Microbiome Structure of a Wild Drosophila Community along Tropical Elevational Gradients and Comparison to Laboratory Lines

. 2023 May 31 ; 89 (5) : e0009923. [epub] 20230508

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37154737

Variation along environmental gradients in host-associated microbial communities is not well understood compared to free-living microbial communities. Because elevational gradients may serve as natural proxies for climate change, understanding patterns along these gradients can inform our understanding of the threats hosts and their symbiotic microbes face in a warming world. In this study, we analyzed bacterial microbiomes from pupae and adults of four Drosophila species native to Australian tropical rainforests. We sampled wild individuals at high and low elevations along two mountain gradients to determine natural diversity patterns. Further, we sampled laboratory-reared individuals from isofemale lines established from the same localities to see if any natural patterns are retained in the lab. In both environments, we controlled for diet to help elucidate other deterministic patterns of microbiome composition. We found small but significant differences in Drosophila bacterial community composition across elevation, with some notable taxonomic differences between different Drosophila species and sites. Further, we found that field-collected fly pupae had significantly richer microbiomes than laboratory-reared pupae. We also found similar microbiome composition in both types of provided diet, suggesting that the significant differences found among Drosophila microbiomes are the products of surrounding environments with different bacterial species pools, possibly bound to elevational differences in temperature. Our results suggest that comparative studies between lab and field specimens help reveal the true variability in microbiome communities that can exist within a single species. IMPORTANCE Bacteria form microbial communities inside most higher-level organisms, but we know little about how the microbiome varies along environmental gradients and between natural host populations and laboratory colonies. To explore such effects on insect-associated microbiomes, we studied the gut microbiome in four Drosophila species over two mountain gradients in tropical Australia. We also compared these data to individuals kept in the laboratory to understand how different settings changed microbiome communities. We found that field-sampled individuals had significantly higher microbiome diversity than those from the lab. In wild Drosophila populations, elevation explains a small but significant amount of the variation in their microbial communities. Our study highlights the importance of environmental bacterial sources for Drosophila microbiome composition across elevational gradients and shows how comparative studies help reveal the true flexibility in microbiome communities that can exist within a species.

Zobrazit více v PubMed

Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R. 2011. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92:797–804. doi:10.1890/10-1170.1. PubMed DOI

Wang J, Soininen J, Zhang Y, Wang B, Yang X, Shen J. 2011. Contrasting patterns in elevational diversity between microorganisms and macroorganisms. J Biogeogr 38:595–603. doi:10.1111/j.1365-2699.2010.02423.x. DOI

Pärtel M, Bennett JA, Zobel M. 2016. Macroecology of biodiversity: disentangling local and regional effects. New Phytol 211:404–410. doi:10.1111/nph.13943. PubMed DOI

Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y, González A, Morton JT, Mirarab S, Zech Xu Z, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin Song S, Kosciolek T, Bokulich NA, Lefler J, Brislawn CJ, Humphrey G, Owens SM, Hampton-Marcell J, Berg-Lyons D, McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens RL, Shade A, Pollard KS, Goodwin KD, Jansson JK, Gilbert JA, Knight R, Earth Microbiome Project Consortium . 2017. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463. doi:10.1038/nature24621. PubMed DOI PMC

Alruiz JM, Peralta-Maraver I, Bozinovic F, Santos M, Rezende EL. 2022. Thermal tolerance in Drosophila: repercussions for distribution, community coexistence and responses to climate change. J Anim Ecol 91:655–667. doi:10.1111/1365-2656.13653. PubMed DOI

Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631. doi:10.1073/pnas.0507535103. PubMed DOI PMC

Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120. doi:10.1128/AEM.00335-09. PubMed DOI PMC

Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. 2018. Why do microbes exhibit weak biogeographic patterns? ISME J 12:1404–1413. doi:10.1038/s41396-018-0103-3. PubMed DOI PMC

Shen C, Ni Y, Liang W, Wang J, Chu H. 2015. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front Microbiol 6:582. doi:10.3389/fmicb.2015.00582. PubMed DOI PMC

Siles JA, Margesin R. 2016. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? Microb Ecol 72:207–220. doi:10.1007/s00248-016-0748-2. PubMed DOI PMC

McLean AHC, Parker BJ, Hrček J, Henry LM, Godfray HCJ. 2016. Insect symbionts in food webs. Philos Trans R Soc Lond B Biol Sci 371:20150325. doi:10.1098/rstb.2015.0325. PubMed DOI PMC

Corbin C, Heyworth ER, Ferrari J, Hurst GDD. 2017. Heritable symbionts in a world of varying temperature. Heredity (Edinb) 118:10–20. doi:10.1038/hdy.2016.71. PubMed DOI PMC

