An updated review of fatty acid residue-tethered heterocyclic compounds: synthetic strategies and biological significance
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37152561
PubMed Central
PMC10157362
DOI
10.1039/d3ra01368e
PII: d3ra01368e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Heterocyclic compounds have been featured as the key building blocks for the development of biologically active molecules. In addition to being derived from renewable raw materials, fatty acids possess a variety of biological properties. The two bioactive ingredients are being combined by many researchers to produce hybrid molecules that have a number of desirable properties. Biological activities and significance of heterocyclic derivatives of fatty acids have been demonstrated in a new class of heterocyclic compounds called heterocyclic fatty acid hybrid derivatives. The significance of heterocyclic-fatty acid hybrid derivatives has been emphasized in numerous research articles over the past few years. In this review, we emphasize the development of synthetic methods and their biological evaluation for heterocyclic fatty acid derivatives. These reports, combined with the upcoming compilation, are expected to serve as comprehensive foundations and references for synthetic, preparative, and applicable methods in medicinal chemistry.
Department of Green Chemistry National Research Center Dokki Cairo 12622 Egypt
Department of Pharmacognosy College of Pharmacy King Khalid University Asir 61421 Saudi Arabia
School of Biotechnology Badr University in Cairo Cairo 11829 Egypt
Zobrazit více v PubMed
Biermann U. Friedt W. Lang S. Luhs W. Machmuller G. Metzger J. O. Rush gen. Klaas M. Schafer H. J. Schneider M. P. Angew. Chem. 2000;112:`2292–2310. PubMed
Jóźwiak M. Filipowska A. Fiorino F. Struga M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur. J. Pharmacol. 2020:172937. PubMed
Amiri M. Yousefnia S. Forootan F. S. Peymani M. Ghaedi K. Nasr Esfahani M. H. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene. 2018;676:171–183. PubMed
Connor W. E. and Neuringer M., Biological Membranes: Aberrations in Membrane Structure and Function, ed. Karnovsky M. L., Leaf A. and Bolis L. C., Alan R, Liss, Inc., New York, 1988, pp. 275–294
Hooper L. Martin N. Abdelhamid A. Davey Smith G. Cochrane Database Syst. Rev. 2015;6(6):CD011737. PubMed
Sacks F. M. Lichtenstein A. H. Wu J. H. Appel L. J. Creager M. A. Kris-Etherton P. M. Miller M. Rimm E. B. Rudel L. L. Robinson J. G. Stone N. J. Van Horn L. V. Circulation. 2017;136(3):e1–e23. PubMed
Fawzy A. El-Sayed R. Al Bahir A. Morad M. Althagafi I. Althagafy K. Assessment of new designed surfactants as eco-friendly inhibitors for the corrosion of steel in acidic environment and evaluation of their biological and surface features: thermodynamic, kinetic and mechanistic aspects. J. Adhes. Sci. Technol. 2022;36(18):1993–2019.
Ilikti H. Benabdallah T. Bentayeb K. Othman A. A. Derrich Z. Reduction of α,β-unsaturated ketones using a Zn/NiCl2 system in aqueous media in the presence of anionic and cationic surfactants. S. Afr. J. Chem. 2008;61:31–36.
El-Sayed R. Almalki M. H. K. Synthesis of Five and Six-Membered Heterocycles Using Activated Nitriles for Industrial Applications. J. Oleo Sci. 2017;66(8):925–938. PubMed
Irby D. Du C. Li F. Lipid–Drug Conjugate for Enhancing Drug Delivery. Mol. Pharm. 2017;14(5):1325–1338. PubMed PMC
Venepally V. Ram Chandra R. J. An insight into the biological activities of heterocyclic–fatty acid hybrid molecules. Eur. J. Med. Chem. 2017;141:113–137. PubMed
Khaddaj-Mallat R. Morin C. Rousseau E. Novel n-3 PUFA monoacylglycerides of pharmacological and medicinal interest: anti-inflammatory and anti-proliferative effects. Eur. J. Pharmacol. 2016;792:70–77. PubMed
El-Sayed R. Khalid S. K. Propoxylated fatty thiazole, pyrazole, triazole, and pyrrole derivatives with antimicrobial and surface activity. J. Surfactants Deterg. 2015;18:661–673.
