Characterization of the input material quality for the production of tisagenlecleucel by multiparameter flow cytometry and its relation to the clinical outcome
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37151356
PubMed Central
PMC10156917
DOI
10.3389/pore.2023.1610914
PII: 1610914
Knihovny.cz E-zdroje
- Klíčová slova
- B-cell lymphoma and leukemia, CAR-T cells, Kymriah, immunotherapy, tisagenlecleucel,
- MeSH
- B-buněčný lymfom * MeSH
- CD8-pozitivní T-lymfocyty metabolismus MeSH
- difúzní velkobuněčný B-lymfom * patologie MeSH
- imunoterapie adoptivní metody MeSH
- lidé MeSH
- průtoková cytometrie MeSH
- receptory antigenů T-buněk metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- receptory antigenů T-buněk MeSH
- tisagenlecleucel MeSH Prohlížeč
Tisagenlecleucel (tisa-cel) is a CD19-specific CAR-T cell product approved for the treatment of relapsed/refractory (r/r) DLBCL or B-ALL. We have followed a group of patients diagnosed with childhood B-ALL (n = 5), adult B-ALL (n = 2), and DLBCL (n = 25) who were treated with tisa-cel under non-clinical trial conditions. The goal was to determine how the intensive pretreatment of patients affects the produced CAR-T cells, their in vivo expansion, and the outcome of the therapy. Multiparametric flow cytometry was used to analyze the material used for manufacturing CAR-T cells (apheresis), the CAR-T cell product itself, and blood samples obtained at three timepoints after administration. We present the analysis of memory phenotype of CD4/CD8 CAR-T lymphocytes (CD45RA, CD62L, CD27, CD28) and the expression of inhibitory receptors (PD-1, TIGIT). In addition, we show its relation to the patients' clinical characteristics, such as tumor burden and sensitivity to prior therapies. Patients who responded to therapy had a higher percentage of CD8+CD45RA+CD27+ T cells in the apheresis, although not in the produced CAR-Ts. Patients with primary refractory aggressive B-cell lymphomas had the poorest outcomes which was characterized by undetectable CAR-T cell expansion in vivo. No clear correlation of the outcome with the immunophenotypes of CAR-Ts was observed. Our results suggest that an important parameter predicting therapy efficacy is CAR-Ts' level of expansion in vivo but not the immunophenotype. After CAR-T cells' administration, measurements at several timepoints accurately detect their proliferation intensity in vivo. The outcome of CAR-T cell therapy largely depends on biological characteristics of the tumors rather than on the immunophenotype of produced CAR-Ts.
1st Faculty of Medicine Charles University Praha Czechia
2nd Faculty of Medicine University Hospital in Motol Praha Czechia
Faculty of Science Charles University Praha Czechia
Zobrazit více v PubMed
Siddiqi T, Abramson JS, Li D, Brown W, Devries T, Dave K, et al. Patient characteristics and pre-infusion biomarkers of inflammation correlate with clinical outcomes after treatment with the defined composition, CD19-targeted CAR T cell product, JCAR017. Blood (2017) 130:193. 10.1182/blood.V130.Suppl_1.193.193 DOI
Zhang X, Yang JF, Li JJ, Li WQ, Song D, Lu XA, et al. Factors associated with treatment response to CD19 CAR-T therapy among a large cohort of B cell acute lymphoblastic leukemia. Cancer Immunol Immunother (2022) 71(3):689–703. 10.1007/s00262-021-03009-z PubMed DOI PMC
Martino M, Alati C, Canale FA, Musuraca G, Martinelli G, Cerchione C. A Review of clinical outcomes of CAR T-Cell therapies for B-Acute lymphoblastic leukemia. Int J Mol Sci (2021) 22:2150. 10.3390/ijms22042150 PubMed DOI PMC
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med (2019) 380:45–56. 10.1056/NEJMoa1804980 PubMed DOI
Vercellino L, Di Blasi R, Kanoun S, Tessoulin B, Rossi C, D'Aveni-Piney M, et al. Predictive factors of early progression after CAR T‐cell therapy in relapsed/refractory diffuse large B‐cell lymphoma. Blood Adv (2020) 4(22):5607–15. 10.1182/bloodadvances.2020003001 PubMed DOI PMC
Riedell PA, Walling C, Nastoupil LJ, Pennisi M, Maziarz RT, McGuirk JP, et al. A multicenter retrospective analysis of clinical outcomes, toxicities, and patterns of use in institutions utilizing commercial axicabtagene ciloleucel and tisagenlecleucel for relapsed/refractory aggressive B-cell lymphomas. Blood (2019) 134:1599. 10.1182/blood-2019-127490 DOI
Dean EA, Mhaskar RS, Lu H, Mousa MS, Krivenko GS, Lazaryan A, et al. High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B‐cell lymphoma. Blood Adv (2020) 4(14):3268–76. 10.1182/bloodadvances.2020001900 PubMed DOI PMC
Monfrini C, Stella F, Aragona V, Magni M, Ljevar S, Vella C, et al. Phenotypic composition of commercial anti-CD19 CAR-T cells affects in vivo expansion and disease response in large B-cell lymphoma patients. Clin Cancer Res (2022) 28:3378–86. 10.1158/1078-0432.ccr-22-0164 PubMed DOI PMC
Cuffel A, Allain V, Faivre L, Di Blasi R, Morin F, Vercellino L, et al. Real-world characteristics of T-cell apheresis and clinical response to tisagenlecleucel in B-cell lymphoma. Blood Adv (2022) 6:4657–60. 10.1182/bloodadvances.2022007057 PubMed DOI PMC
Byrne M, Oluwole OO, Savani B, Majhail NS, Hill BT, Locke FL. Understanding and managing large B cell lymphoma relapses after chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant (2019) 25:e344–e351. 10.1016/j.bbmt.2019.06.036 PubMed DOI PMC
Blache U, Weiss R, Boldt A, Kapinsky M, Blaudszun AR, Quaiser A, et al. Advanced flow cytometry assays for immune monitoring of CAR-T cell applications. Front Immunol (2021) 12:658314. 10.3389/fimmu.2021.658314 PubMed DOI PMC
Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med (2018) 24(5):563–71. 10.1038/s41591-018-0010-1 PubMed DOI PMC
Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med (2017) 377:2545–54. 10.1056/NEJMoa1708566 PubMed DOI PMC
Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest (2005) 115(6):1616–26. 10.1172/JCI24480 PubMed DOI PMC
Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo . Leukemia (2016) 30(2):492–500. 10.1038/leu.2015.247 PubMed DOI PMC
An L, Lin Y, Deng B, Yin Z, Zhao D, Ling Z, et al. Humanized CD19 CAR-T cells in relapsed/refractory B-ALL patients who relapsed after or failed murine CD19 CAR-T therapy. BMC Cancer (2022) 22(1):393. 10.1186/s12885-022-09489-1 PubMed DOI PMC
Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med (2018) 378(5):449–59. 10.1056/NEJMoa1709919 PubMed DOI PMC
Štach M, Ptáčková P, Mucha M, Musil J, Klener P, Otahal P. Inducible secretion of IL-21 augments anti-tumor activity of piggyBac-manufactured chimeric antigen receptor T cells. Cytotherapy (2020) 22(12):744–54. 10.1016/j.jcyt.2020.08.005 PubMed DOI
Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of hodgkin and non-hodgkin lymphoma: The lugano classification. J Clin Oncol (2014) 32(27):3059–68. 10.1200/JCO.2013.54.8800 PubMed DOI PMC
Kratochvíl M, Koladiya A, Vondrášek J. Generalized EmbedSOM on quadtree‐structured self‐organizing maps. F1000Res (2020) 8:2120, 10.12688/f1000research.21642.2 PubMed DOI PMC
Impact of T cell characteristics on CAR-T cell therapy in hematological malignancies