Mixed Models as a Tool for Comparing Groups of Time Series in Plant Sciences
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
No. CZ.02.1.01/0.0/0.0/16_026/0008446
European Regional Development Fund
LQ1601
Central European Institute of Technology
19-23108Y
Czech Science Foundation
PubMed
33668650
PubMed Central
PMC7918370
DOI
10.3390/plants10020362
PII: plants10020362
Knihovny.cz E-resources
- Keywords
- ARIMA, Arabidopsis, linear mixed models, time series analysis,
- Publication type
- Journal Article MeSH
Plants adapt to continual changes in environmental conditions throughout their life spans. High-throughput phenotyping methods have been developed to noninvasively monitor the physiological responses to abiotic/biotic stresses on a scale spanning a long time, covering most of the vegetative and reproductive stages. However, some of the physiological events comprise almost immediate and very fast responses towards the changing environment which might be overlooked in long-term observations. Additionally, there are certain technical difficulties and restrictions in analyzing phenotyping data, especially when dealing with repeated measurements. In this study, a method for comparing means at different time points using generalized linear mixed models combined with classical time series models is presented. As an example, we use multiple chlorophyll time series measurements from different genotypes. The use of additional time series models as random effects is essential as the residuals of the initial mixed model may contain autocorrelations that bias the result. The nature of mixed models offers a viable solution as these can incorporate time series models for residuals as random effects. The results from analyzing chlorophyll content time series show that the autocorrelation is successfully eliminated from the residuals and incorporated into the final model. This allows the use of statistical inference.
See more in PubMed
Box G.E.P., Jenkins G.M., Reinsel G.C., Ljung G.M. Time Series Analysis: Forecasting and Control. John Wiley & Sons; Hoboken, NJ, USA: 2015. pp. 21–46.
Kaiser E., Morales A., Harbinson J., Kromdijk J., Heuvelink E., Marcelis L.F.M. Dynamic Photosynthesis in Different Environmental Conditions. J. Exp. Bot. 2015;66:2415–2426. doi: 10.1093/jxb/eru406. PubMed DOI
Kaiser E., Morales A., Harbinson J. Fluctuating Light Takes Crop Photosynthesis on a Rollercoaster Ride. Plant Physiol. 2018;76:977–989. doi: 10.1104/pp.17.01250. PubMed DOI PMC
Kaiser E., Galvis V.C., Armbruster U. Efficient Photosynthesis in Dynamic Light Environments: A Chloroplast’s Perspective. Biochem. J. 2019;476:2725–2741. doi: 10.1042/BCJ20190134. PubMed DOI PMC
Morales A., Kaiser E. Photosynthetic acclimation to fluctuating irradiance in plants. Front. Plant Sci. 2020;11:268. doi: 10.3389/fpls.2020.00268. PubMed DOI PMC
Way D.A., Pearcy R.W. Sunflecks in Trees and Forests: From Photosynthetic Physiology to Global Change Biology. Tree Physiol. 2012;32:1066–1081. doi: 10.1093/treephys/tps064. PubMed DOI
Peak D., Mott K.A. A New, Vapour-Phase Mechanism for Stomatal Responses to Humidity and Temperature. Plant Cell Environ. 2011;34:162–178. doi: 10.1111/j.1365-3040.2010.02234.x. PubMed DOI
Stitt M., Lunn J., Usadel B. Arabidopsis and Primary Photosynthetic Metabolism—More than the Icing on the Cake. Plant J. 2010;61:1067–1091. doi: 10.1111/j.1365-313X.2010.04142.x. PubMed DOI