Akanbi T. O. Marshall S. N. Barrow C. J. Polydatin-fatty acid conjugates are effective antioxidants for stabilizing omega 3-containing bulk fish oil and fish oil emulsions. Food Chem. 2019:125297. PubMed
Siena L. et al., Electrophilic derivatives of omega-3 fatty acids counteract lung cancer cell growth. Cancer Chemother. Pharmacol. 2018;81(4):705–716. PubMed
Abdel-Mawgoud A. M. Stephanopoulos G. Synth. Syst. Biotechnol. 2018;3:3. PubMed PMC
Tarfah Al-W. Sabt A. Elkaeed E. B. Eldehna W. M. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg. Chem. 2020;103:104163. PubMed
Janiš R. Klasek A. Krejčí J. Bobalova J. Influence of some chromium complexes on the conversion rate of glycidol–fatty acid reaction. Tenside, Surfactants, Deterg. 2005;42(1):44–48.
Chehrouri M. Othman A. A. Jiménez-Cecilia S. Moreno-Cabrerizo C. Sansano J. M. Synth. Commun. 2019;49:1301–1307.
El-Sayed R. Synthesis of biodegradable pyrazole, pyran, pyrrole, pyrimidine and chromene derivatives having medical and surface activities. J. Surfactants Deterg. 2016;19:1153–1167.
Metzger J. O. Riedner U. Fat Sci. Technol. 1989;91:18–23.
Metzger J. O. Mahler R. Angew. Chem. 1995;107:1012–1016.
Hidalgo F. J. Zamora R. In vitro production of long chain pyrrole fatty esters from carbonyl-amine reactions. J. Lipid Res. 1995;36:725–735. PubMed
Varshney H. Ahmad A. Rauf A. Husain F. M. Ahmad I. Synthesis and antimicrobial evaluation of fatty chain substituted 2, 5-dimethyl pyrrole and 1, 3- benzoxazin-4-one derivatives. J. Saudi Chem. Soc. 2017;21:S394–S402.
Venepally V. Prasad R. B. Poornachandra Y. Kumar C. G. Jala R. C. Synthesis and biological evaluation of some new N-fatty acyl derivatives of 4,5-dimethoxy tryptamine. Indian J. Chem. 2017;56B:531–541.
Abd El Salam H. A. Shaker N. O. El Telbani E. M. Nawwar G. A. M. J. Chem. Res. 2009;40:400–404.
Mustafa A. Zayed S. M. A. D. Khattab S. J. Am. Chem. Soc. 1956;78:145.
Mulzer J., in Comprehensive Organic Functional Group Transformations, ed. Katritzky, A. R., Meth-Cohn, O. and Rees, C. W., Pergamon Press, Oxford, 1995, pp. 144–276
Chen H.-J. Liu Y. Wang L.-N. Shen Q. Li J. Nan F.-J. Bioorg. Med. Chem. Lett. 2010;20:2876–2879. PubMed
Laskar K. Ahmad A. Rauf A. Synthesis and spectral characterization of novel fatty acid chain substituted pyrazoline derivatives. Rasayan J. Chem. 2014;7:276–280.
Ahmad A. Varshney H. Rauf A. Husain F. M. Ahmad I. Synthesis, biological screening of novel long chain derivatives of 1,3-disubstituted-1H-pyrazol-5(4H)- one and 2-substituted-3H-1,4-phthalazin-1,4-dione: structure activity relationship studies. J. Saudi Chem. Soc. 2014;26:290–299.
Kenar J. A. Erhan S. Z. Synthesis of Δ2-isoxazoline fatty acid ester heterocycles. J. Am. Oil Chem. Soc. 2001;78:1045–1050.
Kenar J. A. Reduction of fatty ester Δ2-isoxazoline heterocycles. Preparation of fatty esters containing the b-hydroxy ketone moiety. J. Am. Oil Chem. Soc. 2002;79:351–356.
Kenar J. A. Wetzel A. R. Preparation of fatty 3,5-disubstituted isoxazole compounds from FA esters. J. Am. Oil Chem. Soc. 2003;80:711–716.
Ahmad A. Ahmad A. Varshney H. Rauf A. Rehan M. Subbarao N. Khan A. U. Designing and synthesis of novel antimicrobial heterocyclic analogs of fattyacids. Eur. J. Med. Chem. 2013;70:887–900. PubMed
Harn N. K. Gramer C. J. Anderson B. A. Tetrahedron Lett. 1995;36:9453–9456.
