Electrostatic Gating of Monolayer Graphene by Concentrated Aqueous Electrolytes
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
37126786
PubMed Central
PMC10184166
DOI
10.1021/acs.jpclett.3c00814
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Electrostatic gating using electrolytes is a powerful approach for controlling the electronic properties of atomically thin two-dimensional materials such as graphene. However, the role of the ionic type, size, and concentration and the resulting gating efficiency is unclear due to the complex interplay of electrochemical processes and charge doping. Understanding these relationships facilitates the successful design of electrolyte gates and supercapacitors. To that end, we employ in situ Raman microspectroscopy combined with electrostatic gating using various concentrated aqueous electrolytes. We show that while the ionic type and concentration alter the initial doping state of graphene, they have no measurable influence over the rate of the doping of graphene with applied voltage in the high ionic strength limit of 3-15 M. Crucially, unlike for conventional dielectric gates, a large proportion of the applied voltage contributes to the Fermi level shift of graphene in concentrated electrolytes. We provide a practical overview of the doping efficiency for different gating systems.
See more in PubMed
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric Field in Atomically Thin Carbon Films. Science 2004, 306, 666–669. 10.1126/science.1102896. PubMed DOI
Yu Y.-J. Electrochemical Doping of Graphene with H2SO4 Electrolyte. J. Korean Phys. Soc. 2019, 74, 132–135. 10.3938/jkps.74.132. DOI
Kim S.; Park S.; Kim H.; Jang G.; Park D.; Park J.-Y.; Lee S.; Ahn Y. Characterization of Chemical Doping of Graphene by In-situ Raman Spectroscopy. Appl. Phys. Lett. 2016, 108, 203111.10.1063/1.4950969. DOI
Kalbac M.; Reina-Cecco A.; Farhat H.; Kong J.; Kavan L.; Dresselhaus M. S. The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene. ACS Nano 2010, 4, 6055–6063. 10.1021/nn1010914. PubMed DOI
Xu K.; Fullerton-Shirey S. K. Electric-Double-Layer-Gated Transistors Based on Two-Dimensional Crystals: Recent Approaches and Advances. J. Phys. Mater. 2020, 3, 032001.10.1088/2515-7639/ab8270. DOI
Velický M. Electrolyte Versus Dielectric Gating of Two-Dimensional Materials. J. Phys. Chem. C 2021, 125, 21803–21809. 10.1021/acs.jpcc.1c04795. DOI
Frank O.; Dresselhaus M. S.; Kalbac M. Raman Spectroscopy and In situ Raman Spectroelectrochemistry of Isotopically Engineered Graphene Systems. Acc. Chem. Res. 2015, 48, 111–118. 10.1021/ar500384p. PubMed DOI
Das A.; Pisana S.; Chakraborty B.; Piscanec S.; Saha S. K.; Waghmare U. V.; Novoselov K. S.; Krishnamurthy H. R.; Geim A. K.; Ferrari A. C.; et al. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3, 210–215. 10.1038/nnano.2008.67. PubMed DOI
Froehlicher G.; Berciaud S. Raman Spectroscopy of Electrochemically Gated Graphene Transistors: Geometrical Capacitance, Electron-Phonon, Electron-Electron, and Electron-Defect Scattering. Phys. Rev. B 2015, 91, 205413.10.1103/PhysRevB.91.205413. DOI
Yan J.; Zhang Y. B.; Kim P.; Pinczuk A. Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Phys. Rev. Lett. 2007, 98, 166802.10.1103/PhysRevLett.98.166802. PubMed DOI
