: 10.1016/j.clinph.2016.05.005. PubMed DOI
Samuel M, Torun N, Tuite PJ, Sharpe JA, Lang AE. Progressive ataxia and palatal tremor (PAPT): clinical and MRI assessment with review of palatal tremors. Brain. 2004;127:1252–1268. doi: 10.1093/brain/awh137. PubMed DOI
Jorge A, Martins AI, Gouveia A, Lemos J. The use of video-head impulse test in different head positions in vertical nystagmus and ataxia associated with probable thiamine deficiency. Cerebellum (London, England). 2020;19:611–615. doi: 10.1007/s12311-020-01140-8. PubMed DOI
Versino M, Mascolo A, Piccolo G, Alloni R, Cosi V. Opsoclonus in a patient with cerebellar dysfunction. J Neuroophthalmol. 1999;19:229–231. doi: 10.1097/00041327-199912000-00003. PubMed DOI