Sharma S. Gangal S. Rauf A. Convenient one-pot synthesis of novel 2-substituted benzimidazoles, tetrahydrobenzimidazoles and imidazoles and evaluation of their in vitro antibacterial and antifungal activities. Eur. J. Med. Chem. 2009;44:1751–1757. PubMed
Brous E. Lefort D. C. R. Acad. Sci. 1965:1990–1991.
Willems J. F. Vandenberghe A. Bull. Soc. Chim. Belg. 1961;70:745–757.
Furmeier S. Metzger J. O. Eur. J. Org. Chem. 2003:885–893.
Hosamani K. M. Hiremath V. B. Keri R. S. Harisha R. S. HalligudiCan S. B. Synthesis of novel 2-alkyl substituted oleobenzimidazole derivatives using ethylene glycol as solvent. J. Chem. 2008;86:1030–1033.
Li W. Lu Y. Wang Z. Dalton J. T. Miller D. D. Synthesis and antiproliferative activity of thiazolidine analogs for melanoma. Bioorg. Med. Chem. Lett. 2007;17:4113–4117. PubMed
Gududuru V. Hurh E. Sullivan J. Dalton J. T. Miller D. D. SAR studies of 2-arylthiazolidine-4-carboxylic acid amides: a novel class of cytotoxic agents for prostate cancer. Bioorg. Med. Chem. Lett. 2005;15:4010–4013. PubMed
Lu Y. Wang Z. Li C. M. Chen J. Dalton J. T. Li W. Miller D. D. Synthesis, in vitro structure-activity relationship, and in vivo studies of 2-arylthiazolidine-4-carboxylic acid amides as anticancer agents. Bioorg. Med. Chem. 2010;18:477–495. PubMed PMC
Gududuru V. Hurh E. Dalton J. T. Miller D. D. Discovery of 2-arylthiazolidine-4-carboxylic acid amides as a new class of cytotoxic agents for prostate cancer. J. Med. Chem. 2005;48:2584e2588. PubMed
Rauf A. Gangal S. Sharma S. Zahin M. A simple, rapid and efficient one-pot protocol for the synthesis of 2-substituted benzothiazole derivatives and their antimicrobial screening. S. Afr. J. Chem. 2008;61:63–67.
Varshney H. Ahmad A. Farshori N. N. Ahmad A. Khan A. U. Rauf A. Synthesis and evaluation of in vitro antimicrobial activity of novel 2,3-disubstituted-4-thiazolidinones from fatty acid hydrazides. Med. Chem. Res. 2013;22:3204.
Eissa A. M. F. Anionic surface active agents from fatty acid hydrazides containing heterocyclic moiety. Olaj, Szappan, Kozmet. 2002;51:155–161.
Rauf A. Sharma S. Gangal S. One-pot synthesis, antibacterial and antifungal activities of novel 2,5-disubstituted-1,3,4-oxadiazoles. Chin. Chem. Lett. 2008;19:5–8.
Farshori N. N. Banday M. R. Ahmad A. Khan A. U. Rauf A. Synthesis, characterization, and in vitro antimicrobial activities of 5-alkenyl/hydroxyalkenyl- 2-phenylamine-1,3,4-oxadiazoles and thiadiazoles. Bioorg. Med. Chem. Lett. 2010;20:1933–1938. PubMed
Banday M. R. Mattoo R. H. Rauf A. Synthesis, characterization and antibacterial activity of 5-(alkenyl)-2-amino- and 2-(alkenyl)-5-phenyl-1,3,4- oxadiazoles. J. Chem. Sci. 2010;122:177–182.
Soliman H. M. El-Shattory Y. Separation of Palmitic Acid from over Used Oil for Production of Heterogeneous Organic Derivatives of Potential Biological Activities. Egypt. J. Chem. 2017;60(No. 4):591–600.
Marcel S. F. Jie L. K. Pasha M. K. Shahin Alam M. Synthesis of novel triazole fatty acid derivatives from acetylenic fatty esters. Chem. Phys. Lipids. 1998;91:71–78.
Rauf A. Gangal S. Facile one-pot synthesis of N-acyl-1H-1,2,3-benzotriazoles from internal and terminal olefinic fatty acids and their antimicrobial screening. J. Oleo Sci. 2008;57:453–457. PubMed
Rezaei Z. Khabnadideh S. Pakshir K. Hossaini Z. Amiri F. Assadpour E. Design, synthesis and antifungal activity of triazole and benzotriazole derivatives. Eur. J. Med. Chem. 2009;44:3064–3067. PubMed
Banday M. R. Rauf A. Substituted 1,2,4-triazoles and thiazolidinones from fatty acids: Spectral characterization and antimicrobial activity. Indian J. Chem. 2009;48B:97–102.