Brown JJ, Mihaljevic JR, Des Marteaux L, Hrček J. 2020. Metacommunity theory for transmission of heritable symbionts within insect communities. Ecol Evol 10:1703–1721. doi:10.1002/ece3.5754. PubMed DOI PMC

Colman DR, Toolson EC, Takacs-Vesbach CD. 2012. Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137. doi:10.1111/j.1365-294X.2012.05752.x. PubMed DOI

Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S, Park D-S, Yoon C, Nam Y-D, Kim Y-J, Choi J-H, Kim J-Y, Shin N-R, Kim S-H, Lee W-J, Bae J-W. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264. doi:10.1128/AEM.01226-14. PubMed DOI PMC

Xie J, Winter C, Winter L, Mateos M. 2015. Rapid spread of the defensive endosymbiont Spiroplasma in Drosophila hydei under high parasitoid wasp pressure. FEMS Microbiol Ecol 91:1–11. doi:10.1093/femsec/fiu017. PubMed DOI

Martinson VG, Carpinteyro-Ponce J, Moran NA, Markow TA. 2017. A distinctive and host-restricted gut microbiota in populations of a cactophilic Drosophila species. Appl Environ Microbiol 83:e01551-17. doi:10.1128/AEM.01551-17. PubMed DOI PMC

Novakova E, Woodhams DC, Rodríguez-Ruano SM, Brucker RM, Leff JW, Maharaj A, Amir A, Knight R, Scott J. 2017. Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus. Front Microbiol 8:526. doi:10.3389/fmicb.2017.00526. PubMed DOI PMC

Bing X, Gerlach J, Loeb G, Buchon N. 2018. Nutrient-dependent impact of microbes on Drosophila suzukii development. mBio 9:e02199-17. doi:10.1128/mBio.02199-17. PubMed DOI PMC

Moghadam NN, Thorshauge PM, Kristensen TN, de Jonge N, Bahrndorff S, Kjeldal H, Nielsen JL. 2018. Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly (Austin) 12:1–12. doi:10.1080/19336934.2017.1394558. PubMed DOI PMC

Park R, Dzialo MC, Spaepen S, Nsabimana D, Gielens K, Devriese H, Crauwels S, Tito RY, Raes J, Lievens B, Verstrepen KJ. 2019. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome 7:147. doi:10.1186/s40168-019-0748-9. PubMed DOI PMC

Brown JJ, Rodríguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, Zima J, Hypša V, Nováková E. 2020. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). Microbiome 8:146. doi:10.1186/s40168-020-00921-x. PubMed DOI PMC

Douglas AE. 2016. How multi-partner endosymbioses function. Nat Rev Microbiol 14:731–743. doi:10.1038/nrmicro.2016.151. PubMed DOI

Woodhams DC, Bletz MC, Becker CG, Bender HA, Buitrago-Rosas D, Diebboll H, Huynh R, Kearns PJ, Kueneman J, Kurosawa E, LaBumbard BC, Lyons C, McNally K, Schliep K, Shankar N, Tokash-Peters AG, Vences M, Whetstone R. 2020. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol 21:23. doi:10.1186/s13059-019-1908-8. PubMed DOI PMC

Wadgymar SM, Mactavish RM, Anderson JT. 2018. Transgenerational and within-generation plasticity in response to climate change: insights from a manipulative field experiment across an elevational gradient. Am Nat 192:698–714. doi:10.1086/700097. PubMed DOI

Nottingham AT, Whitaker J, Ostle NJ, Bardgett RD, McNamara NP, Fierer N, Salinas N, Ccahuana AJQ, Turner BL, Meir P. 2019. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol Lett 22:1889–1899. doi:10.1111/ele.13379. PubMed DOI

Economos AC, Lints FA. 1984. Growth rate and life span in Drosophila. III. Effect of body size and development temperature on the biphasic relationship between growth rate and life span. Mech Ageing Dev 27:153–160. doi:10.1016/0047-6374(84)90040-x. PubMed DOI

James AC, Azevedo RBR, Partridge L. 1997. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics 146:881–890. doi:10.1093/genetics/146.3.881. PubMed DOI PMC

Kinjo H, Kunimi Y, Nakai M. 2014. Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae). Appl Entomol Zool 49:297–304. doi:10.1007/s13355-014-0249-z. DOI

Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM. 2014. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43:501–510. doi:10.1603/EN13200. PubMed DOI

Brankatschk M, Gutmann T, Knittelfelder O, Palladini A, Prince E, Grzybek M, Brankatschk B, Shevchenko A, Coskun Ü, Eaton S. 2018. A temperature-dependent switch in feeding preference improves Drosophila development and survival in the cold. Dev Cell 46:781–793.e4. doi:10.1016/j.devcel.2018.05.028. PubMed DOI

