Powerful Avidity with a Limited Valency for Virus-Attachment Blockers on DC-SIGN: Combining Chelation and Statistical Rebinding with Structural Plasticity of the Receptor
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37122470
PubMed Central
PMC10141607
DOI
10.1021/acscentsci.2c01136
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The C-type lectin receptor DC-SIGN has been highlighted as the coreceptor for the spike protein of the SARS-CoV-2 virus. A multivalent glycomimetic ligand, Polyman26, has been found to inhibit DC-SIGN-dependent trans-infection of SARS-CoV-2. The molecular details underlying avidity generation in such systems remain poorly characterized. In an effort to dissect the contribution of the known multivalent effects - chelation, clustering, and statistical rebinding - we studied a series of dendrimer constructs related to Polyman26 with a rod core rationally designed to engage simultaneously two binding sites of the tetrameric DC-SIGN. Binding properties of these compounds have been studied with a range of biophysical techniques, including recently developed surface plasmon resonance oriented-surface methodology. Using molecular modeling we addressed, for the first time, the impact of the carbohydrate recognition domains' flexibility of the DC-SIGN tetramer on the compounds' avidity. We were able to gain deeper insight into the role of different binding modes, which in combination produce a construct with a nanomolar affinity despite a limited valency. This multifaceted experimental-theoretical approach provides detailed understanding of multivalent ligand/multimeric protein interactions which can lead to future predictions. This work opens the way to the development of new virus attachment blockers adapted to different C-type lectin receptors of viruses.
Institut Universitaire de France 1 rue Descartes 75231 Paris France
Univ Grenoble Alpes CNRS CEA Institut de Biologie Structurale 38000 Grenoble France
Univ Grenoble Alpes CNRS CERMAV 38000 Grenoble France
Universita' degli Studi di Milano Dipartimento di Chimica via Golgi 19 20133 Milano Italy
Zobrazit více v PubMed
Geijtenbeek T. B.; Torensma R.; van Vliet S. J.; van Duijnhoven G. C.; Adema G. J.; van Kooyk Y.; Figdor C. G. Identification of DC-SIGN, a Novel Dendritic Cell-Specific ICAM-3 Receptor That Supports Primary Immune Responses. Cell 2000, 100 (5), 575–585. 10.1016/S0092-8674(00)80693-5. PubMed DOI
García-Vallejo J. J.; van Kooyk Y. Endogenous Ligands for C-Type Lectin Receptors: The True Regulators of Immune Homeostasis. Immunol. Rev. 2009, 230 (1), 22–37. 10.1111/j.1600-065X.2009.00786.x. PubMed DOI
van Kooyk Y.; Geijtenbeek T. B. DC-SIGN: Escape Mechanism for Pathogens. Nat. Rev. Immunol. 2003, 3 (9), 697–709. 10.1038/nri1182. PubMed DOI
Rahimi N. C-Type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. Biology 2021, 10 (1), 1.10.3390/biology10010001. PubMed DOI PMC
Geijtenbeek T. B.; Kwon D. S.; Torensma R.; van Vliet S. J.; van Duijnhoven G. C.; Middel J.; Cornelissen I. L.; Nottet H. S.; KewalRamani V. N.; Littman D. R.; Figdor C. G.; van Kooyk Y. DC-SIGN, a Dendritic Cell-Specific HIV-1-Binding Protein That Enhances Trans-Infection of T Cells. Cell 2000, 100 (5), 587–597. 10.1016/S0092-8674(00)80694-7. PubMed DOI