Ghiano D. G. de la Iglesia A. Liu N. Tonge P. J. Morbidoni H. R. Labadie G. R. Antitubercular activity of 1,2,3-triazolyl fatty acid derivatives. Eur. J. Med. Chem. 2017;125:842–852. PubMed PMC
Menendez C. Chollet A. Rodriguez F. Inard C. Pasca M. R. Lherbet C. Baltas M. Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem. 2012;52:275–283. PubMed
Kumar D. Negi B. Khare G. Kidwai S. Tyagi A. K. Singh R. Rawat D. S. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur. J. Med. Chem. 2014;81:301–313. PubMed
Xu J. M. Zhang E. Shi X. J. Wang Y. C. Yu B. Jiao W. W. Guo Y. Z. Liu H. M. Synthesis and preliminary biological evaluation of 1,2,3-triazole-Jaspine B hybrids as potential cytotoxic agents. Eur. J. Med. Chem. 2014;80:593–604. PubMed
Labadie G. R. de la Iglesia A. Morbidoni H. R. Targeting tuberculosis through a small focused library of 1,2,3-triazoles. Mol. Diversity. 2011;15:1017–1024. PubMed
Jubie S. Ramesh P. N. Dhanabal P. Kalirajan R. Muruganantham N. Antony A. S. Synthesis, antidepressant and antimicrobial activities of some novel stearic acid analogues. Eur. J. Med. Chem. 2012;54:931–935. PubMed
Koguro K. Oga T. Mitsui S. Orita R. Synthesis. 1998:910–914.
Huisgen R. Sauer J. Sturm H. J. Markgraf J. H. Chem. Ber. 1960;93:2106–2124.
Suzuki H. Hwang Y. S. Nakaya C. Matano Y. Synthesis. 1993:1218–1220.
Metzeger J. O. Mahler R. Francke G. Liebigs Ann./Recl. 1997:2303–2313.
Venepally V. Prasad R. B. Poornachandra Y. Kumar C. G. Jala R. C. Synthesis of novel ethyl 1-ethyl-6-fluoro-7-(fatty amido)-1,4-dihydro-4-oxoquinoline-3- carboxylate derivatives and their biological evaluation. Bioorg. Med. Chem. Lett. 2016;26:613–617. PubMed
Malinak D. Dolezal R. Marek J. Salajkova S. Soukup O. Vejsova M. Korabecny J. Honegr J. Penhaker M. Musilek K. Kuca K. 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: synthesis and antimicrobial activity. Bioorg. Med. Chem. Lett. 2014;24:5238–5241. PubMed
Rozwadowska M. D. Heterocycles. 1994;39:903–931.
Chrzanowska M. Rozwadowska M. D. Chem. Rev. 2004;7:3341–3370. PubMed
Mancuso A. J. Swern D. Synthesis. 1981:165–185.
Czarnocki Z. MacLean D. B. Szarek W. A. Bull. Soc. Chim. Belg. 1986;95:749–770.
Czarnocki Z. Matuszewska M. P. Matuszewska I. Org. Prep. Proced. Int. 1998;30:699–702.
Matuszewska I. Leniewski A. Roszkowski P. Czarnocki Z. Chem. Phys. Lipids. 2005;135:131–145. PubMed
da Costa Cabrera D. Rosa S. B. de Oliveira F. S. Marinho M. A. G. Montes D'Oca C. R. Russowsky D. Horn A. P. Montes D'Oca M. G. Synthesis and antiproliferative activity of novel hybrid 3-substituted polyhydroquinoline-fatty acids. MedChemComm. 2016;7:2167.
Balasubramanian S. Nair M. G. Synth. Commun. 2000;30:469.
Xiang H. Xiang W. H. Fang W. He L. Zhang L. Y. Liao Q. J. Synthesis of daidzein derivatives and their binding affinities to estrogen receptor. J. China Pharm. Univ. 2006;37:23–27.