Chen C.-F.; Park C.-H.; Boudouris B. W.; Horng J.; Geng B.; Girit C.; Zettl A.; Crommie M. F.; Segalman R. A.; Louie S. G.; et al. Controlling Inelastic Light Scattering Quantum Pathways in Graphene. Nature 2011, 471, 617–620. 10.1038/nature09866. PubMed DOI
Das A.; Chakraborty B.; Piscanec S.; Pisana S.; Sood A. K.; Ferrari A. C. Phonon Renormalization in Doped Bilayer Graphene. Phys. Rev. B 2009, 79, 155417.10.1103/PhysRevB.79.155417. DOI
Bruna M.; Ott A. K.; Ijäs M.; Yoon D.; Sassi U.; Ferrari A. C. Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano 2014, 8, 7432–7441. 10.1021/nn502676g. PubMed DOI
Mueller N. S.; Heeg S.; Peña-Alvarez M.; Kusch P.; Wasserroth S.; Clark N.; Schedin F.; Parthenios J.; Papagelis K.; Galiotis C.; et al. Evaluating Arbitrary Strain Configurations and Doping in Graphene with Raman Spectroscopy. 2D Mater. 2018, 5, 015016.10.1088/2053-1583/aa90b3. DOI
Lazzeri M.; Mauri F. Nonadiabatic Kohn Anomaly in a Doped Graphene Monolayer. Phys. Rev. Lett. 2006, 97, 266407.10.1103/PhysRevLett.97.266407. PubMed DOI
Ando T. Anomaly of Optical Phonon in Monolayer Graphene. Jpn. J. Phys. Soc. 2006, 75, 124701.10.1143/JPSJ.75.124701. DOI
Pisana S.; Lazzeri M.; Casiraghi C.; Novoselov K. S.; Geim A. K.; Ferrari A. C.; Mauri F. Breakdown of the Adiabatic Born-Oppenheimer Approximation in Graphene. Nat. Mater. 2007, 6, 198–201. 10.1038/nmat1846. PubMed DOI
Reichardt S.; Wirtz L. Ab initio Calculation of the G Peak Intensity of Graphene: Laser-energy and Fermi-energy Dependence and Importance of Quantum Interference Effects. Phys. Rev. B 2017, 95, 195422.10.1103/PhysRevB.95.195422. DOI
Venezuela P.; Lazzeri M.; Mauri F. Theory of Double-Resonant Raman Spectra in Graphene: Intensity and Line Shape of Defect-Induced and Two-Phonon Bands. Phys. Rev. B 2011, 84, 035433.10.1103/PhysRevB.84.035433. DOI
Ferrari A. C.; Basko D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–46. 10.1038/nnano.2013.46. PubMed DOI
Luryi S. Quantum Capacitance Devices. Appl. Phys. Lett. 1988, 52, 501–503. 10.1063/1.99649. DOI
Chen J. H.; Jang C.; Adam S.; Fuhrer M. S.; Williams E. D.; Ishigami M. Charged-Impurity Scattering in Graphene. Nat. Phys. 2008, 4, 377–381. 10.1038/nphys935. DOI
Chen F.; Qing Q.; Xia J.; Li J.; Tao N. Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution. J. Am. Chem. Soc. 2009, 131, 9908–9909. 10.1021/ja9041862. PubMed DOI
Heller I.; Chatoor S.; Männik J.; Zevenbergen M. A. G.; Dekker C.; Lemay S. G. Influence of Electrolyte Composition on Liquid-Gated Carbon Nanotube and Graphene Transistors. J. Am. Chem. Soc. 2010, 132, 17149–17156. 10.1021/ja104850n. PubMed DOI
Velpula G.; Phillipson R.; Lian J. X.; Cornil D.; Walke P.; Verguts K.; Brems S.; Uji-I H.; De Gendt S.; Beljonne D.; et al. Graphene Meets Ionic Liquids: Fermi Level Engineering via Electrostatic Forces. ACS Nano 2019, 13, 3512–3521. 10.1021/acsnano.8b09768. PubMed DOI
Smith A. M.; Lee A. A.; Perkin S. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. J. Phys. Chem. Lett. 2016, 7, 2157–2163. 10.1021/acs.jpclett.6b00867. PubMed DOI
Adar R. M.; Safran S. A.; Diamant H.; Andelman D. Screening Length for Finite-size Ions in Concentrated Electrolytes. Phys. Rev. E 2019, 100, 042615.10.1103/PhysRevE.100.042615. PubMed DOI
Velický M.; Tam K. Y.; Dryfe R. A. W. On the Stability of the Silver/Silver Sulfate Reference Electrode. Anal. Methods 2012, 4, 1207–1211. 10.1039/c2ay00011c. DOI
Xia J.; Chen F.; Li J.; Tao N. Measurement of the Quantum Capacitance of Graphene. Nat. Nanotechnol. 2009, 4, 505–509. 10.1038/nnano.2009.177. PubMed DOI
Pirkle A.; Chan J.; Venugopal A.; Hinojos D.; Magnuson C. W.; McDonnell S.; Colombo L.; Vogel E. M.; Ruoff R. S.; Wallace R. M. The Effect of Chemical Residues on the Physical and Electrical Properties of Chemical Vapor Deposited Graphene Transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.10.1063/1.3643444. DOI
Chen F.; Xia J.; Tao N. Ionic Screening of Charged-Impurity Scattering in Graphene. Nano Lett. 2009, 9, 1621–1625. 10.1021/nl803922m. PubMed DOI
Ponomarenko L. A.; Yang R.; Mohiuddin T. M.; Katsnelson M. I.; Novoselov K. S.; Morozov S. V.; Zhukov A. A.; Schedin F.; Hill E. W.; Geim A. K. Effect of a High-K Environment on Charge Carrier Mobility in Graphene. Phys. Rev. Lett. 2009, 102, 206603.10.1103/PhysRevLett.102.206603. PubMed DOI
Bisri S. Z.; Shimizu S.; Nakano M.; Iwasa Y. Endeavor of Iontronics: From Fundamentals to Applications of Ion-controlled Electronics. Adv. Mater. 2017, 29, 1607054.10.1002/adma.201607054. PubMed DOI
Zhang Y.; Tan Y.-W.; Stormer H. L.; Kim P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204. 10.1038/nature04235. PubMed DOI
Fang T.; Konar A.; Xing H.; Jena D. Carrier Statistics and Quantum Capacitance of Graphene Sheets and Ribbons. Appl. Phys. Lett. 2007, 91, 092109.10.1063/1.2776887. DOI
Hwang C.; Siegel D. A.; Mo S.-K.; Regan W.; Ismach A.; Zhang Y.; Zettl A.; Lanzara A. Fermi Velocity Engineering in Graphene by Substrate Modification. Sci. Rep. 2012, 2, 590.10.1038/srep00590. DOI
Zhan C.; Neal J.; Wu J.; Jiang D. E. Quantum Effects on the Capacitance of Graphene-Based Electrodes. J. Phys. Chem. C 2015, 119, 22297–22303. 10.1021/acs.jpcc.5b05930. DOI
Bard A. J.; Faulkner L. R.. Electrochemical Methods. Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: New York, 2000.
Velický M.; Toth P. S.; Rakowski A. M.; Rooney A. P.; Kozikov A.; Woods C.; Mishchenko A.; Fumagalli L.; Yin J.; Zólyomi V.; et al. Exfoliation of Natural Van Der Waals Heterostructures to a Single Unit Cell Thickness. Nat. Commun. 2017, 8, 14410.10.1038/ncomms14410. PubMed DOI PMC
Bazant M. Z.; Storey B. D.; Kornyshev A. A. Double Layer in Ionic Liquids: Overscreening Versus Crowding. Phys. Rev. Lett. 2011, 106, 046102.10.1103/PhysRevLett.106.046102. PubMed DOI
Lee A. A.; Perez-Martinez C. S.; Smith A. M.; Perkin S. Scaling Analysis of the Screening Length in Concentrated Electrolytes. Phys. Rev. Lett. 2017, 119, 026002.10.1103/PhysRevLett.119.026002. PubMed DOI
Lee A. A.; Perez-Martinez C. S.; Smith A. M.; Perkin S. Underscreening in Concentrated Electrolytes. Faraday Discuss. 2017, 199, 239–259. 10.1039/C6FD00250A. PubMed DOI
Rosenzweig P.; Karakachian H.; Marchenko D.; Küster K.; Starke U. Overdoping Graphene Beyond the Van Hove Singularity. Phys. Rev. Lett. 2020, 125, 176403.10.1103/PhysRevLett.125.176403. PubMed DOI