Ratkowsky DA, Olley J, McMeekin TA, Ball A. 1982. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149:1–5. doi:10.1128/jb.149.1.1-5.1982. PubMed DOI PMC

Pettersson M, Bååth E. 2003. Temperature-dependent changes in the soil bacterial community in limed and unlimed soil. FEMS Microbiol Ecol 45:13–21. doi:10.1016/S0168-6496(03)00106-5. PubMed DOI

Tsuji S, Ushio M, Sakurai S, Minamoto T, Yamanaka H. 2017. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLoS One 12:e0176608. doi:10.1371/journal.pone.0176608. PubMed DOI PMC

Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. 2011. Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet 7:e1002272. doi:10.1371/journal.pgen.1002272. PubMed DOI PMC

Blum JE, Fischer CN, Miles J, Handelsman J. 2013. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio 4:e00860-13. doi:10.1128/mBio.00860-13. PubMed DOI PMC

Wong AC-N, Chaston JM, Douglas AE. 2013. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7:1922–1932. doi:10.1038/ismej.2013.86. PubMed DOI PMC

Chaplinska M, Gerritsma S, Dini-Andreote F, Salles JF, Wertheim B. 2016. Bacterial communities differ among Drosophila melanogaster populations and affect host resistance against parasitoids. PLoS One 11:e0167726. doi:10.1371/journal.pone.0167726. PubMed DOI PMC

Adair KL, Wilson M, Bost A, Douglas AE. 2018. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J 12:959–972. doi:10.1038/s41396-017-0020-x. PubMed DOI PMC

Adair KL, Bost A, Bueno E, Kaunisto S, Kortet R, Peters-Schulze G, Martinson VG, Douglas AE. 2020. Host determinants of among-species variation in microbiome composition in drosophilid flies. ISME J 14:217–229. doi:10.1038/s41396-019-0532-7. PubMed DOI PMC

Henry Y, Colinet H. 2018. Microbiota disruption leads to reduced cold tolerance in Drosophila flies. Sci Nat 105:59. doi:10.1007/s00114-018-1584-7. PubMed DOI

Elgart M, Stern S, Salton O, Gnainsky Y, Heifetz Y, Soen Y. 2016. Impact of gut microbiota on the fly’s germ line. Nat Commun 7:11280. doi:10.1038/ncomms11280. PubMed DOI PMC

Lizé A, McKay R, Lewis Z. 2014. Kin recognition in Drosophila: the importance of ecology and gut microbiota. ISME J 8:469–477. doi:10.1038/ismej.2013.157. PubMed DOI PMC

Sansone CL, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, Gold B, Buchon N, Cherry S. 2015. Microbiota-dependent priming of antiviral intestinal immunity in Drosophila. Cell Host Microbe 18:571–581. doi:10.1016/j.chom.2015.10.010. PubMed DOI PMC

Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J, Jiggins FM, Teixeira L. 2013. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet 9:e1003896. doi:10.1371/journal.pgen.1003896. PubMed DOI PMC

Hamilton PT, Perlman SJ. 2013. Host defense via symbiosis in Drosophila. PLoS Pathog 9:e1003808. doi:10.1371/journal.ppat.1003808. PubMed DOI PMC

Haselkorn TS, Cockburn SN, Hamilton PT, Perlman SJ, Jaenike J. 2013. Infectious adaptation: potential host range of a defensive endosymbiont in Drosophila. Evolution 67:934–945. doi:10.1111/evo.12020. PubMed DOI

Xie J, Butler S, Sanchez G, Mateos M. 2014. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity (Edinb) 112:399–408. doi:10.1038/hdy.2013.118. PubMed DOI PMC

Yadav S, Frazer J, Banga A, Pruitt K, Harsh S, Jaenike J, Eleftherianos I. 2018. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection. PLoS One 13:e0192183. doi:10.1371/journal.pone.0192183. PubMed DOI PMC

Jeffs CT, Terry JCD, Higgie M, Jandová A, Konvičková H, Brown JJ, Lue CH, Schiffer M, O'Brien EK, Bridle J, Hrček J, Lewis OT. 2021. Molecular analyses reveal consistent food web structure with elevation in rainforest Drosophila–parasitoid communities. Ecography 44:403–413. doi:10.1111/ecog.05390. DOI

Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA. 2013. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS One 8:e70749. doi:10.1371/journal.pone.0070749. PubMed DOI PMC

Cooper RO, Vavra JM, Cressler CE. 2021. Targeted manipulation of abundant and rare taxa in the Daphnia magna microbiota with antibiotics impacts host fitness differentially. mSystems 6:e00916-20. doi:10.1128/mSystems.00916-20. PubMed DOI PMC

Cornell HV, Harrison SP. 2014. What are species pools and when are they important? Annu Rev Ecol Evol Syst 45:45–67. doi:10.1146/annurev-ecolsys-120213-091759. DOI

