Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
61988102
National Natural Science Foundation of China (National Science Foundation of China)
52225207
National Natural Science Foundation of China (National Science Foundation of China)
11934005
National Natural Science Foundation of China (National Science Foundation of China)
23010503400
Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission)
467576442
Deutsche Forschungsgemeinschaft (German Research Foundation)
GA 3314/1-1 - FOR5249 (QUAST)
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
37142739
DOI
10.1038/s41563-023-01547-8
PII: 10.1038/s41563-023-01547-8
Knihovny.cz E-zdroje
- MeSH
- akustika * MeSH
- anizotropie MeSH
- molekulová hmotnost MeSH
- trombocyty * MeSH
- Publikační typ
- časopisecké články MeSH
Thin layers of in-plane anisotropic materials can support ultraconfined polaritons, whose wavelengths depend on the propagation direction. Such polaritons hold potential for the exploration of fundamental material properties and the development of novel nanophotonic devices. However, the real-space observation of ultraconfined in-plane anisotropic plasmon polaritons (PPs)-which exist in much broader spectral ranges than phonon polaritons-has been elusive. Here we apply terahertz nanoscopy to image in-plane anisotropic low-energy PPs in monoclinic Ag2Te platelets. The hybridization of the PPs with their mirror image-by placing the platelets above a Au layer-increases the direction-dependent relative polariton propagation length and the directional polariton confinement. This allows for verifying a linear dispersion and elliptical isofrequency contour in momentum space, revealing in-plane anisotropic acoustic terahertz PPs. Our work shows high-symmetry (elliptical) polaritons on low-symmetry (monoclinic) crystals and demonstrates the use of terahertz PPs for local measurements of anisotropic charge carrier masses and damping.
Central European Institute of Technology Brno University of Technology Brno Czech Republic
CIC nanoGUNE BRTA and Department of Electricity and Electronics UPV EHU Donostia San Sebastián Spain
CIC nanoGUNE BRTA Donostia San Sebastián Spain
Departamento de Física Facultad de Ciencia y Tecnología Universidad del País Vasco Bilbao Spain
Donostia International Physics Centre Donostia San Sebastián Spain
IKERBASQUE Basque Foundation for Science Bilbao Spain
Institute of Physical Engineering Brno University of Technology Brno Czech Republic
Materials Physics Center CSIC UPV EHU Donostia San Sebastián Spain
Max Planck for Chemical Physics of Solids Dresden Germany
Theory of Condensed Matter Cavendish Laboratory University of Cambridge Cambridge UK
Zobrazit více v PubMed
Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020). DOI
Daniel, R. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015). DOI
Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016). DOI
Tielrooij, K. J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018). DOI
Lee, I. H., Yoo, D., Avouris, P., Low, T. & Oh, S. H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019). DOI
Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2020). DOI
Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022). DOI
Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023). DOI
Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). DOI
Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014). DOI
Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015). DOI
Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, e1705318 (2018). DOI
Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018). DOI
Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019). DOI
Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019). DOI
Taboada-Gutierrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020). DOI
Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021). DOI
Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021). DOI
Wu, Y. et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat. Rev. Phys. 4, 578–594 (2022).
Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017). DOI
Low, T. et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 113, 106802 (2014). DOI
Lian, C. et al. Integrated plasmonics: broadband Dirac plasmons in borophene. Phys. Rev. Lett. 125, 116802 (2020). DOI
Torbatian, Z., Novko, D. & Asgari, R. Hyperbolic plasmon modes in tilted Dirac cone phases of borophene. Phys. Rev. B 104, 075432 (2021). DOI
Huang, X. et al. Black phosphorus carbide as a tunable anisotropic plasmonic metasurface. ACS Photon. 5, 3116–3123 (2018). DOI
Wang, C. et al. Van der Waals thin films of WTe DOI
Chen, J. N. et al. Optical nano-imaging of gate-tuneable graphene plasmons. Nature 487, 77–81 (2012). DOI
Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). DOI
Alonso-Gonzalez, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017). DOI
Chen, S. et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi DOI
Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011). DOI
Soltani, A. et al. Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor. Light.: Sci. Appl. 9, 97 (2020). DOI
Pogna, E. A. A. et al. Mapping propagation of collective modes in Bi DOI
Zhang, W. et al. Topological aspect and quantum magnetoresistance of β-Ag DOI
Yeh, T.-T. et al. The optical properties of Ag DOI
Leng, P. et al. Gate-tunable surface states in topological insulator β-Ag DOI
Dai, S. et al. Phonon polaritons in monolayers of hexagonal boron nitride. Adv. Mater. 31, e1806603 (2019). DOI
Menabde, S. G. et al. Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nat. Commun. 12, 938 (2021). DOI
Menabde, S. G., Heiden, J. T., Cox, J. D., Mortensen, N. A. & Jang, M. S. Image polaritons in van der Waals crystals. Nanophotonics 11, 2433–2452 (2022). DOI
Lee, I. H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020). DOI
Autore, M. & Hillenbrand, R. What momentum mismatch? Nat. Nanotechnol. 14, 308–309 (2019). DOI
Lee, I.-H. et al. Anisotropic acoustic plasmons in black phosphorus. ACS Photon. 5, 2208–2216 (2018). DOI
Lyu, W. et al. Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection. Nanoscale 13, 12720–12726 (2021). DOI
Gomez-Diaz, J. S., Tymchenko, M. & Alu, A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 114, 233901 (2015). DOI
Nikitin, A. Y. in World Scientific Handbook of Metamaterials and Plasmonics. Recent Progress in the Field of Nanoplasmonics Vol. 4 (ed Aizpurua, J.) (World Scientific, 2017).
Sulaev, A. et al. Experimental evidences of topological surface states of β-Ag DOI
Lee, S. et al. Single crystalline β-Ag DOI
Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018). DOI
Damari, R. et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies. Nat. Commun. 10, 3248 (2019). DOI
Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012). DOI
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). DOI
Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nat. Commun. 5, 3499 (2014). DOI
Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photon. 6, 1279–1288 (2019). DOI
Chen, C. et al. Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials. ACS Photon. 7, 3499–3506 (2020). DOI
Lohmann, T., Klitzing, K. V. & Smet, J. H. Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping. Nano Lett. 9, 1973–1979 (2009). DOI
Zhong, M. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 15, 1701–1709 (2021). DOI