Alvarez C. P.; Lasala F.; Carrillo J.; Muniz O.; Corbi A. L.; Delgado R. C-Type Lectins DC-SIGN and L-SIGN Mediate Cellular Entry by Ebola Virus in Cis and in Trans. J. Virol. 2002, 76 (13), 6841–6844. 10.1128/JVI.76.13.6841-6844.2002. PubMed DOI PMC
Thépaut M.; Luczkowiak J.; Vivès C.; Labiod N.; Bally I.; Lasala F.; Grimoire Y.; Fenel D.; Sattin S.; Thielens N.; Schoehn G.; Bernardi A.; Delgado R.; Fieschi F. DC/L-SIGN Recognition of Spike Glycoprotein Promotes SARS-CoV-2 Trans-Infection and Can Be Inhibited by a Glycomimetic Antagonist. PLOS Pathog. 2021, 17 (5), e1009576.10.1371/journal.ppat.1009576. PubMed DOI PMC
Feinberg H.; Mitchell D. A.; Drickamer K.; Weis W. I. Structural Basis for Selective Recognition of Oligosaccharides by DC-SIGN and DC-SIGNR. Sci. N. Y. NY 2001, 294 (5549), 2163–2166. 10.1126/science.1066371. PubMed DOI
Tabarani G.; Thépaut M.; Stroebel D.; Ebel C.; Vivès C.; Vachette P.; Durand D.; Fieschi F. DC-SIGN neck domain is a pH-sensor controlling oligomerization: SAXS and hydrodynamic studies of extracellular domain. J. Biol. Chem. 2009, 284 (32), 21229–21240. 10.1074/jbc.M109.021204. PubMed DOI PMC
Sutkeviciute I.; Thépaut M.; Sattin S.; Berzi A.; McGeagh J.; Grudinin S.; Weiser J.; Le Roy A.; Reina J. J.; Rojo J.; Clerici M.; Bernardi A.; Ebel C.; Fieschi F. Unique DC-SIGN Clustering Activity of a Small Glycomimetic: A Lesson for Ligand Design. ACS Chem. Biol. 2014, 9 (6), 1377–1385. 10.1021/cb500054h. PubMed DOI
Bertolotti B.; Oroszová B.; Sutkeviciute I.; Kniežo L.; Fieschi F.; Parkan K.; Lovyová Z.; Kašáková M.; Moravcová J. Nonhydrolyzable C-Disaccharides, a New Class of DC-SIGN Ligands. Carbohydr. Res. 2016, 435, 7–18. 10.1016/j.carres.2016.09.005. PubMed DOI
Varga N.; Sutkeviciute I.; Guzzi C.; McGeagh J.; Petit-Haertlein I.; Gugliotta S.; Weiser J.; Angulo J.; Fieschi F.; Bernardi A. Selective Targeting of Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin (DC-SIGN) with Mannose-Based Glycomimetics: Synthesis and Interaction Studies of Bis(Benzylamide) Derivatives of a Pseudomannobioside. Chem.—Eur. J. 2013, 19 (15), 4786–4797. 10.1002/chem.201202764. PubMed DOI
Andreini M.; Doknic D.; Sutkeviciute I.; Reina J. J.; Duan J.; Chabrol E.; Thépaut M.; Moroni E.; Doro F.; Belvisi L.; Weiser J.; Rojo J.; Fieschi F.; Bernardi A. Second generation of fucose-based DC-SIGN ligands : affinity improvement and specificity versus Langerin. Org. Biomol. Chem. 2011, 9 (16), 5778–5786. 10.1039/c1ob05573a. PubMed DOI
Porkolab V.; Chabrol E.; Varga N.; Ordanini S.; Sutkeviciute I.; Thépaut M.; García-Jiménez M. J.; Girard E.; Nieto P. M.; Bernardi A.; Fieschi F. Rational-Differential Design of Highly Specific Glycomimetic Ligands: Targeting DC-SIGN and Excluding Langerin Recognition. ACS Chem. Biol. 2018, 13 (3), 600–608. 10.1021/acschembio.7b00958. PubMed DOI
Medve L.; Achilli S.; Guzman-Caldentey J.; Thépaut M.; Senaldi L.; Le Roy A.; Sattin S.; Ebel C.; Vivès C.; Martin-Santamaria S.; Bernardi A.; Fieschi F. Enhancing Potency and Selectivity of a DC-SIGN Glycomimetic Ligand by Fragment-Based Design: Structural Basis. Chem.—Eur. J. 2019, 25 (64), 14659–14668. 10.1002/chem.201903391. PubMed DOI PMC
Cramer J.; Lakkaichi A.; Aliu B.; Jakob R. P.; Klein S.; Cattaneo I.; Jiang X.; Rabbani S.; Schwardt O.; Zimmer G.; Ciancaglini M.; Abreu Mota T.; Maier T.; Ernst B. Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2. J. Am. Chem. Soc. 2021, 143 (42), 17465–17478. 10.1021/jacs.1c06778. PubMed DOI