Taylor S., Terry N. Limiting Factors in Photosynthesis: V. Photochemical Energy Supply Colimits Photosynthesis at Low Values of Intercellular CO2 Concentration. Limiting Factors in Photosynthesis: V. Photochemical Energy Supply Colimits Photosynthesis at Low Values of Intercellular CO2 Concentration. Plant Physiol. 1984;75:82–86. doi: 10.1104/pp.75.1.82. PubMed DOI PMC
Bailey S., Walters R.G., Jansson S., Horton P. Acclimation of Arabidopsis thaliana to the Light Environment: The Existence of Separate Low Light and High Light Responses. Planta. 2001;213:794–801. doi: 10.1007/s004250100556. PubMed DOI
Anderson J.M., Chow W.S., Park Y.I. The Grand Design of Photosynthesis: Acclimation of the Photosynthetic Apparatus to Environmental Cues. Photosynth. Res. 1995;46:129–139. doi: 10.1007/BF00020423. PubMed DOI
Nelson N., Ben-Shem A. The Complex Architecture of Oxygenic Photosynthesis. Nat. Rev. Mol. Cell Biol. 2004;5:971–982. doi: 10.1038/nrm1525. PubMed DOI
Mir R.R., Reynolds M., Pinto F., Khan M.A., Bhat M.A. High-Throughput Phenotyping for Crop Improvement in the Genomics Era. Plant Sci. 2019;282:60–72. doi: 10.1016/j.plantsci.2019.01.007. PubMed DOI
Pérez-Bueno M.L., Pineda M., Barón M. Phenotyping Plant Responses to Biotic Stress by Chlorophyll Fluorescence Imaging. Front. Plant Sci. 2019;10:1135. doi: 10.3389/fpls.2019.01135. PubMed DOI PMC
Humplík J.F., Dostál J., Ugena L., Spíchal L., de Diego N., Vencálek O., Fürst T. Bayesian Approach for Analysis of Time-to-Event Data in Plant Biology. Plant Methods. 2020;16:14. doi: 10.1186/s13007-020-0554-1. PubMed DOI PMC
Flood P.J., Kruijer W., Schnabel S.K., Schoor R., Jalink H., Snel J.F.H., Harbinson J., Aarts M.G.M. Phenomics for Photosynthesis, Growth and Reflectance in Arabidopsis thaliana Reveals Circadian and Long-Term Fluctuations in Heritability. Plant Methods. 2016;12:1–14. doi: 10.1186/s13007-016-0113-y. PubMed DOI PMC
Hedeker D.R., Gibbons R.D. Longitudinal Data Analysis. John Wiley and Sons; Hoboken, NJ, USA: 2006. pp. 47–79.
Tanaka R., Kobayashi K., Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. Arab. Book. 2011;9:e0145. doi: 10.1199/tab.0145. PubMed DOI PMC
Reinbothe S., Reinbothe C., Apel K., Lebedev N. Evolution of Chlorophyll Biosynthesis—The Challenge to Survive Photooxidation. Cell. 1996;86:703–705. doi: 10.1016/S0092-8674(00)80144-0. PubMed DOI
McCulloch C.E., Neuhaus J.M. Generalized Linear Mixed Models. In: Armitage P., Colton T., editors. Encyclopedia of Biostatistics. 2nd ed. Volume 2. John Wiley and Sons; Hoboken, NJ, USA: 2005. pp. 2085–2089.
Clauw P., Coppens F., de Beuf K., Dhondt S., van Daele T., Maleux K., Storme V., Clement L., Gonzalez N., Inzé D. Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis. Plant Physiol. 2015;167:800–816. PubMed PMC
Corbeil R.R., Searle S.R. Restricted Maximum Likelihood (REML) Estimation of Variance Components in the Mixed Model. Technometrics. 1976;18:31–38. doi: 10.2307/1267913. DOI
Hunger M., Döring A., Holle R. Longitudinal Beta Regression Models for Analyzing Health-Related Quality of Life Scores over Time. BMC Med. Res. Methodol. 2012;12:144. doi: 10.1186/1471-2288-12-144. PubMed DOI PMC
Draper N.R., Smith H. Applied Regression Analysis. John Wiley and Sons; Hoboken, NJ, USA: 1998. pp. 299–326.
