iReenCAM: automated imaging system for kinetic analysis of photosynthetic pigment biosynthesis at high spatiotemporal resolution during early deetiolation

. 2023 ; 14 () : 1093292. [epub] 20230421

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37152154

Seedling de-etiolation is one of the key stages of the plant life cycle, characterized by a strong rearrangement of the plant development and metabolism. The conversion of dark accumulated protochlorophyllide to chlorophyll in etioplasts of de-etiolating plants is taking place in order of ns to µs after seedlings illumination, leading to detectable increase of chlorophyll levels in order of minutes after de-etiolation initiation. The highly complex chlorophyll biosynthesis integrates number of regulatory events including light and hormonal signaling, thus making de-etiolation an ideal model to study the underlying molecular mechanisms. Here we introduce the iReenCAM, a novel tool designed for non-invasive fluorescence-based quantitation of early stages of chlorophyll biosynthesis during de-etiolation with high spatial and temporal resolution. iReenCAM comprises customized HW configuration and optimized SW packages, allowing synchronized automated measurement and analysis of the acquired fluorescence image data. Using the system and carefully optimized protocol, we show tight correlation between the iReenCAM monitored fluorescence and HPLC measured chlorophyll accumulation during first 4h of seedling de-etiolation in wild type Arabidopsis and mutants with disturbed chlorophyll biosynthesis. Using the approach, we demonstrate negative effect of exogenously applied cytokinins and ethylene on chlorophyll biosynthesis during early de-etiolation. Accordingly, we identify type-B response regulators, the cytokinin-responsive transcriptional activators ARR1 and ARR12 as negative regulators of early chlorophyll biosynthesis, while contrasting response was observed in case of EIN2 and EIN3, the components of canonical ethylene signaling cascade. Knowing that, we propose the use of iReenCAM as a new phenotyping tool, suitable for quantitative and robust characterization of the highly dynamic response of seedling de-etiolation.

Zobrazit více v PubMed

Adam Z., Zaltsman A., Sinvany-Villalobo G., Sakamoto W. (2005). FtsH proteases in chloroplasts and cyanobacteria. Physiologia Plantarum 123, 386–390. doi: 10.1111/j.1399-3054.2004.00436.x DOI

Alonso J. M., Hirayama T., Roman G., Nourizadeh S., Ecker J. R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in arabidopsis. Science 284, 2148–2152. doi: 10.1126/science.284.5423.2148 PubMed DOI

Andreeva A., Stoitchkova K., Busheva M., Apostolova E. (2003). Changes in the energy distribution between chlorophyll-protein complexes of thylakoid membranes from pea mutants with modified pigment content - i. changes due to the modified pigment content. J. Photochem. Photobiol. B-Biology 70, 153–162. doi: 10.1016/S1011-1344(03)00075-7 PubMed DOI

Argyros R. D., Mathews D. E., Chiang Y. H., Palmer C. M., Thibault D. M., Etheridge N., et al. . (2008). Type b response regulators of arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20, 2102–2116. doi: 10.1105/tpc.108.059584 PubMed DOI PMC

Armstrong G. A., Runge S., Frick G., Sperling U., Apel K. (1995). Identification of NADPH:protochlorophyllide oxidoreductases a and b: a branched pathway for light-dependent chlorophyll biosynthesis in arabidopsis thaliana. Plant Physiol. 108, 1505–1517. doi: 10.1104/pp.108.4.1505 PubMed DOI PMC

Belyaeva O. B., Litvin F. F. (2014). Mechanisms of phototransformation of protochlorophyllide into chlorophyllide. Biochem. (Mosc) 79, 337–348. doi: 10.1134/S0006297914040038 PubMed DOI

Brzezowski P., Richter A. S., Grimm B. (2015). Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim. Biophys. Acta 1847, 968–985. doi: 10.1016/j.bbabio.2015.05.007 PubMed DOI

Casal J. J., Luccioni L. G., Oliverio K. A., Boccalandro H. E. (2003). Light, phytochrome signalling and photomorphogenesis in arabidopsis. Photochemical photobiological Sci. Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol. 2, 625–636. doi: 10.1039/b300094j PubMed DOI

Chen M., Chory J., Fankhauser C. (2004). Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87–117. doi: 10.1146/annurev.genet.38.072902.092259 PubMed DOI

Chory J., Aguilar N., Peto C. A. (1991). The phenotype of arabidopsis thaliana det1 mutants suggests a role for cytokinins in greening. Symp. Soc. Exp. Biol. 45, 21–29. PubMed

Cortleven A., Marg I., Yamburenko M. V., Schlicke H., Hill K., Grimm B., et al. . (2016). Cytokinin regulates the etioplast-chloroplast transition through the two-component signaling system and activation of chloroplast-related genes. Plant Physiol. 172, 464–478. doi: 10.1104/pp.16.00640 PubMed DOI PMC

Cortleven A., Schmulling T. (2015). Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 66(16), 4999–5013 doi: 10.1093/jxb/erv132 PubMed DOI

Dobisova T., Hrdinova V., Cuesta C., Michlickova S., Urbankova I., Hejatkova R., et al. . (2017). Light controls cytokinin signaling via transcriptional regulation of constitutively active sensor histidine kinase CKI1. Plant Physiol. 174, 387–404. doi: 10.1104/pp.16.01964 PubMed DOI PMC

Duan J. L., Lee K. P., Dogra V., Zhang S. Y., Liu K. W., Caceres-Moreno C., et al. . (2019). Impaired PSII proteostasis promotes retrograde signaling via salicylic acid. Plant Physiol. 180, 2182–2197. doi: 10.1104/pp.19.00483 PubMed DOI PMC

Franck F., Sperling U., Frick G., Pochert B., Van Cleve B., Apel K., et al. . (2000). Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases a and b. Plant Physiol. 124, 1678–1696. doi: 10.1104/pp.124.4.1678 PubMed DOI PMC

Frick G., Su Q., Apel K., Armstrong G. A. (2003). An arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases b and c is highly chlorophyll-deficient and developmentally arrested. Plant J. 35, 141–153. doi: 10.1046/j.1365-313X.2003.01798.x PubMed DOI

Garcia-Plazaola J. I., Becerril J. M. (1999). A rapid high performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: Simultaneous determination of carotenoids and tocopherols. Phytochemical Anal. 10, 307–313. doi: 10.1002/(SICI)1099-1565(199911/12)10:6<307::AID-PCA477>3.0.CO;2-L DOI

Hedtke B., Alawady A., Albacete A., Kobayashi K., Melzer M., Roitsch T., et al. . (2012). Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated arabidopsis tissue. Plant Mol. Biol. 78, 77–93. doi: 10.1007/s11103-011-9846-1 PubMed DOI

Heyes D. J., Zhang S., Taylor A., Johannissen L. O., Hardman S. J. O., Hay S., et al. . (2021). Photocatalysis as the 'master switch' of photomorphogenesis in early plant development. Nat. Plants 7, 268–276. doi: 10.1038/s41477-021-00866-5 PubMed DOI

Hill K., Mathews D. E., Kim H. J., Street I. H., Wildes S. L., Chiang Y. H., et al. . (2013). Functional characterization of type-b response regulators in the arabidopsis cytokinin response. Plant Physiol. 162, 212–224. doi: 10.1104/pp.112.208736 PubMed DOI PMC

Ishida K., Yamashino T., Yokoyama A., Mizuno T. (2008). Three type-b response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of arabidopsis thaliana. Plant Cell Physiol. 49, 47–57. doi: 10.1093/pcp/pcm165 PubMed DOI

Kato Y., Sakamoto W. (2018). FtsH protease in the thylakoid membrane: Physiological functions and the regulation of protease activity. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00855 PubMed DOI PMC

Kobayashi K., Fujii S., Sasaki D., Baba S., Ohta H., Masuda T., et al. . (2014). Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in arabidopsis. Front. Plant Sci. 5, 272. doi: 10.3389/fpls.2014.00272 PubMed DOI PMC

Kobayashi K., Masuda T. (2016). Transcriptional regulation of tetrapyrrole biosynthesis in arabidopsis thaliana. Front. Plant Sci. 7, 1811. doi: 10.3389/fpls.2016.01811 PubMed DOI PMC

Kowalewska L., Mazur R., Suski S., Garstka M., Mostowska A. (2016). Three-dimensional visualization of the tubular-lamellar transformation of the internal plastid membrane network during runner bean chloroplast biogenesis. Plant Cell 28, 875–891. doi: 10.1105/tpc.15.01053 PubMed DOI PMC

Kupper H., Benedikty Z., Morina F., Andresen E., Mishra A., Trtilek M. (2019). Analysis of OJIP chlorophyll fluorescence kinetics and Q(A) reoxidation kinetics by direct fast imaging. Plant Physiol. 179, 369–381. doi: 10.1104/pp.18.00953 PubMed DOI PMC

Lamb J. J., Rokke G., Hohmann-Marriott M. F. (2018). Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica 56, 105–124. doi: 10.1007/s11099-018-0791-y DOI

Liu X., Li Y., Zhong S. (2017). Interplay between light and plant hormones in the control of arabidopsis seedling chlorophyll biosynthesis. Front. Plant Sci. 8, 1433. doi: 10.3389/fpls.2017.01433 PubMed DOI PMC

Mason M. G., Mathews D. E., Argyros D. A., Maxwell B. B., Kieber J. J., Alonso J. M., et al. . (2005). Multiple type-b response regulators mediate cytokinin signal transduction in arabidopsis. Plant Cell 17, 3007–3018. doi: 10.1105/tpc.105.035451 PubMed DOI PMC

Masuda T., Tanaka R., Shioi Y., Takamiya K., Kannangara C. G., Tsuji H. (1994). Mechanism of benzyladenine-induced stimulation of the synthesis of 5-aminolevulinic acid in greening cucumber cotyledons - benzyladenine increases levels of plastid transfer rnaglu. Plant Cell Physiol. 35, 183–188.

Matsumoto F., Obayashi T., Sasaki-Sekimoto Y., Ohta H., Takamiya K., Masuda T. (2004). Gene expression profiling of the tetrapyrrole metabolic pathway in arabidopsis with a mini-array system. Plant Physiol. 135, 2379–2391. doi: 10.1104/pp.104.042408 PubMed DOI PMC

Paddock T. N., Mason M. E., Lima D. F., Armstrong G. A. (2010). Arabidopsis protochlorophyllide oxidoreductase a (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. Plant Mol. Biol. 72, 445–457. doi: 10.1007/s11103-009-9582-y PubMed DOI

Pepper A., Delaney T., Washburn T., Poole D., Chory J. (1994). DET1, a negative regulator of light-mediated development and gene expression in arabidopsis, encodes a novel nuclear-localized protein. Cell 78, 109–116. doi: 10.1016/0092-8674(94)90577-0 PubMed DOI

Pipitone R., Eicke S., Pfister B., Glauser G., Falconet D., Uwizeye C., et al. . (2021). A multifaceted analysis reveals two distinct phases of chloroplast biogenesis during de-etiolation in arabidopsis. Elife 10. doi: 10.7554/eLife.62709.sa2 PubMed DOI PMC

Reinbothe S., Reinbothe C., Apel K., Lebedev N. (1996). Evolution of chlorophyll biosynthesis–the challenge to survive photooxidation. Cell 86, 703–705. doi: 10.1016/S0092-8674(00)80144-0 PubMed DOI

Roman G., Lubarsky B., Kieber J. J., Rothenberg M., Ecker J. R. (1995). Genetic analysis of ethylene signal transduction in arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139, 1393–1409. doi: 10.1093/genetics/139.3.1393 PubMed DOI PMC

Rudowska L., Gieczewska K., Mazur R., Garstka M., Mostowska A. (2012). Chloroplast biogenesis - correlation between structure and function. Biochim. Et Biophys. Acta-Bioenergetics 1817, 1380–1387. doi: 10.1016/j.bbabio.2012.03.013 PubMed DOI

Sakamoto W., Tamura T., Hanba-Tomita Y., Murata M., Sodmergen (2002). The VAR1 locus of arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells 7, 769–780. doi: 10.1046/j.1365-2443.2002.00558.x PubMed DOI

Sakamoto W., Zaltsman A., Adam Z., Takahashi Y. (2003). Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in arabidopsis thylakoid membranes. Plant Cell 15, 2843–2855. doi: 10.1105/tpc.017319 PubMed DOI PMC

Sandoval-Ibanez O., Sharma A., Bykowski M., Borras-Gas G., Behrendorff J., Mellor S., et al. . (2021). Curvature thylakoid 1 proteins modulate prolamellar body morphology and promote organized thylakoid biogenesis in arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 118. doi: 10.1073/pnas.2113934118 PubMed DOI PMC