Varga N.; Sutkeviciute I.; Ribeiro-Viana R.; Berzi A.; Ramdasi R.; Daghetti A.; Vettoretti G.; Amara A.; Clerici M.; Rojo J.; Fieschi F.; Bernardi A. A Multivalent Inhibitor of the DC-SIGN Dependent Uptake of HIV-1 and Dengue Virus. Biomaterials 2014, 35 (13), 4175–4184. 10.1016/j.biomaterials.2014.01.014. PubMed DOI
Taouai M.; Porkolab V.; Chakroun K.; Chéneau C.; Luczkowiak J.; Abidi R.; Lesur D.; Cragg P. J.; Halary F.; Delgado R.; Fieschi F.; Benazza M. Unprecedented Thiacalixarene Fucoclusters as Strong Inhibitors of Ebola Cis-Cell Infection and HCMV-GB Glycoprotein/DC-SIGN C-Type Lectin Interaction. Bioconjugate Chem. 2019, 30 (4), 1114–1126. 10.1021/acs.bioconjchem.9b00066. PubMed DOI
Ordanini S.; Varga N.; Porkolab V.; Thépaut M.; Belvisi L.; Bertaglia A.; Palmioli A.; Berzi A.; Trabattoni D.; Clerici M.; Fieschi F.; Bernardi A. Designing Nanomolar Antagonists of DC-SIGN-Mediated HIV Infection: Ligand Presentation Using Molecular Rods. Chem. Commun. 2015, 51 (18), 3816–3819. 10.1039/C4CC09709B. PubMed DOI
Porkolab V.; Pifferi C.; Sutkeviciute I.; Ordanini S.; Taouai M.; Thépaut M.; Vivès C.; Benazza M.; Bernardi A.; Renaudet O.; Fieschi F. Development of C-Type Lectin-Oriented Surfaces for High Avidity Glycoconjugates: Towards Mimicking Multivalent Interactions on the Cell Surface. Org. Biomol. Chem. 2020, 18 (25), 4763–4772. 10.1039/D0OB00781A. PubMed DOI
Bernardi A.; Jiménez-Barbero J.; Casnati A.; De Castro C.; Darbre T.; Fieschi F.; Finne J.; Funken H.; Jaeger K.-E.; Lahmann M.; Lindhorst T. K.; Marradi M.; Messner P.; Molinaro A.; Murphy P. V.; Nativi C.; Oscarson S.; Penadés S.; Peri F.; Pieters R. J.; Renaudet O.; Reymond J.-L.; Richichi B.; Rojo J.; Sansone F.; Schäffer C.; Turnbull W. B.; Velasco-Torrijos T.; Vidal S.; Vincent S.; Wennekes T.; Zuilhof H.; Imberty A. Multivalent Glycoconjugates as Anti-Pathogenic Agents. Chem. Soc. Rev. 2013, 42 (11), 4709–4727. 10.1039/C2CS35408J. PubMed DOI PMC
Cecioni S.; Imberty A.; Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 2015, 115 (1), 525–561. 10.1021/cr500303t. PubMed DOI
Ribeiro-Viana R.; Sánchez-Navarro M.; Luczkowiak J.; Koeppe J. R.; Delgado R.; Rojo J.; Davis B. G. Virus-like Glycodendrinanoparticles Displaying Quasi-Equivalent Nested Polyvalency upon Glycoprotein Platforms Potently Block Viral Infection. Nat. Commun. 2012, 3, 1303.10.1038/ncomms2302. PubMed DOI PMC
Ramos-Soriano J.; Reina J. J.; Illescas B. M.; de la Cruz N.; Rodríguez-Pérez L.; Lasala F.; Rojo J.; Delgado R.; Martín N. Synthesis of Highly Efficient Multivalent Disaccharide/[60]Fullerene Nanoballs for Emergent Viruses. J. Am. Chem. Soc. 2019, 141 (38), 15403–15412. 10.1021/jacs.9b08003. PubMed DOI
Mammen M.; Choi S. K.; Whitesides G. M. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. 1998, 37, 2754–2794. 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3. PubMed DOI
Krishnamurthy V. M.; Semetey V.; Bracher P. J.; Shen N.; Whitesides G. M. Dependence of Effective Molarity on Linker Length for an Intramolecular Protein–Ligand System. J. Am. Chem. Soc. 2007, 129 (5), 1312–1320. 10.1021/ja066780e. PubMed DOI PMC
Bachem G.; Wamhoff E.-C.; Silberreis K.; Kim D.; Baukmann H.; Fuchsberger F.; Dernedde J.; Rademacher C.; Seitz O. Rational Design of a DNA-Scaffolded High-Affinity Binder for Langerin. Angew. Chem., Int. Ed. Engl. 2020, 59 (47), 21016–21022. 10.1002/anie.202006880. PubMed DOI PMC
Yu G.; Vicini A. C.; Pieters R. J. Assembly of Divalent Ligands and Their Effect on Divalent Binding to Pseudomonas Aeruginosa Lectin LecA. J. Org. Chem. 2019, 84 (5), 2470–2488. 10.1021/acs.joc.8b02727. PubMed DOI PMC
Kumar V.; Turnbull W. B. Carbohydrate Inhibitors of Cholera Toxin. Beilstein J. Org. Chem. 2018, 14, 484–498. 10.3762/bjoc.14.34. PubMed DOI PMC
Wang S.; Dupin L.; Noël M.; Carroux C. J.; Renaud L.; Géhin T.; Meyer A.; Souteyrand E.; Vasseur J.-J.; Vergoten G.; Chevolot Y.; Morvan F.; Vidal S. Toward the Rational Design of Galactosylated Glycoclusters That Target Pseudomonas Aeruginosa Lectin A (LecA): Influence of Linker Arms That Lead to Low-Nanomolar Multivalent Ligands. Chem.—Eur. J. 2016, 22 (33), 11785–11794. 10.1002/chem.201602047. PubMed DOI
Pieters R. J. Maximising Multivalency Effects in Protein–Carbohydrate Interactions. Org. Biomol. Chem. 2009, 7 (10), 2013.10.1039/b901828j. PubMed DOI
Berzi A.; Ordanini S.; Joosten B.; Trabattoni D.; Cambi A.; Bernardi A.; Clerici M. Pseudo-Mannosylated DC-SIGN Ligands as Immunomodulants. Sci. Rep. 2016, 6, 35373.10.1038/srep35373. PubMed DOI PMC
Zahorska E.; Kuhaudomlarp S.; Minervini S.; Yousaf S.; Lepsik M.; Kinsinger T.; Hirsch A. K. H.; Imberty A.; Titz A. A Rapid Synthesis of Low-Nanomolar Divalent LecA Inhibitors in Four Linear Steps from d -Galactose Pentaacetate. Chem. Commun. 2020, 56 (62), 8822–8825. 10.1039/D0CC03490H. PubMed DOI
Cheng Y.; Prusoff W. H. Relationship between the Inhibition Constant (K1) and the Concentration of Inhibitor Which Causes 50 per Cent Inhibition (I50) of an Enzymatic Reaction. Biochem. Pharmacol. 1973, 22 (23), 3099–3108. 10.1016/0006-2952(73)90196-2. PubMed DOI
Ordanini S.; Zanchetta G.; Porkolab V.; Ebel C.; Fieschi F.; Guzzetti I.; Potenza D.; Palmioli A.; Podlipnik Č.; Meroni D.; Bernardi A. Solution Behavior of Amphiphilic Glycodendrimers with a Rod-Like Core. Macromol. Biosci. 2016, 16 (6), 896–905. 10.1002/mabi.201500452. PubMed DOI
Menon S.; Rosenberg K.; Graham S. A.; Ward E. M.; Taylor M. E.; Drickamer K.; Leckband D. E. Binding-Site Geometry and Flexibility in DC-SIGN Demonstrated with Surface Force Measurements. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (28), 11524–11529. 10.1073/pnas.0901783106. PubMed DOI PMC
Fieschi F.; Bernardi A.; Rojo J.. Glycomimetics as Promising Inhibitors of Ebola Virus, Flavivirus and HIV Infections. In Antiviral Discovery for Highly Pathogenic Emerging Viruses; Royal Society of Chemistry, 2021; pp 208–231.
Martínez-Avila O.; Bedoya L. M.; Marradi M.; Clavel C.; Alcamí J.; Penadés S. Multivalent Manno-Glyconanoparticles Inhibit DC-SIGN-Mediated HIV-1 Trans-Infection of Human T Cells. Chembiochem Eur. J. Chem. Biol. 2009, 10 (11), 1806–1809. 10.1002/cbic.200900294. PubMed DOI
Ramos-Soriano J.; Illescas B. M.; Pérez-Sánchez A.; Sánchez-Bento R.; Lasala F.; Rojo J.; Delgado R.; Martín N. Topological and Multivalent Effects in Glycofullerene Oligomers as EBOLA Virus Inhibitors. Int. J. Mol. Sci. 2022, 23 (9), 5083.10.3390/ijms23095083. PubMed DOI PMC
Cramer J.; Aliu B.; Jiang X.; Sharpe T.; Pang L.; Hadorn A.; Rabbani S.; Ernst B. Poly-l-Lysine Glycoconjugates Inhibit DC-SIGN-Mediated Attachment of Pandemic Viruses. ChemMedChem. 2021, 16 (15), 2345–2353. 10.1002/cmdc.202100348. PubMed DOI
Budhadev D.; Poole E.; Nehlmeier I.; Liu Y.; Hooper J.; Kalverda E.; Akshath U. S.; Hondow N.; Turnbull W. B.; Pöhlmann S.; Guo Y.; Zhou D. Glycan-Gold Nanoparticles as Multifunctional Probes for Multivalent Lectin–Carbohydrate Binding: Implications for Blocking Virus Infection and Nanoparticle Assembly. J. Am. Chem. Soc. 2020, 142 (42), 18022–18034. 10.1021/jacs.0c06793. PubMed DOI
Amraei R.; Yin W.; Napoleon M. A.; Suder E. L.; Berrigan J.; Zhao Q.; Olejnik J.; Chandler K. B.; Xia C.; Feldman J.; Hauser B. M.; Caradonna T. M.; Schmidt A. G.; Gummuluru S.; Mühlberger E.; Chitalia V.; Costello C. E.; Rahimi N. CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Cent. Sci. 2021, 7 (7), 1156–1165. 10.1021/acscentsci.0c01537. PubMed DOI PMC
Kondo Y.; Larabee J. L.; Gao L.; Shi H.; Shao B.; Hoover C. M.; McDaniel J. M.; Ho Y.-C.; Silasi-Mansat R.; Archer-Hartmann S. A.; Azadi P.; Srinivasan R. S.; Rezaie A. R.; Borczuk A.; Laurence J. C.; Lupu F.; Ahamed J.; McEver R. P.; Papin J. F.; Yu Z.; Xia L. L-SIGN Is a Receptor on Liver Sinusoidal Endothelial Cells for SARS-CoV-2 Virus. JCI Insight 2021, 6 (14), e148999.10.1172/jci.insight.148999. PubMed DOI PMC
Lempp F. A.; Soriaga L. B.; Montiel-Ruiz M.; Benigni F.; Noack J.; Park Y.-J.; Bianchi S.; Walls A. C.; Bowen J. E.; Zhou J.; Kaiser H.; Joshi A.; Agostini M.; Meury M.; Dellota E. J.; Jaconi S.; Cameroni E.; Martinez-Picado J.; Vergara-Alert J.; Izquierdo-Useros N.; Virgin H. W.; Lanzavecchia A.; Veesler D.; Purcell L. A.; Telenti A.; Corti D. Lectins Enhance SARS-CoV-2 Infection and Influence Neutralizing Antibodies. Nature 2021, 598 (7880), 342–347. 10.1038/s41586-021-03925-1. PubMed DOI
Lu Q.; Liu J.; Zhao S.; Gomez Castro M. F.; Laurent-Rolle M.; Dong J.; Ran X.; Damani-Yokota P.; Tang H.; Karakousi T.; Son J.; Kaczmarek M. E.; Zhang Z.; Yeung S. T.; McCune B. T.; Chen R. E.; Tang F.; Ren X.; Chen X.; Hsu J. C. C.; Teplova M.; Huang B.; Deng H.; Long Z.; Mudianto T.; Jin S.; Lin P.; Du J.; Zang R.; Su T. T.; Herrera A.; Zhou M.; Yan R.; Cui J.; Zhu J.; Zhou Q.; Wang T.; Ma J.; Koralov S. B.; Zhang Z.; Aifantis I.; Segal L. N.; Diamond M. S.; Khanna K. M.; Stapleford K. A.; Cresswell P.; Liu Y.; Ding S.; Xie Q.; Wang J. SARS-CoV-2 Exacerbates Proinflammatory Responses in Myeloid Cells through C-Type Lectin Receptors and Tweety Family Member 2. Immunity 2021, 54, 1304.10.1016/j.immuni.2021.05.006. PubMed DOI PMC
Pollastri S.; Delaunay C.; Thépaut M.; Fieschi F.; Bernardi A. Glycomimetic Ligands Block the Interaction of SARS-CoV-2 Spike Protein with C-Type Lectin Co-Receptors. Chem. Commun. Camb. Engl. 2022, 58 (33), 5136–5139. 10.1039/D2CC00121G. PubMed DOI
Feinberg H.; Tso C. K. W.; Taylor M. E.; Drickamer K.; Weis W. I. Segmented Helical Structure of the Neck Region of the Glycan-Binding Receptor DC-SIGNR. J. Mol. Biol. 2009, 394 (4), 613–620. 10.1016/j.jmb.2009.10.006. PubMed DOI PMC
Leckband D. E.; Menon S.; Rosenberg K.; Graham S. A.; Taylor M. E.; Drickamer K. Geometry and Adhesion of Extracellular Domains of DC-SIGNR Neck Length Variants Analyzed by Force-Distance Measurements. Biochemistry 2011, 50 (27), 6125–6132. 10.1021/bi2003444. PubMed DOI PMC