Wolfinger R.D. Heterogeneous Variance-Covariance Structures for Repeated Measures. J. Agric. Biol. Environ. Stat. 1996;1:205–230. doi: 10.2307/1400366. DOI
Lütkepohl H., Xu F. The Role of the Log Transformation in Forecasting Economic Variables. Empir. Econ. 2012;42:619–638. doi: 10.1007/s00181-010-0440-1. DOI
Brooks M.E., Kristensen K., van Benthem K.J., Magnusson A., Berg C.W., Nielsen A., Skaug H.J., Maechler M., Bolker B.M. glmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017;9:378–400. doi: 10.32614/RJ-2017-066. DOI
Hyndman R.J., Khandakar Y. Automatic Time Series Forecasting: The Forecast Package for R. J. Stat. Softw. 2008;27:1–22. doi: 10.18637/jss.v027.i03. DOI
Hyndman R., Athanasopoulos G., Bergmeir C., Caceres G., Chhay L., O’Hara-Wild M., Petropoulos F., Razbash S., Wang E., Yasmeen F., et al. Forecasting Functions for Time Series and Linear Models. [(accessed on 20 November 2020)];2019 Available online: https://cran.r-project.org/web/packages/forecast/forecast.pdf.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2014. [(accessed on 20 November 2020)]. Available online: http://www.R-project.org/
Rstudio T. RStudio: Integrated Development for R. RStudio, PBC; Boston, MA, USA: 2020. DOI
Hyndman R.J., Athanasopoulos G. Forecasting: Principles and Practice. 2nd ed. OTexts; Melbourne, Australia: 2018. [(accessed on 20 November 2020)]. Available online: OTexts.com/fpp2.
Lee S., Lee D.K. What Is the Proper Way to Apply the Multiple Comparison Test? Korean J. Anesthesiol. 2018;71:353. doi: 10.4097/kja.d.18.00242. PubMed DOI PMC
Fitzmaurice G., Laird N., Ware J. Applied Longitudinal Analysis. 2nd ed. John Wiley & Sons; Hoboken, NJ, USA: 2011. pp. 76–86.
Crowder M.J., Hand D.J. Analysis of Repeated Measures. 2nd ed. CRC Press; Boca Raton, FL, USA: 2017. pp. 5–11.
Sun D., Zhu Y., Xu H., He Y., Cen H. Time-Series Chlorophyll Fluorescence Imaging Reveals Dynamic Photosynthetic Fingerprints of sos Mutants to Drought Stress. Sensors. 2019;19:2649. PubMed PMC
Banks J.M. Chlorophyll Fluorescence as a Tool to Identify Drought Stress in Acer Genotypes. Environ. Exp. Bot. 2018;155:118–127. doi: 10.1016/j.envexpbot.2018.06.022. DOI
Liu X., Li Y., Zhong S. Interplay between Light and Plant Hormones in the Control of Arabidopsis Seedling Chlorophyll Biosynthesis. Front. Plant Sci. 2017;8:1433. doi: 10.3389/fpls.2017.01433. PubMed DOI PMC
Zhong S., Shi H., Xue C., Wei N., Guo H., Deng X.W. Ethylene-Orchestrated Circuitry Coordinates a Seedling’s Response to Soil Cover and Etiolated Growth. Proc. Natl. Acad. Sci. USA. 2014;111:3913–3920. doi: 10.1073/pnas.1402491111. PubMed DOI PMC
Hau B. Mathematical Functions to Describe Disease Progress Curves of Double Sigmoid Pattern. Phytopathology. 1993;83:928–932.
Neher D.A., Campbell C.L. Underestimation of Disease Progress Rates with the Logistic, Monomolecular, and Gompertz Models When Maximum Disease Intensity Is Less Than 100 Percent. Phytopathology. 1992;82:811–814.