Xiang H. Zhao W. Xiao H. Qian L. Yao Y. Li X.-B. Liao Q.-J. Bioorg. Med. Chem. 2010;18:3036–3042. PubMed
Singh M. P. Kong F. Janso G. E. Arias D. A. Suarez P. A. Bernan V. S. Petersen P. J. Weiss W. J. Carter G. Greenstein M. J. Antibiotics. 2003;56:1033–1044. PubMed
Singh M. P. Kong F. Janso G. E. Arias D. A. Suarez P. A. Bernan V. S. Petersen P. J. Weiss W. J. Carter G. Greenstein M. J. Antibiotics. 2003;56:1033–1044. PubMed
Kong F. Singh M. P. Carter G. T. J. Nat. Prod. 2005;68:920–923. PubMed
Oikawa Y. Sugano K. Yonemitsu O. J. Org. Chem. 1978;43:2087–2088.
Pashkovsky F. S. Lokot I. P. Lakhvich F. A. Synlett. 2001:1391–1394.
Giddens A. C. Nielsen L. Boshoff H. I. Tasdemir D. Perozzo R. Kaiser M. Wang F. Sacchettini j. C. Coop B. R. Tetrahedron. 2008;64:1242–1249.
Robins M. J. Hatfield P. W. Can. J. Chem. 1982;60:547–553.
Xu X. H. Chen H. M. Chen R. Y. Chem. J. Chin. Univ. 2000;21:1410.
Bouhadir K. Zhou J. Shevlin P. Synth. Commun. 2005;35:1003.
Vares L. Koulov A. Smith B. J. Org. Chem. 2003;68(26):10073. PubMed
Brown D. Todd A. Varadarajan S. J. Chem. Soc. 1956:2384.
Mitsunobu O. Synthesis. 1981:1.
Jenny T. Benner S. Tetrahedron Lett. 1992;33:6619.
Jenny T. Previsani N. Benner S. Tetrahedron Lett. 1991;32:7029.
Zhou J. Shevlin P. Tetrahedron Lett. 1998;39:8373.
Shatila R. Bouhadir K. Tetrahedron Lett. 2006;47:1767.
Hammud H. H. Ghannoum A. M. Fares F. A. Abramian L. K. Bouhadir K. H. J. Mol. Struct. 2008;881:11–20.
Mikata Y. Shinohara Y. Yoneda K. Nakamura Y. Esaki K. Tanahashi M. Brudzinska I. Hirohara S. Yokoyama M. Mogami K. Tanase T. Kitayama T. Takashiba K. Nabeshima K. Takagi R. Takatani M. Okamoto T. Kinshita I. Doe M. Hamazawa A. Morita M. Nishida F. Sakakibara T. Orvig C. Shigenobu Y. J. Org. Chem. 2001;66:3783–3789. PubMed
Chen Y. Janczuk A. Chen X. Wang J. Kesebati M. Wang P. G. Carbohydr. Res. 2002;337:1043–1046. PubMed
Gololobov Y. G. Gusar N. I. Chaus M. P. Tetrahedron. 1985;41:793–799.
Takeuchi H. Hagiwara S. Eguchi S. Tetrahedron. 1989;45:6375–6386.
Wu L. Burgess K. J. Am. Chem. Soc. 2008;120:4089–4096. PubMed
Aspinall S. L. J. Am. Chem. Soc. 1940;62:2160–2162.
Skinner G. S. Wunz P. R. J. Am. Chem. Soc. 1951;73:3814–3815.
Brimblecombe R. W. Hunt R. R. Rickard R. L. Taylor J. V. Br. J. Pharmacol. 1969;37:425–435. PubMed PMC
Salman S. M. Heidelberg T. Tajuddin H. A. B. Carbohydr. Res. 2013;375:55–62. PubMed
Treptow T. G. Figueiro F. Jandrey E. H. Battastini A. M. Salbego C. G. Hoppe J. B. Taborda P. S. Rosa S. B. Piovesan L. A. Montes D'Oca Cda R. Russowsky D. Montes D'Oca M. G. Novel hybrid DHPM-fatty acids: synthesis and activity against glioma cell growth in vitro. Eur. J. Med. Chem. 2015;95:552–562. PubMed
Kumarasamy D. Roy B. G. Rocha-Pereira J. Neyts J. Nanjappan S. Maity S. Mookerjee M. Naesens L. Synthesis and in vitro antiviral evaluation of 4- substituted 3,4-dihydropyrimidinones. Bioorg. Med. Chem. Lett. 2017;27:139–142. PubMed PMC
Eissa A. M. F. El-Sayed R. J. Heterocycl. Chem. 2006;43:1161–1168.
Rauf A. Sharma S. Gangal S. ARKIVOC. 2007;xvi:137–147.
Fieser L. F. and Fieser M., Reagents for Organic Synthesis, John Wiley and Sons, Inc, London, 1967, p. 233
aus dem Kahmen M. Schafer H. J. Fett/Lipid. 1998;100:227–235.
Michelet J.-F., Dalko M., Bernard B., Semeria D. and Philippe M., US Pat., US2004/38912 A1, 2004
Simeone L. Mangiapia G. Irace C. Di Pascale A. Colonna A. Ortona O. De Napoli L. Montesarchio D. Paduano L. Mol. BioSyst. 2011;7:3075–3086. PubMed
Simeone L. Irace C. Pascale A. Ciccarelli D. D'Errico G. Montesarchio D. Eur. J. Med. Chem. 2012;57:429–440. PubMed
Ziaullah Rupasinghe H. P. V. Tetrahedron Lett. 2013;54:1933–1937.
Frump A. Chem. Rev. 1971;71:483–525.
Sallary P. Bekassy S. Ahmed M. H. Farkas I. Rusznak I. Tetrahedron Lett. 1997;38:661–664.
Pegiadous S. Perez L. Infant M. R. J. Surfactants Deterg. 2001;2:517–525.
Abdallah M. Al-abdali F. H. Kamar E. M. El-Sayed R. Abdel Hameed R. S. Corrosion inhibition of aluminum in 1.0M HCl solution by some nonionic surfactant compounds containing five membered heterocyclic moiety. Chem. Data Collect. 2020;28:100407.
Aimal M. Jamal D. Quraishi M. A. Anti-Corros. Methods Mater. 2000;47:77–82.
Chhikara B. S. Jean N. S. Mandal D. Kumar A. Parang K. Eur. J. Med. Chem. 2011;46:2037–2042. PubMed
Bo-Tao Y. Xun S. Zhi-Rong Z. Arch. Pharmacal Res. 2003;26(12):1096–1101. PubMed
Abdelmajeid A. Saad Amine M. Ali Hassan R. Fatty Acids in Heterocyclic Synthesis: Part XIX Synthesis of Some Isoxazole, Pyrazole, Pyrimidine and Pyridine and Their Surface, Anticancer and Antioxidant Activities. Am. J. Heterocycl. Chem. 2018;4(2):30–41.
De Oliveira F. S. De Oliveira P. M. Farias L. M. Brinkerhoff R. C. Sobrinho R. C. M. A. Treptow T. M. Montes D'Oca C. R. Marinho M. A. G. Hort M. A. Horn A. P. Russowsky D. Montes D'Oca M. G. Synthesis and antitumoral activity of novel analogues monastrol–fatty acids against glioma cells. MedChemComm. 2018 Aug 1;9(8):1282–1288. PubMed PMC
Yakout E.-S. M. A. Abd El Salam H. A. Nawwar G. A. M. Bioactive Small Molecules Having a Fatty Residue. Part VI: Synthesis, Cytotoxicity Evaluation, and Molecular Docking Studies of New Pyrimidine Derivatives as Antitumor Agents. Russ. J. Org. Chem. 2020;56:2212–2221.
Chehrouri M. Othman A. A. Moreno-Cabrerizo C. Gholinejad M. Sansano J. M. Synthesis of 5-heptadecyl- and 5-heptadec-8-enyl substituted 4-amino-1,2,4-triazole-3-thiol and 1,3,4-oxadiazole-2-thione from (Z)-octadec-9-enoic acid: preparation of Palladium(II) complexes and evaluation of their antimicrobial activity. Monatsh. Chem. 2020;151:173–180.
Nengroo Z. R. Ahmad A. Tantary A. Shafi Ganie A. Shah Z. Design and synthesis of fatty acid derived 4-methoxybenzylamides as antimicrobial agents. Heliyon. 2021;7:e06842. PubMed PMC
da Costa Cabrera D. Santa-Helena E. Leal H. P. de Moura R. R. Nery L. E. M. Gonçalves C. A. N. Russowsky D. Montes D'Oca M. G. Synthesis and antioxidant activity of new lipophilic dihydropyridines. Bioorg. Chem. 2018;84:1–16. PubMed