Kohl KD. 2020. Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philos Trans R Soc Lond B Biol Sci 375:20190251. doi:10.1098/rstb.2019.0251. PubMed DOI PMC

Hammer TJ, Moran NA. 2019. Links between metamorphosis and symbiosis in holometabolous insects. Philos Trans R Soc Lond B Biol Sci 374:20190068. doi:10.1098/rstb.2019.0068. PubMed DOI PMC

Obadia B, Keebaugh ES, Yamada R, Ludington WB, Ja WW. 2018. Diet influences host–microbiota associations in Drosophila. Proc Natl Acad Sci USA 115:E4547–E4548. doi:10.1073/pnas.1804948115. PubMed DOI PMC

Merkey AB, Wong CK, Hoshizaki DK, Gibbs AG. 2011. Energetics of metamorphosis in Drosophila melanogaster. J Insect Physiol 57:1437–1445. doi:10.1016/j.jinsphys.2011.07.013. PubMed DOI

Bost A, Martinson VG, Franzenburg S, Adair KL, Albasi A, Wells MT, Douglas AE. 2018. Functional variation in the gut microbiome of wild Drosophila populations. Mol Ecol 27:2834–2845. doi:10.1111/mec.14728. PubMed DOI

Dada N, Benedict AC, López F, Lol JC, Sheth M, Dzuris N, Padilla N, Lenhart A. 2021. Comprehensive characterization of internal and cuticle surface microbiota of laboratory-reared F1 Anopheles albimanus originating from different sites. Malar J 20:414. doi:10.1186/s12936-021-03934-5. PubMed DOI PMC

Bost A, Franzenburg S, Adair KL, Martinson VG, Loeb G, Douglas AE. 2018. How gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota. Mol Ecol 27:1848–1859. doi:10.1111/mec.14413. PubMed DOI

Solomon GM, Dodangoda H, McCarthy-Walker T, Ntim-Gyakari R, Newell PD. 2019. The microbiota of Drosophila suzukii influences the larval development of Drosophila melanogaster. PeerJ 7:e8097. doi:10.7717/peerj.8097. PubMed DOI PMC

Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE. 2014. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol Ecol 23:1268–1283. doi:10.1111/mec.12611. PubMed DOI

Kwong WK, Medina LA, Koch H, Sing K-W, Soh EJY, Ascher JS, Jaffé R, Moran NA. 2017. Dynamic microbiome evolution in social bees. Sci Adv 3:e1600513. doi:10.1126/sciadv.1600513. PubMed DOI PMC

Sinotte VM, Renelies-Hamilton J, Taylor BA, Ellegaard KM, Sapountzis P, Vasseur-Cognet M, Poulsen M. 2020. Synergies between division of labor and gut microbiomes of social insects. Front Ecol Evol 7:503. doi:10.3389/fevo.2019.00503. DOI

Leftwich PT, Clarke NVE, Hutchings MI, Chapman T. 2017. Gut microbiomes and reproductive isolation in Drosophila. Proc Natl Acad Sci USA 114:12767–12772. doi:10.1073/pnas.1708345114. PubMed DOI PMC

Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. 2011. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14:403–414. doi:10.1016/j.cmet.2011.07.012. PubMed DOI

Coon KL, Vogel KJ, Brown MR, Strand MR. 2014. Mosquitoes rely on their gut microbiota for development. Mol Ecol 23:2727–2739. doi:10.1111/mec.12771. PubMed DOI PMC

Coon KL, Brown MR, Strand MR. 2016. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol Ecol 25:5806–5826. doi:10.1111/mec.13877. PubMed DOI PMC

Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38. doi:10.1186/1471-2105-12-38. PubMed DOI PMC

Parada AE, Needham DM, Fuhrman JA. 2016. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414. doi:10.1111/1462-2920.13023. PubMed DOI

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Retrieved 4 November 2019.

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi:10.1038/nmeth.2604. PubMed DOI

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421. PubMed DOI PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219. PubMed DOI PMC

Rodríguez-Ruano SM, Škochová V, Rego ROM, Schmidt JO, Roachell W, Hypša V, Nováková E. 2018. Microbiomes of North American Triatominae: the grounds for Chagas disease epidemiology. Front Microbiol 9:1167. doi:10.3389/fmicb.2018.01167. PubMed DOI PMC

Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. doi:10.1186/s40168-018-0605-2. PubMed DOI PMC

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. vegan: community ecology package. https://CRAN.R-project.org/package=vegan. Retrieved 28 November 2019.

McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217. PubMed DOI PMC

R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ssekagiri A. 2021. microbiomeSeq: microbial community analysis in an environmental context. https://github.com/umerijaz/microbiomeSeq. Retrieved 11 May 2022.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace