• This record comes from PubMed

Electrostatic Gating of Monolayer Graphene by Concentrated Aqueous Electrolytes

. 2023 May 11 ; 14 (18) : 4281-4288. [epub] 20230501

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Electrostatic gating using electrolytes is a powerful approach for controlling the electronic properties of atomically thin two-dimensional materials such as graphene. However, the role of the ionic type, size, and concentration and the resulting gating efficiency is unclear due to the complex interplay of electrochemical processes and charge doping. Understanding these relationships facilitates the successful design of electrolyte gates and supercapacitors. To that end, we employ in situ Raman microspectroscopy combined with electrostatic gating using various concentrated aqueous electrolytes. We show that while the ionic type and concentration alter the initial doping state of graphene, they have no measurable influence over the rate of the doping of graphene with applied voltage in the high ionic strength limit of 3-15 M. Crucially, unlike for conventional dielectric gates, a large proportion of the applied voltage contributes to the Fermi level shift of graphene in concentrated electrolytes. We provide a practical overview of the doping efficiency for different gating systems.

See more in PubMed

Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric Field in Atomically Thin Carbon Films. Science 2004, 306, 666–669. 10.1126/science.1102896. PubMed DOI

Yu Y.-J. Electrochemical Doping of Graphene with H2SO4 Electrolyte. J. Korean Phys. Soc. 2019, 74, 132–135. 10.3938/jkps.74.132. DOI

Kim S.; Park S.; Kim H.; Jang G.; Park D.; Park J.-Y.; Lee S.; Ahn Y. Characterization of Chemical Doping of Graphene by In-situ Raman Spectroscopy. Appl. Phys. Lett. 2016, 108, 203111.10.1063/1.4950969. DOI

Kalbac M.; Reina-Cecco A.; Farhat H.; Kong J.; Kavan L.; Dresselhaus M. S. The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene. ACS Nano 2010, 4, 6055–6063. 10.1021/nn1010914. PubMed DOI

Xu K.; Fullerton-Shirey S. K. Electric-Double-Layer-Gated Transistors Based on Two-Dimensional Crystals: Recent Approaches and Advances. J. Phys. Mater. 2020, 3, 032001.10.1088/2515-7639/ab8270. DOI

Velický M. Electrolyte Versus Dielectric Gating of Two-Dimensional Materials. J. Phys. Chem. C 2021, 125, 21803–21809. 10.1021/acs.jpcc.1c04795. DOI

Frank O.; Dresselhaus M. S.; Kalbac M. Raman Spectroscopy and In situ Raman Spectroelectrochemistry of Isotopically Engineered Graphene Systems. Acc. Chem. Res. 2015, 48, 111–118. 10.1021/ar500384p. PubMed DOI

Das A.; Pisana S.; Chakraborty B.; Piscanec S.; Saha S. K.; Waghmare U. V.; Novoselov K. S.; Krishnamurthy H. R.; Geim A. K.; Ferrari A. C.; et al. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3, 210–215. 10.1038/nnano.2008.67. PubMed DOI

Froehlicher G.; Berciaud S. Raman Spectroscopy of Electrochemically Gated Graphene Transistors: Geometrical Capacitance, Electron-Phonon, Electron-Electron, and Electron-Defect Scattering. Phys. Rev. B 2015, 91, 205413.10.1103/PhysRevB.91.205413. DOI

Yan J.; Zhang Y. B.; Kim P.; Pinczuk A. Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Phys. Rev. Lett. 2007, 98, 166802.10.1103/PhysRevLett.98.166802. PubMed DOI

Chen C.-F.; Park C.-H.; Boudouris B. W.; Horng J.; Geng B.; Girit C.; Zettl A.; Crommie M. F.; Segalman R. A.; Louie S. G.; et al. Controlling Inelastic Light Scattering Quantum Pathways in Graphene. Nature 2011, 471, 617–620. 10.1038/nature09866. PubMed DOI

Das A.; Chakraborty B.; Piscanec S.; Pisana S.; Sood A. K.; Ferrari A. C. Phonon Renormalization in Doped Bilayer Graphene. Phys. Rev. B 2009, 79, 155417.10.1103/PhysRevB.79.155417. DOI

Bruna M.; Ott A. K.; Ijäs M.; Yoon D.; Sassi U.; Ferrari A. C. Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano 2014, 8, 7432–7441. 10.1021/nn502676g. PubMed DOI

Mueller N. S.; Heeg S.; Peña-Alvarez M.; Kusch P.; Wasserroth S.; Clark N.; Schedin F.; Parthenios J.; Papagelis K.; Galiotis C.; et al. Evaluating Arbitrary Strain Configurations and Doping in Graphene with Raman Spectroscopy. 2D Mater. 2018, 5, 015016.10.1088/2053-1583/aa90b3. DOI

Lazzeri M.; Mauri F. Nonadiabatic Kohn Anomaly in a Doped Graphene Monolayer. Phys. Rev. Lett. 2006, 97, 266407.10.1103/PhysRevLett.97.266407. PubMed DOI

Ando T. Anomaly of Optical Phonon in Monolayer Graphene. Jpn. J. Phys. Soc. 2006, 75, 124701.10.1143/JPSJ.75.124701. DOI

Pisana S.; Lazzeri M.; Casiraghi C.; Novoselov K. S.; Geim A. K.; Ferrari A. C.; Mauri F. Breakdown of the Adiabatic Born-Oppenheimer Approximation in Graphene. Nat. Mater. 2007, 6, 198–201. 10.1038/nmat1846. PubMed DOI

Reichardt S.; Wirtz L. Ab initio Calculation of the G Peak Intensity of Graphene: Laser-energy and Fermi-energy Dependence and Importance of Quantum Interference Effects. Phys. Rev. B 2017, 95, 195422.10.1103/PhysRevB.95.195422. DOI

Venezuela P.; Lazzeri M.; Mauri F. Theory of Double-Resonant Raman Spectra in Graphene: Intensity and Line Shape of Defect-Induced and Two-Phonon Bands. Phys. Rev. B 2011, 84, 035433.10.1103/PhysRevB.84.035433. DOI

Ferrari A. C.; Basko D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–46. 10.1038/nnano.2013.46. PubMed DOI

Luryi S. Quantum Capacitance Devices. Appl. Phys. Lett. 1988, 52, 501–503. 10.1063/1.99649. DOI

Chen J. H.; Jang C.; Adam S.; Fuhrer M. S.; Williams E. D.; Ishigami M. Charged-Impurity Scattering in Graphene. Nat. Phys. 2008, 4, 377–381. 10.1038/nphys935. DOI

Chen F.; Qing Q.; Xia J.; Li J.; Tao N. Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution. J. Am. Chem. Soc. 2009, 131, 9908–9909. 10.1021/ja9041862. PubMed DOI

Heller I.; Chatoor S.; Männik J.; Zevenbergen M. A. G.; Dekker C.; Lemay S. G. Influence of Electrolyte Composition on Liquid-Gated Carbon Nanotube and Graphene Transistors. J. Am. Chem. Soc. 2010, 132, 17149–17156. 10.1021/ja104850n. PubMed DOI

Velpula G.; Phillipson R.; Lian J. X.; Cornil D.; Walke P.; Verguts K.; Brems S.; Uji-I H.; De Gendt S.; Beljonne D.; et al. Graphene Meets Ionic Liquids: Fermi Level Engineering via Electrostatic Forces. ACS Nano 2019, 13, 3512–3521. 10.1021/acsnano.8b09768. PubMed DOI

Smith A. M.; Lee A. A.; Perkin S. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. J. Phys. Chem. Lett. 2016, 7, 2157–2163. 10.1021/acs.jpclett.6b00867. PubMed DOI

Adar R. M.; Safran S. A.; Diamant H.; Andelman D. Screening Length for Finite-size Ions in Concentrated Electrolytes. Phys. Rev. E 2019, 100, 042615.10.1103/PhysRevE.100.042615. PubMed DOI

Velický M.; Tam K. Y.; Dryfe R. A. W. On the Stability of the Silver/Silver Sulfate Reference Electrode. Anal. Methods 2012, 4, 1207–1211. 10.1039/c2ay00011c. DOI

Xia J.; Chen F.; Li J.; Tao N. Measurement of the Quantum Capacitance of Graphene. Nat. Nanotechnol. 2009, 4, 505–509. 10.1038/nnano.2009.177. PubMed DOI

Pirkle A.; Chan J.; Venugopal A.; Hinojos D.; Magnuson C. W.; McDonnell S.; Colombo L.; Vogel E. M.; Ruoff R. S.; Wallace R. M. The Effect of Chemical Residues on the Physical and Electrical Properties of Chemical Vapor Deposited Graphene Transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.10.1063/1.3643444. DOI

Chen F.; Xia J.; Tao N. Ionic Screening of Charged-Impurity Scattering in Graphene. Nano Lett. 2009, 9, 1621–1625. 10.1021/nl803922m. PubMed DOI

Ponomarenko L. A.; Yang R.; Mohiuddin T. M.; Katsnelson M. I.; Novoselov K. S.; Morozov S. V.; Zhukov A. A.; Schedin F.; Hill E. W.; Geim A. K. Effect of a High-K Environment on Charge Carrier Mobility in Graphene. Phys. Rev. Lett. 2009, 102, 206603.10.1103/PhysRevLett.102.206603. PubMed DOI

Bisri S. Z.; Shimizu S.; Nakano M.; Iwasa Y. Endeavor of Iontronics: From Fundamentals to Applications of Ion-controlled Electronics. Adv. Mater. 2017, 29, 1607054.10.1002/adma.201607054. PubMed DOI

Zhang Y.; Tan Y.-W.; Stormer H. L.; Kim P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204. 10.1038/nature04235. PubMed DOI

Fang T.; Konar A.; Xing H.; Jena D. Carrier Statistics and Quantum Capacitance of Graphene Sheets and Ribbons. Appl. Phys. Lett. 2007, 91, 092109.10.1063/1.2776887. DOI

Hwang C.; Siegel D. A.; Mo S.-K.; Regan W.; Ismach A.; Zhang Y.; Zettl A.; Lanzara A. Fermi Velocity Engineering in Graphene by Substrate Modification. Sci. Rep. 2012, 2, 590.10.1038/srep00590. DOI

Zhan C.; Neal J.; Wu J.; Jiang D. E. Quantum Effects on the Capacitance of Graphene-Based Electrodes. J. Phys. Chem. C 2015, 119, 22297–22303. 10.1021/acs.jpcc.5b05930. DOI

Bard A. J.; Faulkner L. R.. Electrochemical Methods. Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: New York, 2000.

Velický M.; Toth P. S.; Rakowski A. M.; Rooney A. P.; Kozikov A.; Woods C.; Mishchenko A.; Fumagalli L.; Yin J.; Zólyomi V.; et al. Exfoliation of Natural Van Der Waals Heterostructures to a Single Unit Cell Thickness. Nat. Commun. 2017, 8, 14410.10.1038/ncomms14410. PubMed DOI PMC

Bazant M. Z.; Storey B. D.; Kornyshev A. A. Double Layer in Ionic Liquids: Overscreening Versus Crowding. Phys. Rev. Lett. 2011, 106, 046102.10.1103/PhysRevLett.106.046102. PubMed DOI

Lee A. A.; Perez-Martinez C. S.; Smith A. M.; Perkin S. Scaling Analysis of the Screening Length in Concentrated Electrolytes. Phys. Rev. Lett. 2017, 119, 026002.10.1103/PhysRevLett.119.026002. PubMed DOI

Lee A. A.; Perez-Martinez C. S.; Smith A. M.; Perkin S. Underscreening in Concentrated Electrolytes. Faraday Discuss. 2017, 199, 239–259. 10.1039/C6FD00250A. PubMed DOI

Rosenzweig P.; Karakachian H.; Marchenko D.; Küster K.; Starke U. Overdoping Graphene Beyond the Van Hove Singularity. Phys. Rev. Lett. 2020, 125, 176403.10.1103/PhysRevLett.125.176403. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...