Shi H., Shen X., Liu R., Xue C., Wei N., Deng X. W., et al. . (2016). The red light receptor phytochrome b directly enhances substrate-E3 ligase interactions to attenuate ethylene responses. Dev. Cell 39, 597–610. doi: 10.1016/j.devcel.2016.10.020 PubMed DOI PMC

Skalak J., Nicolas K. L., Vankova R., Hejatko J. (2021). Signal integration in plant abiotic stress responses via multistep phosphorelay signaling. Front. Plant Sci. 12, 644823. doi: 10.3389/fpls.2021.644823 PubMed DOI PMC

Skalak J., Vercruyssen L., Claeys H., Hradilova J., Cerny M., Novak O., et al. . (2019). Multifaceted activity of cytokinin in leaf development shapes its size and structure in arabidopsis. Plant J. 97, 805–824. doi: 10.1111/tpj.14285 PubMed DOI

Skupien J., Wojtowicz J., Kowalewska L., Mazur R., Garstka M., Gieczewska K., et al. . (2017). Dark-chilling induces substantial structural changes and modifies galactolipid and carotenoid composition during chloroplast biogenesis in cucumber (Cucumis sativus l.) cotyledons. Plant Physiol. Biochem. 111, 107–118. doi: 10.1016/j.plaphy.2016.11.022 PubMed DOI

Solymosi K., Schoefs B. (2010). Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynthesis Res. 105, 143–166. doi: 10.1007/s11120-010-9568-2 PubMed DOI

Spyroglou I., Skalak J., Balakhonova V., Benedikty Z., Rigas A. G., Hejatko J. (2021). Mixed models as a tool for comparing groups of time series in plant sciences. Plants (Basel) 10. doi: 10.3390/plants10020362 PubMed DOI PMC

Stirbet A., Govindjee (2011). On the relation between the kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B-Biology 104, 236–257. doi: 10.1016/j.jphotobiol.2010.12.010 PubMed DOI

Su Q., Frick G., Armstrong G., Apel K. (2001). POR c of arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol. Biol. 47, 805–813. doi: 10.1023/A:1013699721301 PubMed DOI

Tanaka R., Kobayashi K., Masuda T. (2011). Tetrapyrrole metabolism in arabidopsis thaliana. Arabidopsis book / Am. Soc. Plant Biologists 9, e0145. doi: 10.1199/tab.0145 PubMed DOI PMC

To J. P., Haberer G., Ferreira F. J., Deruere J., Mason M. G., Schaller G. E., et al. . (2004). Type-a arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16, 658–671. doi: 10.1105/tpc.018978 PubMed DOI PMC

Virgin H. I., Kahn A., Vonwettstein D. (1963). The physiology of chlorophyll formation in relation to structural changes in chloroplasts. Photochem. Photobiol. 2, 83–&.

Wang X., Li Q., Zhang Y., Pan M., Wang R., Sun Y., et al. . (2022). VAR2/AtFtsH2 and EVR2/BCM1/CBD1 synergistically regulate the accumulation of PSII reaction centre D1 protein during de-etiolation in arabidopsis. Plant Cell Environ. 45, 2395–2409. doi: 10.1111/pce.14368 PubMed DOI

Yu F., Park S., Rodermel S. R. (2004). The arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Plant J. 37, 864–876. doi: 10.1111/j.1365-313X.2003.02014.x PubMed DOI

Zaltsman A., Ori N., Adam Z. (2005). Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem II repair in arabidopsis. Plant Cell 17, 2782–2790. doi: 10.1105/tpc.105.035071 PubMed DOI PMC

Zhang S., Godwin A. R. F., Taylor A., Hardman S. J. O., Jowitt T. A., Johannissen L. O., et al. . (2021). Dual role of the active site 'lid' regions of protochlorophyllide oxidoreductase in photocatalysis and plant development. FEBS J. 288, 175–189. doi: 10.1111/febs.15542 PubMed DOI

Zhong S. W., Shi H., Xi Y. P., Guo H. W. (2010). Ethylene is crucial for cotyledon greening and seedling survival during de-etiolation. Plant Signaling Behav. 5, 739–742. doi: 10.4161/psb.5.6.11698 PubMed DOI PMC

Zhong S., Zhao M., Shi T., Shi H., An F., Zhao Q., et al. . (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of arabidopsis seedlings. Proc. Natl. Acad. Sci. U.S.A. 106, 21431–21436. doi: 10.1073/pnas.0907670106 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...