Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons

. 2023 Jul ; 22 (7) : 860-866. [epub] 20230504

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37142739

Grantová podpora
61988102 National Natural Science Foundation of China (National Science Foundation of China)
52225207 National Natural Science Foundation of China (National Science Foundation of China)
11934005 National Natural Science Foundation of China (National Science Foundation of China)
23010503400 Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission)
467576442 Deutsche Forschungsgemeinschaft (German Research Foundation)
GA 3314/1-1 - FOR5249 (QUAST) Deutsche Forschungsgemeinschaft (German Research Foundation)

Odkazy

PubMed 37142739
DOI 10.1038/s41563-023-01547-8
PII: 10.1038/s41563-023-01547-8
Knihovny.cz E-zdroje

Thin layers of in-plane anisotropic materials can support ultraconfined polaritons, whose wavelengths depend on the propagation direction. Such polaritons hold potential for the exploration of fundamental material properties and the development of novel nanophotonic devices. However, the real-space observation of ultraconfined in-plane anisotropic plasmon polaritons (PPs)-which exist in much broader spectral ranges than phonon polaritons-has been elusive. Here we apply terahertz nanoscopy to image in-plane anisotropic low-energy PPs in monoclinic Ag2Te platelets. The hybridization of the PPs with their mirror image-by placing the platelets above a Au layer-increases the direction-dependent relative polariton propagation length and the directional polariton confinement. This allows for verifying a linear dispersion and elliptical isofrequency contour in momentum space, revealing in-plane anisotropic acoustic terahertz PPs. Our work shows high-symmetry (elliptical) polaritons on low-symmetry (monoclinic) crystals and demonstrates the use of terahertz PPs for local measurements of anisotropic charge carrier masses and damping.

Zobrazit více v PubMed

Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020). DOI

Daniel, R. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015). DOI

Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016). DOI

Tielrooij, K. J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018). DOI

Lee, I. H., Yoo, D., Avouris, P., Low, T. & Oh, S. H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019). DOI

Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2020). DOI

Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022). DOI

Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023). DOI

Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). DOI

Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014). DOI

Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015). DOI

Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, e1705318 (2018). DOI

Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018). DOI

Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019). DOI

Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019). DOI

Taboada-Gutierrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020). DOI

Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021). DOI

Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021). DOI

Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).

Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017). DOI

Low, T. et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 113, 106802 (2014). DOI

Lian, C. et al. Integrated plasmonics: broadband Dirac plasmons in borophene. Phys. Rev. Lett. 125, 116802 (2020). DOI

Torbatian, Z., Novko, D. & Asgari, R. Hyperbolic plasmon modes in tilted Dirac cone phases of borophene. Phys. Rev. B 104, 075432 (2021). DOI

Huang, X. et al. Black phosphorus carbide as a tunable anisotropic plasmonic metasurface. ACS Photon. 5, 3116–3123 (2018). DOI

Wang, C. et al. Van der Waals thin films of WTe DOI

Chen, J. N. et al. Optical nano-imaging of gate-tuneable graphene plasmons. Nature 487, 77–81 (2012). DOI

Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). DOI

Alonso-Gonzalez, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017). DOI

Chen, S. et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi DOI

Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011). DOI

Soltani, A. et al. Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor. Light.: Sci. Appl. 9, 97 (2020). DOI

Pogna, E. A. A. et al. Mapping propagation of collective modes in Bi DOI

Zhang, W. et al. Topological aspect and quantum magnetoresistance of β-Ag DOI

Yeh, T.-T. et al. The optical properties of Ag DOI

Leng, P. et al. Gate-tunable surface states in topological insulator β-Ag DOI

Dai, S. et al. Phonon polaritons in monolayers of hexagonal boron nitride. Adv. Mater. 31, e1806603 (2019). DOI

Menabde, S. G. et al. Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nat. Commun. 12, 938 (2021). DOI

Menabde, S. G., Heiden, J. T., Cox, J. D., Mortensen, N. A. & Jang, M. S. Image polaritons in van der Waals crystals. Nanophotonics 11, 2433–2452 (2022). DOI

Lee, I. H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020). DOI

Autore, M. & Hillenbrand, R. What momentum mismatch? Nat. Nanotechnol. 14, 308–309 (2019). DOI

Lee, I.-H. et al. Anisotropic acoustic plasmons in black phosphorus. ACS Photon. 5, 2208–2216 (2018). DOI

Lyu, W. et al. Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection. Nanoscale 13, 12720–12726 (2021). DOI

Gomez-Diaz, J. S., Tymchenko, M. & Alu, A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 114, 233901 (2015). DOI

Nikitin, A. Y. in World Scientific Handbook of Metamaterials and Plasmonics. Recent Progress in the Field of Nanoplasmonics Vol. 4 (ed Aizpurua, J.) (World Scientific, 2017).

Sulaev, A. et al. Experimental evidences of topological surface states of β-Ag DOI

Lee, S. et al. Single crystalline β-Ag DOI

Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018). DOI

Damari, R. et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies. Nat. Commun. 10, 3248 (2019). DOI

Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012). DOI

Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). DOI

Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nat. Commun. 5, 3499 (2014). DOI

Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photon. 6, 1279–1288 (2019). DOI

Chen, C. et al. Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials. ACS Photon. 7, 3499–3506 (2020). DOI

Lohmann, T., Klitzing, K. V. & Smet, J. H. Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping. Nano Lett. 9, 1973–1979 (2009). DOI

Zhong, M. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 15, 1701–1709 (2021). DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...